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We propose a general-purpose probabilistic framework for scene understanding tasks. We show

that several classical scene understanding tasks can be modeled and addressed under a common

representation, approximate inference scheme, and learning algorithm. We refer to this approach

as the Probabilistic Scene Grammar (PSG) framework. The PSG framework models scenes using

probabilistic grammars which capture relationships between objects in terms of compositional

rules that provide important contextual cues for inference with ambiguous data. We show how

to represent the distribution defined by a probabilistic grammar using a factor graph. We also

show how to estimate the parameters of a grammar using an approximate version of Expectation-

Maximization, and describe an approximate inference scheme using Loopy Belief Propagation with

an efficient message-passing scheme. Inference with Loopy Belief Propagation naturally combines

bottom-up and top-down contextual information and leads to a robust algorithm for aggregating

evidence. To demonstrate the generality of the approach, we evaluate the PSG framework on the

scene understanding tasks of contour detection, face localization, and binary image segmentation.

The results of the PSG framework are competitive with algorithms specialized for these scene

understanding tasks.
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Chapter 1

Introduction

In this thesis we present a general-purpose probabilistic framework for scene understanding tasks.

We show that several classical scene understanding problems can be modeled and addressed under

a common representation, approximate inference scheme, and learning algorithm. We refer to this

general-purpose framework as the Probabilistic Scene Grammar (PSG) framework.

Currently in the field of computer vision, different scene understanding tasks lend themselves

to different representations and algorithms. Table 1.1 gives a few examples of scene understanding

tasks and approaches to address them. Table 1.1 is not an exhaustive list of tasks, but illustrates

the current state of affairs in the computer vision field whereby scene understanding tasks are often

tackled by problem-specific approaches.

The study and realization of a general scene understanding framework has several benefits,

outlined below.

• Fundamental improvements to such a general framework yields benefits and potential im-

provements on many scene understanding tasks simultaneously. In contrast, if an algorithm is

specifically designed for a single task, then improving that algorithm only realizes improve-

ments on that one task.

• The space of consumer applications is rapidly expanding and novel scene understanding tasks

are being proposed. One such an example is image-to-caption described in [61]. In this task,

the goal is to generate a string of text that describes an image. Although it is possible to design

new representations and algorithms to address each novel scene understanding task as they

arise, such a strategy is laborious. An alternative to this problem-specific approach is to have a

framework that is expressive enough to handle scene understanding tasks in general, concrete

enough to be implemented, and fast enough to be practical. The hope is that if novel scene

1
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Scene understanding task Approach taken
Contour detection Deep Learning [50, 66]

Canny-edge Detection [7]
Global Probability-of-Boundary [1]

Field-of-patterns [16]
Image segmentation Cut-based approaches [51, 5, 6]

Level-sets [60]
Random Forests [49]

Global Probability-of-Boundary [1]
Markov-random Fields, Conditional-random Fields [29, 31, 2]

Mumford and Shah [40]
Image recognition Convolutional Neural Networks [36, 32]

Bag-of-words/Spatial Pyramid models [35, 23]
2D and 3D object localization Dalal and Triggs pedestrian detector [9]

DPM [22]
Pictorial Structures [13]

Convolutional Neural Network [46, 21]
Clouds of Oriented Gradients [47]

Table 1.1: Common scene understanding tasks and some approaches to address them. Note the
myriad of distinct approaches across and within tasks.

understanding tasks can be expressed in a form compatible with this general framework, then

suitable solutions can be found with minimal research and engineering work.

• Related scene understanding tasks may constrain or provide useful information for other scene

understanding tasks. For example, solving the image segmentation problem may help with

object recognition since image segments may correspond to objects and the shape of the

segments can be useful information in recognizing objects. In the work of [57], the problems

of motion estimation and image segmentation inform one another since rigid objects tend to

have similar motion, and entities with similar motion across a long time-scale may belong

to the same object. By iteratively refining the solution to one task by conditioning on the

solution of a related task, one may achieve a better overall result than by handling each task in

isolation. A general-purpose, unified framework for scene understanding tasks would allow

one to naturally model different tasks simultaneously and combine their results in a principled

fashion.

• It is a scientifically interesting question to ask whether these myriad of scene understanding

tasks, which have historically been addressed with different representations and algorithms

in different formalisms, can be understood in a general-purpose probabilistic framework. In

particular, one may ask questions such as “How can we represent different scene understanding
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tasks under a common schema?”, “What is a practical, effective problem-agnostic inference

scheme?”, and “How does one perform problem-agnostic learning and parameter estimation?”.

Studying such questions may deepen our understanding of the visual world and the nature of

scene understanding tasks facing the field of computer vision. In this thesis, we take some

steps in answering such questions.

1.1 Design considerations

To design a general-purpose probabilistic framework for scene understanding tasks, two issues must

be carefully considered: the modeling of contextual information and efficiency of inference. Consider

the image recognition task in Figure 1.1. Even to humans, the image patches shown are ambiguous

and it can be difficult to determine what the objects are. The full images from which the image

patches were taken are shown in Figure1.2. After seeing the entire image, recognizing the depicted

objects and object parts is straightforward.

Figure 1.1: Each image patch depicts a part of an object. Name the object and part.

There is little agreement in the computer vision literature about what constitutes “context”,

though it is typically taken to denote “any and all information that may influence the way a scene

is perceived” [55]. In the tasks of image recognition and object localization, one notion of context

is that objects have part/whole relationships and certain objects often co-occur. In the examples in

Figure 1.1, knowing the object from which those object parts come from aid in recognizing those

parts. In the task of contour detection, one may use the idea that contours tend to be long, contiguous

curves. In image segmentation, one may use the idea that objects tend to be compact in space, and

so image segments should be compact. If one is to build a general-purpose framework for scene

understanding, it is crucial for that framework to be able to express a notion of context suitable for a

range of scene understanding tasks. In the PSG framework, we model the broad notion of context in

terms of compositional and geometric relationships between objects.
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Figure 1.2: Original images the image patches from Figure 1.1 were taken from. The image patches
are denoted in blue boxes. The objects/parts are: bird/beak, bicycle/cogset, chair/armrest.
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For practical reasons, we seek to develop efficient inference schemes for tackling scene under-

standing tasks. Suppose we have an autonomous driving car that needs to detect other cars to avoid

collisions; a system in practice has milliseconds to detect the other cars and plan a collision-avoiding

route. Consider another example where one has a 3D brain scan of a hospital patient, and one must

determine if the patient has a life-threatening brain hemorrhage and if so, output a 3D segmentation

that localizes the site of the hemorrhage. Here too, time is of the essence. Because some scene

understanding tasks may be time-sensitive, we are concerned with developing a general-purpose

framework that is not only flexible enough to be applicable to a diverse set of scene understanding

tasks, but also admits efficient inference. Unfortunately, exact inference in a general probabilistic

model is intractable. In this work, we seek to develop efficient approximate inference schemes.

1.2 Thesis contributions

In this thesis we address four key aspects of defining and assessing a general-purpose probabilistic

framework for scene understanding: 1) the representation of scene understanding tasks under a

common schema, 2) efficient, problem-agnostic approximate inference, 3) the learning of model

parameters under varying levels of supervision, 4) the experimental evaluation of the framework.

A final contribution is the concertization of the framework in a single, general implementation. We

refer to the framework developed in this thesis as the Probabilistic Scene Grammar (PSG) framework.

1.2.1 Representation

To represent general scene understanding tasks, we use probabilistic grammars which have been

successful in object modeling for object recognition (see [28, 3, 59, 15, 68, 22, 17, 13, 17, 70]). Prob-

abilistic grammars are defined in terms of a set of symbols, a set of rules that represent relationships

between symbols, and a set of rule probabilities that encode how often those relationships occur.

The set of symbols represents entities we wish to reason about. For example, the symbols of the

grammar might be a face and its parts if we wish to detect faces in scenes, or it might be a set of short

curves that compose into long curves if we wish to detect contours. Compositional relationships such

as “a face has two eyes, a nose and a mouth, and sometimes a beard”, and geometric relationships

such as “the mouth is located somewhere below the centre of the face”, are encoded as rules and

rule probabilities in the grammar. Importantly, probabilistic grammars express a notion of context

through compositional and geometric relationships. Such relationships provide contextual cues for

inference with ambiguous data. For example, the presence of some parts of a face in a scene provides

contextual cues for the presence of a face and its other parts.
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To better understand a probabilistic model, it is often helpful to examine samples from the model

when possible. To give a sense of the kinds of models that can be represented in the PSG framework,

we show samples drawn from example models in Figure 1.3. Chapter 3 describes the exact models

used to generate the samples.

1.2.2 Approximate inference

To perform approximate inference, rather than operate directly on probabilistic grammars, we first

define a novel transformation from a probabilistic grammar to a graphical model represented by a

factor graph. This transformation induces a probability distribution over interpretations of a scene.

