ON THE NUMBER OF MULTIPLICATIVE PARTITIONS

JOHN F. HUGHES

Department of Mathematics, Bryn Mawr College, Bryn Mawr, PA 19010

J. O. SHALLIT

Department of Mathematics, University of California, Berkeley, CA 94720

I. A Number-Theoretic Function. In this note we show that if f(n) is the number of essentially different factorizations of n, then

$$f(n) \leqslant 2n^{\sqrt{2}}.$$

In considering numbers that have exactly k divisors, one is led to examine this function f(n), the number of ways to write n as the product of integers ≥ 2 , where we consider factorizations that differ only in the order of the factors to be the same. We call these representations of n multiplicative partitions. For example, f(12) = 4, since

$$12 = 6 \cdot 2 = 4 \cdot 3 = 3 \cdot 2 \cdot 2$$

are the four multiplicative partitions of 12. From these four representations, we can conclude that a number has exactly 12 divisors if and only if its prime factorization is one of the following:

$$p^{11}$$
, p^5q , p^3q^2 , p^2qr .

This follows from the expression for $\tau(n)$, the number of divisors of $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$.

$$\tau(n) = \prod_{j=1}^{k} (1 + a_j).$$

For example, see [1].

The behavior of f(n) is quite erratic, and apparently has not been previously studied in this form. We observe that if q is prime, then $f(q^k) = p(k)$, the number of additive partitions of k. Also, if q_1, q_2, \ldots, q_k are distinct primes, then $f(q_1q_2 \cdots q_k) = B(k)$, the kth Bell number. See [2].

More generally, $f(q_1^{a_1} \cdots q_k^{a_k})$ is the number of additive partitions of the "multi-partite number" (a_1, a_2, \ldots, a_k) , where addition is defined component-wise. See [3] for further details. We will show that

$$f(n) \leqslant 2n^{\sqrt{2}}.$$

For a table of f(n) for $1 \le n \le 100$, see the Appendix.

II. Proof of the Main Result. To prove (1) we first define an auxiliary function:

g(m, n) = the number of multiplicative partitions of n with all elements $\leq m$.

Clearly f(n) = g(n, n). We have the following

THEOREM 1.

(2)
$$g(m,n) = \sum_{\substack{d \mid n \\ d \le m}} g(d,n/d).$$

Proof. We define g(m, 1) = 1 and g(1, n) = 0 for $n \ne 1$. Let $n = a_1 a_2 \cdots a_k$ be a multiplicative partition of n with all factors $\le m$. Then we may assume the factors are arranged in decreasing order, so a_1 is the largest factor in the product. The number of ways to choose $a_2 \cdots a_k$ is therefore $g(a_1, n/a_1)$. But a_1 was unspecified, and therefore could be any divisor d of n such that $d \le m$. Summing over all such d gives the result. \square

NOTES

From Theorem 1 we can obtain a simple estimate for g(m, n).

THEOREM 2.

$$g(m,n) \leq mn$$
.

Proof. The theorem is clearly true for m = 1 or n = 1. We will show it is true by induction on the product mn. Assume true for all m, n such that mn < MN, where $M \ge 2$. Then from Theorem 1 we have

$$g(M,N) = \sum_{\substack{d \mid N \\ d \leq M}} g(d,N/d).$$

Since $d \cdot N/d = N < MN$, we may apply the induction hypothesis to the terms inside the summation. We find

$$g(M, N) \leq \sum_{\substack{d \mid N \\ d \leq M}} d \cdot N/d$$

$$\leq \sum_{\substack{d \leq M \\ d \leq M}} N$$

$$= MN,$$

and the theorem is true by induction.

Theorem 2 gives the estimate $f(n) = g(n, n) \le n^2$. It is possible to improve this estimate, which we do in a moment. First we need three easy lemmas.

LEMMA 3.

$$g(a,b) \leq g(b,b)$$
.