Unfortunately, exact inference with a general probabilistic model is is NP-hard (see [8]), so if we

are to have a flexible representation applicable to many understanding tasks, it is necessary to either

restrict the form of the probabilistic model to make inference tractable or to employ approximate

inference techniques. In this thesis, we choose the latter. Fortunately, there has been much work

on approximate inference schemes in factor graphs; Loopy Belief Propagation (LBP) [33] is one

such approach and has been shown in practice to give good results on a variety of tasks [42, 33, 14].

LBP performs approximate inference by passing “messages” between the nodes of a factor graph

until some convergence criterion is met. The messages can then be used to compute marginal

probabilities and answer questions such as “what is the probability there is a face at location (x, y)

in the scene?”. The PSG framework makes use of special cases of LBP whereby messages can be

computed efficiently. One of our contributions is the derivation of efficient analytical methods for

computing messages for the factor graphs under consideration.

1.2.3 Learning

As with many scene understanding approaches, the PSG framework has model parameters that are

ideally learned from data. A rule probability encoding how often a face has a beard is one such

model parameter. In general, to learn model parameters, we employ an approximate Expectation-

Maximization (EM) algorithm. Here, the exact posterior quantities computed in the Expectation-

step are replaced by an approximation to the posterior computed by LBP, and the Maximization-

step is standard. The general idea of replacing the exact posteriors computed in the Expectation-

step by approximate posteriors computed by LBP was studied in [26]. While [26] was primarily

concerned with convergence guarantees, for the models in this thesis, the primary issues are speed

and performance of the learned models; convergence failure was not a major issue. Further, [26]

specifies a Maximization-step that can be intractable to perform for some probabilistic models. In this
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thesis, we show that for the family of models considered, the Maximization-step can be computed

efficiently.

Since the Expectation-step is only approximate, this approximate EM algorithm is not guaranteed

to have a non-decreasing data-likelihood; however, we have found that this approximate EM algorithm

leads to empirically good results.

1.2.4 Experimental evaluation

We evaluate the PSG framework on three scene understanding tasks: contour detection, face local-

ization, and image segmentation. We show that the PSG framework is competitive with algorithms

specifically designed for these tasks, despite the generality of the framework.

For the tasks of contour detection and image segmentation, we have a noisy real-valued image

D and we seek to recover a binary-valued map B that is the same size as D. We assume that D

is obtained by sampling each pixel D(i, j) independently from a Normal distribution whose mean

depends on the value of B(i, j) with some known standard deviation σ. Formally,

D(i, j) ∼ N (µB(i,j), σ).

The goal of inference is to recover B from D. For contour detection, we evaluate on the Berke-

ley Segmentation Dataset (BSD500) described in [1] using a standard train/test split. For image

segmentation, we evaluate on a subset of the Swedish Leaf Dataset described in [53].

For the task of face localization, we have have images with one or more faces. The task is given

an image, localize the face(s) and the parts of each face. We evaluate on a subset of Labelled Faces

in the Wild (LFW) dataset introduced in [27], and our own dataset of family portraits collected from

the Internet. We manually annotate each image with bounding box information of all faces and their

parts.

Figure 1.4 shows examples of the inputs, desired outputs, and actual outputs from the PSG

framework on these scene understanding tasks.

1.2.5 General implementation

In this thesis, experiments involving the PSG framework were performed using a single, general

implementation of the PSG framework. The ideas and formalisms outlined in this thesis not

only provide a conceptual framework in which one can reason abstractly about different scene

understanding tasks, but also allows one to realize a concrete, unified framework to handle diverse

scene understanding tasks in practice.
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To handle different tasks in this general implementation, one simply expresses a model in a

high-level “language”, and designs an appropriate data model. The implementation automatically

constructs a data structure representing the probabilistic model (or an approximation of it), and

performs parameter estimation (learning) and inference with the model. The contribution here is of

an engineering nature: the knowledge that it is possible to take the conceptual framework outlined in

this thesis and concretize them in a truly general implementation.

This approach to a general implementation for generic tasks is similar to the approach of the

Probabilistic Programming Language (PPL) community [48, 34, 58] whereby a user specifies an

appropriate data model and how to sample from a prior probability distribution, and a potentially

suitable inference algorithm is automatically constructed by the PPL framework. We outline the

connections to this community in 1.3.

1.3 Related work

The desire for a general-purpose computational framework for scene understanding tasks is shared

by the PPL community. In particular, the Picture and Edward frameworks described in [34] and

[58], respectively, share the high-level goal of having a general-purpose representation and inference

engine for scene understanding. However, these works differ from the PSG framework in both the

goal and method of inference. Picture and Edward seek to find high-probability scene representations

encoded as probabilistic program traces via Markov-Chain Monte-Carlo (MCMC) sampling methods

and variational inference schemes. The PSG framework finds marginal distributions over aspects

of the scene using LBP. The incorporation of the data model differs substantially as well. For

example, in the Picture framework, the data model is combined with a prior over scenes using a

computer-graphics renderer. In contrast, the PSG framework incorporates data terms using unary

potentials in a factor graph defined in terms of extracted features. Although the incorporation of

data terms is simpler in the PSG framework than in many PPL frameworks, the abilities to handle

explaining-away and generate photo-realistic images are sacrificed by the PSG framework. Lastly,

PPL approaches such as Picture and those proposed by Ritchie (see [48]) take the view of performing

inference as analysis-by-synthesis, or as a Bayesian inverse-graphics problem. In contrast, the PSG

framework frames the problem of inference in a purely analytical approach whereby generating

realistic images is not a goal of the framework.

The PSG framework describes scene understanding tasks in a compositional framework. The

idea of performing scene understanding in a compositional framework has been a long-standing goal

in computer vision. The notion of perceptual organization using grouping and compositional rules
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goes back at least to the Gestalt theory of perception described by [45] and the “neocognitron” model

of [19].

The idea of representing scene understanding tasks in a compositional framework has also been

investigated in modern approaches. A major relevant work in this vein is the work of [28] whereby a

hierarchical “compositional machine” describes relationships between entities in a Bayesian network.

The representation scheme used by the PSG framework is inspired by [28], however, the PSG

framework is subtly different as it uses a factor graph to represent the distribution over scenes. For

inference, [28] uses a greedy search heuristic to find plausible interpretations of the scene. In contrast,

the PSG framework uses LBP for approximate inference. Also, we study the performance of the

PSG framework on a more diverse set of tasks; while [28] studies the task of reading vehicle license

plates, we consider the tasks of contour detection, face localization, and image segmentation.

Deformable Part Models (DPM) [12] and Pictorial Structures (PS) [13] are compositional

frameworks that the PSGs framework takes much inspiration from. DPM and PS represent objects

as a collection of parts and connections between parts and can be understood as a special kind of

probabilistic grammar. The form of PS and DPM models allows for efficient exact inference via

dynamic programming. Further, PS assumes there is one of each object in the image, while the PSG

framework makes no such assumption. The PSG framework considers more general object models

and make fewer assumptions about scenes. The trade-off, however, is the inference scheme the PSG

framework employs is only approximate and in practice, is slower than the exact inference schemes

used by DPM and PS. Nevertheless, the scope of tasks representable in the PSG framework is larger

and, as we show in Chapter 9, is capable of outperforming PS on a face localization task.

There has been much work in the area of inference for probabilistic compositional models similar

to the PSG framework. The problem of exact inference with general probabilistic models is NP-hard

(see [8]). Indeed, efficient inference has been the bane of many probabilistic compositional models.

To deal with inference in such models, a variety of ad-hoc or slow sampling schemes have been

proposed in the literature (see [34, 58, 28, 59, 68]). For example, the works of [34], [58], [59] and

[68] use MCMC techniques for inference, and [28] uses a coarse-to-fine greedy approach to search

for potential objects. Ad-hoc heuristics are brittle and are often only applicable to a narrow range

of situations. Approaches that rely on MCMC sampling schemes can also be brittle if the MCMC

scheme relies on the design of effective proposal distributions. In this work, we use LBP as it is

robust in practice and requires relatively little problem-specific engineering. To our knowledge, this

thesis is the first to employ LBP for inference with a probabilistic grammar.

The problem of inference for general probabilistic models is a main area of research in the field of

machine learning. As such, there are potential alternatives to the LBP approximate inference scheme

used in the PSG framework. Variational Inference [63] is a well-studied approximate inference
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scheme that is fast in practice. However, Variational Inference tends to produce inferior results to

LBP in certain situations [65]. MCMC techniques such as Gibbs sampling [20], Metropolis-Hastings

[25], Hybrid Monte Carlo [44], and Slice Sampling [43] can also be used to perform inference in

the kinds of probabilistic models considered by the PSG framework. Indeed, as stated earlier in this

chapter, past approaches have used MCMC techniques. However, MCMC techniques in practice

can suffer from being slow to converge to the target posterior distribution and may require careful

tuning and design, which makes them not ideal for handling general scene understanding tasks where

time is of the essence. Other message-passing schemes for inference in loopy graphs exist, such as

Tree-reweighted Belief Propagation [30], Generalized Belief Propagation [67], Convergent Belief

Propagation [38], and Non-parameteric Belief Propagation [56]. It is possible to employ any of

these message-passing schemes as the inference engine in the PSG framework. Tree-reweighted

Belief Propagation in particular can be useful if LBP has convergence issues, and Generalized Belief

Propagation can be useful when one wishes to trade inference speed for increased inference accuracy.

In this work, we use LBP as the inference engine since it is a relatively simple message-passing

scheme, and we can exploit the particular form of the probabilistic models expressible in the PSG

framework to perform efficient message computation.

1.4 Thesis organization

The outline below specifies the organization of this thesis.

• Chapter 2: a formal description of the representation (a probabilistic grammar) used by the

PSG framework.

• Chapter 3: some example grammars that can be specified in the PSG framework.

• Chapter 4: description of the transformation of a PSG model into a factor graph.

• Chapter 5: description of the approximate inference scheme used in the PSG framework.

In particular, Chapter 5 contains the derivations of the LBP message-passing equations and

characterizes the time-complexity of computing messages in the PSG factor graph.

• Chapter 6: examples of running LBP on the example grammars specified in Chapter 3.

• Chapter 7 elucidates the connections between the PSG framework and the Pictorial Structures

model of [13].

• Chapter 8: description of the approximate EM learning algorithm used in the PSG framework.
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• Chapter 9: experimental evaluation of the PSG framework on the tasks of contour detection,

face localization, and binary image segmentation.

• Chapter 10: description of PSG model transformations that allow for even faster approximate

inference.

• Chapter 11: summary of research contributions and suggestions for future research directions

that build off the PSG framework.
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(a) Samples of contour maps generated by a model of contours. Note that the contours are of varying lengths and shapes
and have variable curvature.

(b) Samples of faces generated by a model of faces. Note the geometric variability in the locations of the parts of the face
and the variable number of faces in each scene. This face model allows parts of the face to appear on their own.

(c) Samples of binary image segmentation maps generated by an image segmentation model. Foreground is shown in
black, background is shown in white. The model used here constrains the foreground to be a single connected component
but allows for “holes” in the foreground.

Figure 1.3: Samples from models used for contour detection, face localization, and binary image
segmentation. All models are expressed in the PSG framework.
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(a) The task of contour detection. Left: a noisy input image D. Middle: the desired output: a binary contour map, B.
Right: Visualization of the approximate marginal probabilities p̂(B | D) computed by the PSG framework. Darker pixels
indicate a higher approximate marginal probability.

(b) The task of face localization. Here, we wish to localize faces, left eyes, right eyes, noses, and mouths. Left: an input
image D. Middle: the desired output: a localization of the face and each of its parts in terms of bounding boxes. Right:
The top K detections for faces and their parts, where K is the ground truth number of faces in the image.

(c) The task of binary image segmentation. Left: a noisy input image D. Middle: the desired output: a binary segmentation
map, B. Right: Visualization of the approximate marginal probabilities p̂(B | D) computed by the PSG framework.
Darker pixels indicate a higher approximate marginal probability.

Figure 1.4: Examples of the scene understanding tasks we use to evaluate the PSG framework.



Chapter 2

Probabilistic Scene Grammars

We take a Bayesian point of view where the goal of a computer vision algorithm is to estimate a

description of a scene from a set of observations. A key component of this approach is a prior model

over scenes, p(S), that captures the statistical regularities of scenes in the world.

A probabilistic scene grammar (PSG) defines a set of possible scenes and a probability distribution

over them. Scenes are defined using a library of building blocks, or bricks. Each brick is a pair of a

type and a pose. The type is a symbol from a finite alphabet and the pose is an element from a finite

pose space. For example, one brick in a scene might be the pair (FACE, (30, 40)) representing a face

at location (30, 40) in the image. We capture structural and geometric relationships between bricks

using a library of production rules.

To define a distribution over scenes p(S) we consider a process for generating random scenes

using a set of production rules. The process starts from an initial set of bricks that are spontaneously

generated. Each of the initial bricks is probabilistically expanded to generate new bricks. This

process continues until all bricks in the scene have been expanded. The result is a set of bricks

organized in a hierarchical fashion. The formal definition of this process is given below. In the next

chapter we describe some example grammars and illustrate the random scenes they generate.

In a probabilistic scene grammar the initial generation of bricks in a scene is governed by self-

rooting probabilities. The possible expansions of a brick into other bricks is determined by a set of

production rules, rule selection probabilities and conditional pose distributions.

Definition 1 A probabilistic scene grammar (PSG) is defined by a 6-tuple G =(Σ,Ω,R, q, ε, γ) .

1. Σ is a finite set (the symbols).

2. Ω = {ΩA | A ∈ Σ } where ΩA is a finite set (the pose spaces).

3. R is a finite set of production rules of the form A0 → A1, . . . , An where n ≥ 0 and Ai ∈ Σ.

14
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Let r be a rule inR. We use nr to denote the number of symbols in the right-hand-side (RHS)

of r. We use A(r,0) to denote the left-hand-side (LHS) of rule r and A(r,i), 1 ≤ i ≤ nr, to

denote the i-th symbol in the RHS of r. We denote the set of rules with symbol A in the LHS by

RA.

4. q = { qA | A ∈ Σ } where qA is a distribution overRA (the rule selection probabilities).

5. ε = { εA | A ∈ Σ } is a set of probabilities (the self-rooting probabilities).

6. γ = { γ(ω,r,i) | r ∈ R, 1 ≤ i ≤ nr, ω ∈ ΩA(r,0)
} is a set of conditional pose distributions.

Each conditional pose distribution γ(ω,r,i) has an associated set of parameters θ(ω,r,i) indexed

by ΩA(r,i)
. We have γ(ω,r,i) : {0, 1}ΩA(r,i) → R≥0 with∑

W

γ(ω,r,i)(W | θ(ω,r,i)) = 1 ∀ω ∈ ΩA(r,0)

where the summation is over all possible values of W ∈ {0, 1}ΩA(r,i) . We use

θ = {θ(ω,r,i) | r ∈ R, 1 ≤ i ≤ nr, ω ∈ ΩA(r,i)
}

to denote the set of parameters that govern the conditional pose distributions γ.

Intuitively, the conditional pose distributions γ model geometric and cardinality relationships

between bricks. For example, consider a FACE at location (30, 40) in the image. A conditional pose

distribution could model that a FACE has exactly one NOSE, and model the distribution over the

location of the NOSE of the FACE. As another example, consider an EYE at location (30, 40) in the

image. A conditional pose distribution could model how many EYELASHES an EYE has, and the

distribution over locations of the EYELASHES of the EYE.

In this thesis, we consider two kinds of conditional pose distributions: the Categorical distribu-

tion, and the IndBern (short for Independent-Bernoullis) distribution, defined below. Below, let

W be a set of binary random variables indexed by Υ. Define the set I(W ) = {k |Wk = 1, k ∈ Υ}.

Definition 2 Let Υ be an index set for W and a set of parameters θ = {θk | k ∈ Υ, 0 ≤ θk ≤
1,
∑
k∈Υ

θk = 1}. We define

Categorical(W | θ) =


∏
k∈Υ

θWk
k ,

∑
k∈Υ

Wk = 1

0, otherwise.
(2.1)
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Definition 3 Let Υ be an index set for W and a set of parameters θ = {θk | k ∈ Υ, 0 ≤ θk ≤ 1}.
We define

IndBern(W | θ) =
∏
k∈Υ

θWk
k (1− θWk

k )1−Wk . (2.2)

Note that the IndBern distribution is defined in terms of independent but not identically-

distributed Bernoulli distributions. Also, in a Categorical distribution, a single binary random

variable from the set W has value 1, and in an IndBern distribution, the binary random variables are

independent. Consider a rule r ∈ R and the i-th symbol in the RHS of r. A Categorical distribution

is useful to model a situation in which a brick of type A(r,0) generates exactly one brick of type A(r,i)

(e.g., a FACE has one NOSE). An IndBern distribution is useful to model a situation in which there

is a set of bricks of type A(r,i) that a brick of type A(r,0) can generate, and elements from the set are

selected independently (e.g., an EYE may have any number of EYELASHES above the EYE).

Note that unlike a context-free grammar model used in natural language processing, a scene

grammar has no start symbol and instead we have self-rooting probabilities. We also make no

distinction between terminal and non-terminal symbols, and allow for rules with empty right-hand-

side. A scene generated by a scene grammar is defined in terms of a finite set of available bricks.