Proof. This follows immediately, since if $a \ge b$, we have strict equality, while if a < b, we have summing over fewer terms of equation (2). \square

LEMMA 4. Let 0 < c < 1. Then

$$f(n) \leqslant g(n^c, n) + \sum_{d=1}^{n^{1-c}} f(d).$$

Proof.

$$f(n) = g(n, n) = \sum_{d|n} g(d, n/d)$$

$$= \sum_{\substack{d|n\\d \leqslant n^c}} g(d, n/d) + \sum_{\substack{d|n\\d > n^c}} g(d, n/d)$$

$$\leqslant g(n^c, n) + \sum_{\substack{d \mid n \\ d > n^c}} g(n/d, n/d) \text{ (by Theorem 1 and Lemma 3)}$$

$$= g(n^c, n) + \sum_{\substack{d \mid n \\ d < n^{1-c}}} g(d, d)$$

$$\leqslant g(n^c, n) + \sum_{d=1}^{n^{1-c}} f(d),$$

which is the desired result.

LEMMA 5. Let $a \ge 0$. Then

$$\sum_{a=1}^k d^a \leqslant \frac{k^{a+1}}{a+1} + k^a.$$

Proof. This is easily proved by comparison with the integral $\int_1^k t^a dt$. We are now in a position to prove our main result.

THEOREM 6.

$$f(n) \leqslant 2n^{\sqrt{2}}.$$

Proof. The table in the Appendix shows the theorem is true for $n \le 69$. We will prove the theorem by induction on n. Assume $f(d) \le kd^{c+1}$ for d < n, where $n \ge 70$ and c and k are constants to be specified later. Then from Lemma 4 we have

$$f(n) \leq g(n^{c}, n) + \sum_{d=1}^{n^{1-c}} f(d)$$

$$\leq n^{c+1} + \sum_{d=1}^{n^{1-c}} f(d) \text{ (by Theorem 2)}$$

$$\leq n^{c+1} + k \sum_{d=1}^{n^{1-c}} d^{c+1} \text{ (by induction)}$$

$$\leq n^{c+1} + k \left(\frac{(n^{1-c})^{c+2}}{c+2} + (n^{1-c})^{c+1} \right) \text{ (by Lemma 5)}.$$

Now put k = 2 and $c = \sqrt{2} - 1$ to get

$$f(n) \le n^{\sqrt{2}} + \frac{2}{\sqrt{2} + 1} n^{\sqrt{2}} + 2n^{2(\sqrt{2} - 1)}$$

 $\le 2n^{\sqrt{2}}$

since $2/\sqrt{2} + 1 < 5/6$ and $2n^{2(\sqrt{2}-1)} \le 1/6n^{\sqrt{2}}$ for $n \ge 70$.

Our theorem is now proved by induction.

III. Two Conjectures. Numerical evidence seems to indicate that the exponent $\sqrt{2}$ in Theorem 6 is too large. We make two conjectures; the second is more doubtful.

CONJECTURE 1.

$$f(n) \leq n$$
.

CONJECTURE 2.

$$f(n) \leqslant \frac{n}{\log n}$$
 for $n \neq 144$.

Both these conjectures have been verified by computer for $n \le 10,000$.

Appendix

n	f(n)	n	f(n)	n	f(n)	n	f(n)
1	1	26	2	51	2	76	4
2	1 1	27	2 3	52	4	77	2
2 3 4	1	28	4	53	1	78	4 2 5
	2	29	1	54	7	79	1
5 6	i	30	5	55	2	80	12
6	2	31	1	56	7	81	5
7	1	32	7	57	2	82	12 5 2
8 9	3 2 2	33	2	58	2	83	1
	2	34	2	59	1	84	11
10	2	35	2 2 2 9	60	11	85	11 2 2 2 7 1
11	1 1	36	9	61	1	86	2
12	4	37	1	62	2	87	2
13	1	38	2	63	4	88	7
14	2 2 5	39	2 2 7	64	11	89	1
15	2	40	7	65	2	90	11
16		41	1	66	5	91	2
17	1	42	5	67	1	92	4
18	4	43	1	68	4	93	2
19	1	44	4	69	2	94	2
20	4	45	4	70	5	95	2
21	2 2	46	2 1	71	1	96	2 4 2 2 2 19
22		47		72	16	97	1
23	1 1	48	12	73	1	98	4
24	7	49	12 2 4	74	2	99	4 9
25	2	50	4	75	4	100	9

References

^{1.} G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, Clarendon Press, 1971, p. 239.

G. T. Williams, Numbers generated by the function e^{ex-1}, this MONTHLY, 52 (1945) 323-327.
 George Andrews, The Theory of Partitions, Encyclopedia of Mathematics and Its Applications 2, Gian-Carlo Rota, Editor, Addison-Wesley, Reading, Mass. 1976.