Definition 4 The bricks defined by a grammar G are pairs of symbols and poses,

B = { (A,ω) | A ∈ Σ, ω ∈ ΩA }.

Definition 5 A scene S is defined by:

1. A set O ⊆ B of bricks that are present in the scene.

2. For each brick (A0, ω) ∈ O we have a rule r = A0 → A1, . . . , An ∈ RA0 and ∀ 1 ≤ i ≤ nr,
we have a value Wi ∈ {0, 1}ΩAi such that ∀z ∈ I(Wi), (Ai, z) ∈ O. We say that a brick

(A0, ω) expands to, or is a parent of, the set of bricks {(Ai, z) | 1 ≤ i ≤ nr, z ∈ I(Wi)}.

Let S be the set of scenes defined by a scene grammar G. The set S is the “Language” generated

by G. To generate a scene we consider a random algorithm that grows a scene starting from an initial

set of random bricks.

The scene generation process starts from an initial set of bricks that are included in the scene

independently at random. We then repeatedly expand bricks in the scene that have not been expanded

before. The expansion of a brick generates new bricks that are added to the scene and expanded

further. This random algorithm defines a distribution, p(S), that can capture regularities in natural
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scenes. For example, the process can capture which objects tend to co-occur in a scene and the

typical relative positions between different objects.

To formally define the scene generation process we use a set O to keep track of bricks in the

scene and a set Q to keep track of bricks that are in the scene but have not been expanded yet. Initial

bricks are included in O independently according to self-rooting probabilities. All of these bricks are

queued for expansion in Q. If an expansion generates a brick that is not already in O we add the

brick to O and queue it for expansion in Q.

Definition 6 A probabilistic scene grammar G defines a random algorithm for generating scenes:

1. Initially O = ∅ and Q = ∅.

2. For each brick (A,ω) ∈ B we add (A,ω) to O and Q with probability εA.

3. While Q 6= ∅ we remove a brick (A,ω) from Q and expand it.

4. Expanding (A,ω) involves

(a) sampling a rule r = A0 → A1, . . . , An ∈ RA according to qA,

(b) for 1 ≤ i ≤ nr, sampling a set Wi of binary values according to γ(ω,r,i)(Wi | θ(ω,r,i)),

and for each z ∈ I(Wi), if (Ai, z) 6∈ O adding it to both O and Q.

The scene S is defined by O and the choices made when expanding each brick in O.

The output of this algorithm defines a distribution p(S) over scenes in S .

We note that the scene generation algorithm terminates after a finite number of expansions

bounded by the total number of bricks in B. As discussed above the queue Q keeps track of bricks

that are in the scene but have not been expanded yet. When Q is empty every brick in O has been

expanded exactly once. Therefore when the process terminates we have a scene S ∈ S.

We also note that the order in which the bricks from Q are selected for expansion does not affect

the probability of generating a particular scene. Therefore the arbitrary choice of expansion order

does not change the distribution over scenes defined by the algorithm.

Remark 7 Scene grammars are related to context-free grammars used in language modeling. We

note however that they generate different types of structures.

Recall that a context-free grammar generates rooted derivation trees, where the vertices are

labeled with symbols from a finite alphabet. In a derivation tree there is a single vertex (the root)

with no parents and every other vertex has a unique parent.
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A scene generated by a scene grammar defines a directed graph G over the bricks that are

present in the scene. The edges of the scene graph capture the parent relationship over the bricks in

a scene. We note that G resembles a derivation tree, but it has more general connectivity structure.

In particular we can have multiple vertices with no parents (roots) in G, and the graph can have

multiple disjoint components. We can also have vertices with multiple parents in G. Therefore

multiple roots can lead to the same vertex and there can be multiple paths from one vertex to another.

The scene graph will also have directed cycles when a brick (A,ω) in the scene leads to a sequence

of expansions that eventually generate (A,ω) again.

Finally we note that every scene graph is a subgraph of the complete directed graph over B, and

the number of possible scene graphs is finite (although it can be very large). This is in contrast to the

fact that a context-free grammar can generate trees of unbounded size.



Chapter 3

Example grammars

In this chapter we give some examples of PSGs and illustrate the random scenes they generate.

Recall that a PSG G is defined by a 6-tuple (Σ,Ω,R, q, ε, γ) . In the examples below we combine

the description ofR, q, and γ to simplify the notation.

Let r = A0 → A1, . . . , An be a rule inR. To specify the rule r, the rule selection probability qr,

and the conditional pose distributions associated with r, we write,

qr, (A0, ω0) → (A1, γ(ω0,r,1)(·|θ(ω0,r,1))), . . . , (An, γ(ω0,r,n)(·|θ(ω0,r,n))). (3.1)

In the examples in this chapter, the pose spaces are grids of integer points [N1] × · · · × [ND]

where [N ] = {0, . . . , N − 1}. Denote such a pose space by Υ. Below, we use Rect(a, b) to indicate

the set of grid points in the hyperrectangle with diagonal (a, b).

We define two special kinds of Categorical distributions; the UniformRect distribution and a

distribution concentrated at a single point in the grid. We also define a special kind of IndBern

distribution: a UniformBern (short for Uniform-Independent-Bernoullis) distribution.

Definition 8 Let W be a set of binary random variables indexed by Υ. Let a and b be two elements

of Υ. We define the UniformRect distribution as

UniformRect(W ; a, b) =


1

|Rect(a,b)| ,
∑
k∈Υ

Wk = 1, I(W ) ⊆ Rect(a, b)

0, otherwise
(3.2)

where |Rect(a, b)| denotes the size of the set Rect(a, b).

We denote a distribution concentrated at a single point by

δ(W ; a) = UniformRect(W ; a, a).

19
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Definition 9 Let W be a set of binary random variables indexed by Υ and let T ⊆ Υ be a set. We

define the UniformBern distribution as

UniformBern(W ;T, θ) =
∏
k∈Υ

θWk
k × (1− θk)1−Wk (3.3)

θk =

θ, k ∈ T

0, otherwise.
(3.4)

For brevity, for the rest of this thesis we drop the argument W from the distributions above, and

will denote them as UniformRect(a, b), δ(a), and UniformBern(T, θ).

3.1 Scenes with curves

Grammar 1 generates scenes with discrete curves. Figure 3.1 shows some images generated by this

model. The grammar generates scenes with a random number of curves and where each curve has a

random length and shape, giving preference to curves with low-curvature. The approach is related to

the Elastica model in [41] where the tangent function of a random curve is defined by a random walk.

In Chapter 6 we show how this model can be used for contour completion and in Chapter 9 we show

how the model can be used to detect curves in noisy images.

A curve is represented by a sequence of oriented elements. Curves are extended one element at a

time, moving from one pixel in the image to a neighboring pixel in a direction close to the current

orientation. At each step a curve can also end or change orientation with small probability. As a

curve is generated the process leaves a trace of ink in the image.

The grammar has two symbols, Σ = {CURVE, INK}. The CURVE bricks represent oriented

elements that are connected sequentially to form curves. The pose of a CURVE brick specifies a

pixel location and one of 8 possible orientations. The INK bricks represent the pixels that are covered

by a curve and capture what we see in an image. The pose of an INK brick specifies only a pixel

location and has no orientation information.

Grammar 1 A grammar for 2D images with curves. The function Tθ denotes a rotation in the plane

by an angle θ and Round maps a point in the plane to the nearest grid point.
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Figure 3.1: Random images generated using Grammar 1. The black pixels represent the INK bricks
that are present in a random scene. The grammar generates discrete curves of varying lengths and
shapes, giving a preference to curves with low curvature.
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Σ = {CURVE, INK}.
ΩCURVE = [N ]× [M ]× [8].

ΩINK = [N ]× [M ].

Rules:
0.65, (CURVE, (x, y, θ)) → (INK, δ((x, y))), (CURVE, δ(((x, y) + Round(Tθ(1, 0)), θ)))

0.10, (CURVE, (x, y, θ)) → (INK, δ((x, y))), (CURVE, δ(((x, y) + Round(Tθ(1,−1)), θ)))

0.10, (CURVE, (x, y, θ)) → (INK, δ((x, y))), (CURVE, δ(((x, y) + Round(Tθ(1,+1)), θ)))

0.05, (CURVE, (x, y, θ)) → (CURVE, δ((x, y, θ + 1)))

0.05, (CURVE, (x, y, θ)) → (CURVE, δ((x, y, θ − 1)))

0.05, (CURVE, (x, y, θ)) → (INK, δ((x, y))),

1.00, (INK, (x, y)) → ∅
εCURVE = εINK = 10−4.

The first three rules that can be used to expand a CURVE brick capture the possible extensions of

a curve along a direction that is close to the current orientation. When we extend a curve at pixel

(x, y) with orientation θ, we move to one of 3 neighbors of (x, y) that are approximately in the

direction θ. Figure 3.2 illustrates the possible extensions for a horizontal element.

The last three rules that can be used to expand a CURVE brick capture changes in orientation

and the ending of a curve. The probability of changing the current orientation is small, so curves

tend to take multiple steps along a single discrete orientation before turning. As we generate a curve

we also generate INK bricks tracing the path of the curve.

3.2 Scenes with faces

Grammar 2 generates scenes with faces and parts of faces. The model captures the notion that each

scene has a variable number of objects, and that faces have certain parts at appropriate locations. We

also allow for parts of faces to appear on their own, capturing the notion that a scene is made up of a

set of faces and other components that look like parts of faces. Figure 3.3 shows some examples of

random scenes generated by this grammar.

In this grammar the pose of a brick specifies a 2D location for an object of fixed size and

orientation. The parameters N and M denote the number of pixels in each dimension of a 2D image.

The compositional model for a face is captured by the rule FACE→ EYE,EYE,NOSE,MOUTH.

When expanding a FACE brick, the possible locations for the parts are defined relative to the face

location. In the grammar considered here, the location of each part is selected uniformly at random

from a rectangular region defined relative to the location of the face. Figure 3.4 shows the possible

locations for the parts when a face is at the origin. This part-based representation for a face captures



23

Figure 3.2: A depiction of the possible extensions of a curve by one pixel. In this case the horizontal
CURVE brick indicated by the red pixel expands to a CURVE brick of the same orientation in one of
the blue pixels with the indicated probabilities. The remaining probability mass is reserved for the
choice to end the curve or change its orientation.

Figure 3.3: Random scenes with faces and parts of faces generated using Grammar 2. Faces are
represented by red rectangles, eyes by blue circles, noses by green triangles, and mouths by magenta
rectangles. Scenes have multiple objects and parts of faces can appear both in the context of a face
and on their own. The location of a part, such as the nose, can vary within a range of possible
locations relative to the face.
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pairwise relationships between locations of different parts and is similar to a Pictorial Structures

model ([18, 13]).

Grammar 2 A grammar for 2D scenes with faces and parts of faces:

Σ = {FACE,EYE,NOSE,MOUTH}.
∀A ∈ Σ, ΩA = [N ]× [M ].

Rules:
1.0, (FACE, ω) → (EYE,UniformRect(ω + a1, ω + b1)),

(EYE,UniformRect(ω + a2, ω + b2)),

(NOSE,UniformRect(ω + a3, ω + b3)),

(MOUTH,UniformRect(ω + a4, ω + b4))

1.0, (EYE, ω) → ∅
1.0, (NOSE, ω) → ∅
1.0, (MOUTH, ω) → ∅
εFACE = 10−4,

εEYE = εNOSE = εMOUTH = 10−5.

Figure 3.4: A depiction of the possible locations of the face parts when the FACE is located at the
pixel indicated by the red circle. The blue, green, and magenta pixels indicate the possible locations
for the EYE, NOSE, and MOUTH symbols, respectively.

We note that Grammar 2 can be extended to represent objects of different sizes and orientations

by augmenting the pose spaces with scale and orientation information. In Chapter 9, we show how a

similar model can be used for face detection. The grammar defined above can also be extended to
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define scenes with multiple objects from different categories where each object is defined in terms of

a set common parts.

3.3 Scenes with binary segmentation masks

Grammar 3 generates a binary segmentation mask. The foreground generated by this grammar

is a single, non-empty connected component of pixels where connections are considered in an

8-neighbourhood around a grid point. Figure 3.5 shows some images generated by this grammar. As

shown in the figure, the foreground generated may have “holes” in it.

Grammar 3 A grammar for 2D foreground/background image segmentation for an N ×M scene:

Σ = {SEED,FG}.
ΩSEED = [1].

ΩFG = [N ]× [M ].

Rules:
1.0, (SEED, ω) → (FG,UniformRect((1, 1), (N,M)))

1.0, (FG, ω) → (FG,UniformBern(Rect(ω − (1, 1), ω + (1, 1)) \ ω, 0.25))
εSEED = 1,

εFG = 0.

Note that Rect(ω − (1, 1), ω + (1, 1)) \ ω is the set of points in the rectangle with diagonal

(ω − (1, 1), ω + (1, 1)) excluding the centre of the rectangle. That is, the 8 neighbours of pixel ω.

Grammar 3 can be thought of as assigning a label (foreground or background) to each grid point.

The approach is related to an Ising model on a grid, but here we consider the 8-neighbourhood around

a grid point rather than the 4-neighbourhood. As in the Ising model, a point and its neighbours are

encouraged to have the same label. Unlike the Ising model, however, the assignment of labels to grid

points can be formulated in a generative process that is guaranteed to produce a single, non-empty,

connected foreground component. Further, the set of labelings that can be produced by the grammar

is exactly the set of labelings such that there is a single, non-empty connected foreground component.

The grammar has two symbols, Σ = {SEED,FG}. Intuitively, the SEED symbol selects a

location in the image from which to start growing the foreground. This guarantees that there is at

least one grid point labelled foreground in the image. Each grid point labelled foreground selects a

subset of its 8 neighbours to be foreground as well; each of its neighbours is considered independently

and selected with probability 0.25. Figure 3.6 illustrates for a given FG brick, the set of other FG

bricks it can generate and with what probability it does so. Since εFG = 0, and the generative process

of expanding a brick (FG, ω) considers selecting other FG bricks in an 8-neighbourhood around ω,
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Figure 3.5: Random scenes generated using Grammar 3. The black pixels represent the FG bricks
that are present in a random scene. The model generates a single, non-empty, connected (in the
8-neighbourhood sense) foreground segment.
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Figure 3.6: A depiction of the possible generations of a FG brick. Indicated in red is the location
of the FG brick being expanded. The possible FG bricks that may be generated by this brick are
indicated in blue, and the probability of generation is shown. The potentially generated bricks are
considered independently.

the generative process is guaranteed to create a single connected component. Note that the expected

number of bricks a brick (FG, ω) expands to is 2, and so one may be concerned that the generative

process will never terminate. Recall that in the generative process described in Definition 6, a brick

can only be expanded once, so the generative process will terminate with probability 1. We will

expand at most N ×M FG bricks, and 1 SEED brick.



Chapter 4

Factor Graph Representation

A scene grammar defines a probability distribution, p(S), over scenes. Here we describe a factor-

ization of p(S) and a representation of this distribution by a factor graph with a finite number of

binary random variables. In practice the factor graph representation can be used as a data structure

for inference. In particular we can use this representation for computing posterior marginals with

Loopy Belief Propagation (Chapter 5). The factor graph formulation can also be used for learning

model parameters with an approximate EM algorithm (Chapter 8).

We start by considering a representation of scenes using a finite set of binary random variables.

Definition 10 For a brick (A,ω) ∈ B, a rule r ∈ RA, and 1 ≤ i ≤ nr. Define

Γ(ω,r,i) = {ω′ | θ(ω,r,i,ω′) > 0}.

Note that Γ(ω,r,i) ⊆ ΩA(r,i)
since ΩA(r,i)

indexes θ(ω,r,i). The set {(A(r,i), z) | z ∈ Γ(ω,r,i), 1 ≤
i ≤ nr} is the set of bricks that brick (A(r,0), ω) can generate when rule r is chosen.

Definition 11 A scene S generated by a grammar G defines a collection of binary random variables

associated with each brick (A,ω) ∈ B,

X(A,ω) ∈ {0, 1}, (4.1)

R(A,ω) = {R(A,ω, r) ∈ {0, 1} | r ∈ RA }, (4.2)

C(A,ω) = {C(A,ω, r, i, ω′) ∈ {0, 1} | r ∈ RA, 1 ≤ i ≤ nr, ω′ ∈ Γ(ω,r,i) } (4.3)

where

X(A,ω) = 1 if (A,ω) is in the scene,

28
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R(A,ω, r) = 1 if rule r is used to expand (A,ω),

C(A,ω, r, i, ω′) = 1 if (A,ω) is expanded with rule r, and brick (A(r,i), ω
′) is one of the bricks

generated when considering the i-th symbol in the RHS of the rule.

We note that a scene S is uniquely defined by the value of the random variables {X, R, C}.

Let G be a scene grammar. We say G is acyclic if there is no sequence of expansions that generates

a brick starting from itself. To make this notion precise let H be a directed graph over the bricks,

with an edge from (A,ω) to (B, z) if we can generate (B, z) from (A,ω) in one expansion. The

grammar G is acyclic if H is acyclic. For example, the grammar for scenes with faces in Section 3.2

is acyclic. On the other hand, the grammar for scenes with curves in Section 3.1 is cyclic, because a

sequence of expansions starting from a CURVE brick can generate the initial brick again.

A topological ordering of B is a linear ordering of B such that (A,ω) appears before (B, z)

whenever (A,ω) can generate (B, z) after one or more expansions. We note that when G is acyclic

there is always a topological ordering of B and such ordering can be computed by topological sorting

the vertices of H .

4.1 Factorization

Let p(X,R,C) denote the distribution defined by the scene generation algorithm. For an acyclic

grammar the distribution p(X,R,C) can be factored into a product of local potential functions.

The factorization gives a simple closed form expression for p(X,R,C) and leads to a factor graph

representation that can be used for inference with a scene grammar. The factorization described

here is analogous to the expression of the joint distribution in a Bayesian network. We note that the

factorization is only exact for acyclic grammars but it can also be used in practice as an approximation

for inference with cyclic grammars.

There are three types of factors in the factorization of p(X,R,C). Below, for a set of binary

values W , let c(W ) be the number of ones in W . The three types of factors are illustrated in

Figure 4.1 and defined below.

Definition 12 A Leaky-OR potential ΨL
ε (Y, z) is a function of a set of binary inputs Y = {y1, · · · , yn}

and a binary output z. It represents the conditional probability of each possible output in a proba-

bilistic OR gate. If c(Y ) > 0 we have z = 1 with probability 1. If c(Y ) = 0 we have z = 1 with

probability ε.
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(a) Leaky-OR factor. (b) Selection factor. (c) Berns factor.

Figure 4.1: The three types of factors in the factorization of p(X,R,C).

ΨL
ε (Y, z) =



1 z = 1, c(Y ) > 0,

0 z = 0, c(Y ) > 0,

ε z = 1, c(Y ) = 0,

1− ε z = 0, c(Y ) = 0.

Definition 13 A Selection potential ΨS
θ (y, Z) is a function of a binary input y and a set of binary

outputs Z = {z1, · · · , zn}. This factor models the selection of a random output. If y = 0, then the

output Z such that c(Z) = 0 is selected with probability 1. If y = 1, then exactly one of the zi has

value 1. The choice of which zi to set to 1 (select) is governed by the probabilities defined by θ.

ΨS
θ (y, Z) =


1 y = 0, c(Z) = 0,

0 y = 0, c(Z) > 0,

Categorical(Z | θ) y = 1.

Definition 14 A Berns potential ΨB
θ (y, Z) is a function of a binary input y and a set of binary

outputs Z = {z1, · · · , zn}. This factor models the selection of multiple outputs conditional on y. If

y = 0, then the output Z such that c(Z) = 0 is selected with probability 1. If y = 1, then zi = 1

with probability θzi .

ΨB
θ (y, Z) =


1 y = 0, c(Z) = 0,

0 y = 0, c(Z) > 0,

IndBern(Z | θ) y = 1.

Our main observation is that p(X,R,C) can be expressed in closed form in terms of a product

of potentials of the types defined above.
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To formulate the factorization we consider the following collections of random variables,

C(A,ω, r, i) = {C(A,ω, r, i, ω′) | ω′ ∈ Γ(ω,r,i) },

par(X(A,ω)) = {C(B,ω′, r, i, ω) | B ∈ Σ, ω′ ∈ ΩB, r ∈ RB, 1 ≤ i ≤ nr, A(r,i) = A,

ω ∈ Γ(ω′,r,i) }.

The set C(A,ω, r, i) includes all the poses that can be associated with the i-th child of brick (A,ω)

if rule r is used to expand (A,ω). The set par(X(A,ω)) includes all the random variables that can

indicate a parent of X(A,ω) in the scene.

Proposition 15 The distribution p(X,R,C) defined by an acyclic grammar G can be expressed as,

p(X,R,C) =

∏
(A,ω)∈B

p(X(A,ω) | par(X(A,ω)))p(R(A,ω) | X(A,ω))
∏

r∈RA,
1≤i≤n(r)

p(C(A,ω, r, i) | R(A,ω, r))

 .

(4.4)

Moreover if G is acyclic we have,

p(X(A,ω) = z | par(X(A,ω)) = Y ) = ΨL
εA

(Y, z) (4.5)

p(R(A,ω) = Z | X(A,ω) = y) = ΨS
qA

(y, Z) (4.6)

p(C(A,ω, r, i) = Z | R(A,ω, r) = y) = ΨS
θ(ω,r,i)

(y, Z) or ΨB
θ(ω,r,i)

(y, Z) (4.7)

Proof Let Vi = {Xi,Ri,Ci} denote the random variables associated with the i-th brick in a

topological ordering of B. We can write

p(X,R,C) =
∏
i

p(Vi | Vj<i) (4.8)

=
∏
i

p(Xi | Vj<i)p(Ri | Xi,Vj<i)p(Ci | Ri,Xi,Vj<i) (4.9)

Based on the definition of the scene generation algorithm, and using the topological ordering

constraint we can see that

p(Xi | Vj<i) = p(Xi | par(Xi)), (4.10)

p(Ri | Xi,Vj<i) = p(Ri | Xi), (4.11)

p(Ci | Ri,Xi,Vj<i) = p(Ci | Ri). (4.12)
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This leads to the factorization pf p(X,R,C) above. The expression of each of the factors using the

Leaky-OR, Selection, and Berns potentials also follows directly from the definition of the scene

generation algorithm and the topological ordering constraint.

4.2 Graphical Model

A factor graph F ([33]) is a bipartite undirected graph that represents a factored probability distribu-

tion. The factor graph has a set of variable nodes V and a set of factor nodes F . Let x denote an

outcome for the random variables in V . For U ⊆ V we use xU to denote the values of the random

variables in U . Associated with each factor node f ∈ F is a non-negative potential function Ψf . Let

N(f) denote the neighbors of f ∈ F . The potential Ψf is a function of xN(f). The factor graph F
defines a joint distribution

Q(x) =
1

Z

∏
f∈F

Ψf (xN(f)). (4.13)

The factorization in Eqn. 4.4 suggests the following construction which leads to an exact

representation for acyclic grammars and an approximation (or an alternative model) for cyclic

grammars.

Definition 16 Let G be a scene grammar. We define the factor graph F = (V ∪ F,E) as follows:

1. The variable nodes V correspond to the random variables associated with each brick.

2. For each brick (A,ω) ∈ B we have a factor node f1
(A,ω) with potential function ΨL

εA
connected

to a set of input variables par(X(A,ω)) and an output variable X(A,ω).

3. For each brick (A,ω) ∈ B we have a factor node f2
(A,ω) with potential function ΨS

qA
connected

to an input variable X(A,ω) and a set of output variables R(A,ω).

4. For each brick (A,ω) ∈ B, rule r ∈ RA, and 1 ≤ i ≤ n(r) we have a factor node f3
(A,ω,r,i)

with potential function ΨS
θ(ω,r,i)

or ΨB
θ(ω,r,i)

connected to an input variable R(A,ω, r) and a

set of output variables C(A,ω, r, i). If f3
(A,ω,r,i) is to represent a Categorical conditional

pose distribution, then f3
(A,ω,r,i) has potential function ΨS

θ(ω,r,i)
. Otherwise, it has potential

function ΨB
θ(ω,r,i)

.
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In practice, we attach unary potentials to the random variables X that can be used as an “external

field” in Q. For example, we can attach a unary potential to the random variable X(FACE, (3, 4)) to

encode the image evidence for a face being present at location (3, 4) in the scene.

Figure 4.2 illustrates the variables and factors in F that are associated with a single brick in the

general case. To provide a concrete example of the part of the factor graph F corresponding to a

single brick, consider the PSG given in Grammar 4. Figure 4.3 illustrates the variables and factors in

F associated with the brick (B, 3) for this particular PSG.

Grammar 4 A simple acyclic grammar:
Σ = {B,C,D}.
ΩA = {1, 2, 3, 4, 5}, ∀A ∈ Σ.

Rules:
0.5, (B, ω) → (C,UniformRect(ω − 1, ω + 1))

0.5, (B, ω) → ∅
1.0, (C, ω) → (D,UniformRect(ω − 1, ω + 1))

1.0, (D, ω) → ∅
εA = 10−4

εB = εC = 0

To illustrate the connectivity between blocks of variables in F , consider again the PSG given in

Grammar 4. Figure 4.4 shows an illustration of the connectivity between blocks of variables in F for

this grammar. In this figure the set of random variables associated with a brick are grouped together.

Note that although the grammar is acyclic, the factor graph has undirected cycles.

LetQ denote the distribution defined byF . When G is an acyclic grammar, Proposition 15 implies

that Q(X,R,C) = p(X,R,C). On the other hand, for cyclic grammars the two distributions are

not the same. In this case the factor graph F can be used as an approximation, or as an alternative, to

the model defined by the grammar G.

We note that even in the case of an acyclic grammar the factor graph F will often have undirected

cycles. For example, we see cycles in F whenever there are two different sequences of expansions

that can be used to generate one brick from another. We also see cycles when two different bricks

can both generate two other bricks. For example, the grammar for scenes with faces described in

Section 3.2 is acyclic but the corresponding factor graph has cycles. Figure 4.4 illustrates a concrete

example where an acyclic grammar gives rise to a factor graph with undirected cycles.
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Figure 4.2: The part of the factor graph F corresponding to a single brick (A,ω) in plate notation.
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Figure 4.3: The part of the factor graph F corresponding to the particular brick (B, 3) in the factor
graph representation of Grammar 4.
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Figure 4.4: An illustration of the connectivity in the factor graph F constructed from Grammar 4.
Each node in this graph represents the part of F associated with a brick. Note that even though the
grammar is acyclic, the factor graph has cycles.



Chapter 5

Inference Using Loopy Belief
Propagation

In the PSG framework, the goal of inference is to compute conditional marginal probabilities for

all random variables, {X,R,C}. Since we formulate the PSG framework in terms of a factor

graph with undirected loops, we use the well-studied message passing scheme of Loopy Belief

Propagation (LBP) (see [42, 33]) to perform approximate inference. The results of LBP can be used

to approximate the marginal probabilities of interest.

In this chapter, we derive an efficient message-passing scheme for LBP in the PSG framework.

Since our goal is to produce marginal probabilities, we use the sum-product variant of LBP. A similar

scheme can be applied in the max-product setting if max-marginals are desired.

5.1 Overview of LBP

LBP on a factor graph is an iterative message-passing scheme that operates by sending non-negative

“messages” between neighbouring factor nodes and variables nodes. Messages from a variable node

to a factor node indicate that variable node’s preferences for its possible states. Messages from a

factor node to a variable node indicate that factor node’s preference for each of the variable node’s

possible states. We denote a message from a variable node v to a factor node f concerning state xv
by µv→f (xv). Messages from a factor node to a variable node are denoted similarly.

LBP proceeds by first initializing all messages followed by repeatedly updating messages between

nodes until some convergence criterion is met (e.g., the messages have reached a fixed point). The

computation of messages differs depending on whether the message is from a variable node to a

factor node or vice versa.

37
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Below, we will normalize messages between the nodes of the factor graph so that they sum to 1.

Although this is not strictly necessary, this normalization will simplify the derivation of the message

passing equations for the PSG factor graph. Also, in practice, one typically normalizes messages to

avoid numerical underflow.

Definition 17 Let v denote a variable node, N(v) its neighbouring factor nodes, and let f be any

element of N(v). The message from a variable node to a factor node is defined to be

µv→f (xv) ∝
∏

g∈N(v)\f

µg→v(xv). (5.1)

where the constant of proportionality is chosen so that
∑

xv
µv→f (xv) = 1.

Definition 18 Let f be a factor node, N(f) its neighbouring variable nodes, and Ψf the factor

node’s associated potential function. Let v be any element of N(f). The message from a factor node

to a variable node is defined to be

µf→v(xv) ∝
∑

xN(f)\v

Ψf (xN(f))
∏

u∈N(f)\v

µu→f (xu) (5.2)

where the summation is over all possible configurations of xN(f)\v and the constant of propor-

tionality is chosen so that
∑

xv
µf→v(xv) = 1.

Definition 19 After convergence, the marginal probability of a variable node v is approximated as

p̂(xv) ∝
∏

f∈N(v)

µf→v(xv) (5.3)

where the constant of proportionality is chosen so that
∑

xv
p̂(xv) = 1 .

In the case where the factor graph contains no loops, p̂(xv) matches the true marginal, Q(xv). In

the general case of the factor graph containing loops, p̂(xv) is only an approximation to Q(xv). In

the context of the PSG framework, using LBP for inference generally produces an approximation to

the true marginals since a factor graph constructed in the PSG framework may contain loops.

5.2 Efficient message computation for LBP in the PSG framework

The key computations in LBP are the computations of messages. As such, it is crucial that message

computation is efficient. Consider the case in which all variable nodes are binary; generally, the

time-complexity for passing messages from factor nodes to binary variable nodes is exponential in

the degree of the factor node. The main result of this section is:
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Theorem 20 Consider a factor graph where the variable nodes are binary and all factor potentials

are one of: Leaky-OR, Selection, or Berns. The time-complexity to compute messages from all nodes

to all of their neighbouring nodes is linear in the number of edges in the factor graph.

Note that the factor graph construction described in Chapter 4 defines a factor graph consisting

of Leaky-OR, Selection, and Berns factor potentials. Hence, Theorem 20 applies to the factor graphs

constructed in the PSG framework.

To prove Theorem 20, we will show that for all nodes in such a factor graph, computing the

messages from a node to all of its neighbours is linear in the degree of the node. Theorem 20 then

follows trivially. In the process of proving Theorem 20 we will derive efficient message-passing

schemes for the Leaky-OR, Selection, and Berns factor nodes.

In the proofs below, we make use of the following observation:

Observation 1 Let m = (m1, · · · ,mn), and let di =
∏
j 6=imj for 1 ≤ i ≤ n. If mj 6= 0,

1 ≤ j ≤ n, then all the di’s can be computed jointly in O(n) time.

Note that di can be written as

di =

∏
jmj

mi
(5.4)

since mj 6= 0, 1 ≤ j ≤ n. We can first compute
∏
jmj in O(n) time, then compute the di,’s

jointly by applying Eqn. 5.4 in O(n) time1.

Theorem 21 All messages from a binary variable node to all of its neighbouring factor nodes can

be computed in time linear in the degree of the variable node.

Proof Recall the general message passing equation for a variable node to a factor node defined in

Definition 17. Consider a variable node v. For each possible value of xv, apply Observation 1 to

compute the messages µv→f (xv) ∀f ∈ N(v) simultaneously in O(|N(v)|) time. Since the degree

of v is |N(v)|, and if v is a binary variable node, then all of the messages from v to all f ∈ N(v)

can be computed simultaneously in time linear in the degree of v.

In the remainder of this section we show that the messages from the factor nodes to all of their

neighbouring variable nodes in the PSG factor graph can be computed in time linear in the degree
1We can use a similar trick to compute the di’s jointly in O(n) time even if ∃i such that mi = 0. If exactly only one

of the entries is zero, say dj , then di = 0, ∀j 6= i, and dj can be computed directly in O(n) time from the definition of dj .

If more than one of the entries is zero, then di = 0, 1 ≤ i ≤ n.



40

of the factor node. For an arbitrary potential, computing the messages from the factor to all of its

neighbouring nodes takes time exponential in the degree of the factor. However, if the potential can

be expressed in a parametric form with some structure, then it may be possible to perform message

computation more efficiently.

5.2.1 Message passing for Leaky-OR factors

Recall the definition of the Leaky-OR potential in Definition 12 and the general message passing

equation for factors nodes to variable nodes given in Eqn. 5.2. We will show that exploiting the

structure of the Leaky-OR potential allows one to compute all messages from a Leaky-OR factor

node to its neighbouring variable nodes in time linear in the degree of the factor node.

Below, let ΨL
ε be a leaky-OR potential and let f be the corresponding Leaky-OR factor node. As

illustrated in Figure 4.1(a), the factor node has neighbouring variable nodes N(f) = Y ∪ {z}. We

assume that µu→f (xu) > 0 and
∑

xu
µu→f (xu) = 1, ∀u ∈ N(f) and xu ∈ {0, 1}.

Theorem 22 All messages from a Leaky-OR factor node to all of its neighbouring variable nodes

can be computed in time linear in the degree of the factor node.

To prove Theorem 22, we require two lemmas.

Lemma 23 The messages µf→z(xz) can be expressed as

µf→z(0) = (1− ε)
∏
y∈Y

µy→f (0) (5.5)

µf→z(1) = 1− µf→z(0). (5.6)

Lemma 24 The messages µf→y(xy) ∀y ∈ Y can be expressed as

µf→y(0) ∝ µz→f (1) +
( ∏
u∈Y \y

µu→f (0)
)(

(1− ε)(µz→f (0)− µz→f (1))
)

(5.7)

µf→y(1) ∝ µz→f (1) (5.8)

where the constants of proportionality are chosen so that µf→y(0) + µf→y(1) = 1.

Proof of Lemma 23
Substituting the form of the Leaky-OR potential defined in Definition 12 into the general message

passing equation given in Eqn. 5.2 and noting that the quantity of interest is µf→z(xz) yields:
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µf→z(xz) ∝
∑
xY

ΨL
ε (xY , xz)

∏
y∈Y

µy→f (xy) (5.9)

where the summation is over all possible configurations of xY . Consider the case xz = 0:

µf→z(0) ∝
∑
xY

ΨL
ε (xY , 0)

∏
y∈Y

µy→f (xy) (5.10)

=
∑

xY :c(xY )=0

(1− ε)
∏
y∈Y

µy→f (xy) (5.11)

= (1− ε)
∏
y∈Y

µy→f (0). (5.12)

Note that ΨL
ε (xY , 1) = 1−ΨL

ε (xY , 0) and so following the derivation above, we have

µf→z(1) ∝ 1− (1− ε)
∏
y∈Y

µy→f (0). (5.13)

The constants of proportionality in Eqns. 5.10 and 5.13 can be set to 1 to ensure
∑

xz
µf→z(xz) =

1.

Proof of Lemma 24
Substituting the form of the Leaky-OR potential defined in Definition 12 into the general message

passing equation given in Eqn. 5.2 and noting that the quantity of interest is µf→y(xy), y ∈ Y yields:

µf→y(xy) ∝
∑
xY \y

∑
xz

ΨL
ε (xY , xz)µz→f (xz)

∏
u∈Y \y

µu→f (xu) (5.14)

where
∑

xY \y
is a summation over all configurations of xY \y. Consider the case xy = 0:
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µf→y(0) ∝
∑

xY \y :c(xY \y)=0

∑
xz

ΨL
ε (xY , xz)µz→f (xz)

∏
u∈Y \y

µu→f (xu) (5.15)

+
∑

xY \y :c(xY \y)>0

∑
xz

ΨL
ε (xY , xz)µz→f (xz)

∏
u∈Y \y

µu→f (xu)

= εµz→f (1)
∏

u∈Y \y

µu→f (0) + (1− ε)µz→f (0)
∏

u∈Y \y

µu→f (0) (5.16)

+
∑

xY \y :c(xY \y)>0

µz→f (1)
∏

u∈Y \y

µu→f (xu)

=
( ∏
u∈Y \y

µu→f (0)
)(

(1− ε)(µz→f (0)− µz→f (1)) + µz→f (1)
)

(5.17)

+
∑
xY \y

µz→f (1)
∏

u∈Y \y

µu→f (xu)−
∑

xY \y :c(xY \y)=0

µz→f (1)
∏

u∈Y \y

µu→f (xu)

=
( ∏
u∈Y \y

µu→f (0)
)(

(1− ε)(µz→f (0)− µz→f (1)) + µz→f (1)
)

(5.18)

+µz→f (1)− µz→f (1)
∏

u∈Y \y

µu→f (0)

= µz→f (1) +
( ∏
u∈Y \y

µu→f (0)
)(

(1− ε)(µz→f (0)− µz→f (1))
)
. (5.19)

Consider the case xy = 1:

µf→y(1) ∝
∑
xY \y

ΨL
ε (xY , 1)µz→f (1)

∏
u∈Y \y

µu→f (xu) (5.20)

=
∑
xY \y

µz→f (1)
∏

u∈Y \y

µu→f (xu) (5.21)

= µz→f (1). (5.22)

Proof of Theorem 22
From Lemma 23, it is clear that messages µf→z(xz), xz = {0, 1} can be computed in time

O(|Y |).

From Lemma 24, the computation of µf→y(1)∀y ∈ Y is trivial. The quantities µf→y(0)∀y ∈ Y
can be computed jointly in O(|Y |) time by applying Observation 1. Therefore, all messages from a

Leaky-OR factor node to its neighbouring variables nodes can be computed in O(|Y |) time. Noting

the degree of the Leaky-OR factor node is |Y |+ 1 completes the proof.



43

5.2.2 Message passing for Selection factors

Recall the definitions of the Selection potential in Definition 13, and the general message passing

equation for factors nodes to variable nodes given in Eqn. 5.2. We will show that exploiting the

structure of the Selection potential allows one to compute all messages from a Selection factor node

to its neighbouring variable nodes in time linear in the degree of the factor node.

Below, let ΨS
θ be a Selection potential and let f be the corresponding Selection factor node. As

illustrated in Figure 4.1(a), the factor has neighbouring nodes N(f) = Z ∪ {y}. We assume that

µu→f (xu) > 0 and
∑

xu
µu→f (xu) = 1, ∀u ∈ N(f) and xu ∈ {0, 1}.

Theorem 25 All messages from a Selection factor node to all of its neighbouring variable nodes

can be computed in time linear in the degree of the factor node.

To prove Theorem 25, we require two lemmas.

Lemma 26 The message passing equations µf→y(xy) can be expressed as

µf→y(0) ∝
∏
z∈Z

µz→f (0) (5.23)

µf→y(1) ∝
( ∏
z∈Z

µz→f (0)
)∑
z∈Z

θz
µz→f (1)

µz→f (0)
(5.24)

where the constants of proportionality are chosen so that µf→y(0) + µf→y(1) = 1.

Lemma 27 The message passing equations µf→z(xz) ∀z ∈ Z can be expressed as

µf→z(0) ∝
( ∏
u∈Z\z

µu→f (0)
)
(µy→f (0) + µy→f (1)

∑
v∈Z\z

θv
µv→f (1)

µv→f (0)
) (5.25)

µf→z(1) ∝ θz(µy→f (1)
∏

u∈Z\z

µu→f (0)) (5.26)

where the constants of proportionality are chosen so that µf→z(0) + µf→z(1) = 1.

Proof of Lemma 26
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Substituting the form of the Selection potential defined in Definition 13 into the general message

passing equation given in Eqn. 5.2 and noting that the quantity of interest is µf→y(xy) yields:

µf→y(xy) ∝
∑
xZ

ΨS
θ (xy, xZ)

∏
z∈Z

µz→f (xz) (5.27)

where the summation is over all possible configurations of xZ .

Consider the case of xy = 0:

µf→y(0) ∝
∑
xZ

ΨS
θ (0, xZ)

∏
z∈Z

µz→f (xu) (5.28)

=
∏
z∈Z

µz→f (0). (5.29)

Consider the case of xy = 1:

µf→y(1) ∝
∑

xZ :c(xZ)=1

ΨS
θ (1, xZ)

∏
z∈Z

µz→f (xu) (5.30)

=
∑
z∈Z

θz
(
µz→f (1)

∏
u∈Z\z

µu→f (0)
)

(5.31)

=
( ∏
z∈Z

µz→f (0)
)∑
z∈Z

θz
µz→f (1)

µz→f (0)
(5.32)

Proof of Lemma 27 Substituting the form of the Selection potential defined in Definition 13 into

the general message passing equation given in Eqn. 5.2 and noting that the quantity of interest is

µf→z(xz), z ∈ Z yields:

µf→z(xz) ∝
∑
xZ\z

∑
xy

ΨS
θ (xy, xZ)µy→f (xy)

∏
u∈Z\z

µu→f (xu) (5.33)

where
∑

xZ\z
is a summation over all configurations of xZ\z . Consider the case xz = 0:
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µf→z(0) ∝
∑

xZ\z :c(xZ\z)=0

∑
xy

ΨS
θ (xy, xZ)µy→f (xy)

∏
u∈Z\z

µu→f (xu) (5.34)

+
∑

xZ\z :c(xZ\z)=1

∑
xy

ΨS
θ (xy, xZ)µy→f (xy)

∏
u∈Z\z

µu→f (xu)

= µy→f (0)
∏

u∈Z\z

µu→f (0) (5.35)

+
∑

xZ\z :c(xZ\z)=1

ΨS
θ (1, xZ)µy→f (1)

∏
u∈Z\z

µu→f (xu)

= µy→f (0)
∏

u∈Z\z

µu→f (0) (5.36)

+µy→f (1)
∑
v∈Z\z

θv(µv→f (1)
∏

u∈Z\{z,v}

µu→f (0))

= µy→f (0)
∏

u∈Z\z

µu→f (0) (5.37)

+µy→f (1)
( ∏
u∈Z\z

µu→f (0)
) ∑
v∈Z\z

θv
µv→f (1)

µv→f (0)

=
( ∏
u∈Z\z

µu→f (0)
)
(µy→f (0) + µy→f (1)

∑
v∈Z\z

θv
µv→f (1)

µv→f (0)
) (5.38)

Consider the case xz = 1:

µf→z(1) ∝
∑

xZ\z :c(xZ\z)=0

∑
xy

ΨS
θ (xy, xZ)µy→f (xy)

∏
u∈Z\z

µu→f (xu) (5.39)

= θz(µy→f (1)
∏

u∈Z\z

µu→f (0)). (5.40)

Proof of Theorem 25
From Lemma 26, the messages µf→y(xy), xy = {0, 1} can be computed in O(|Z|) time since it

only requires computing a sum and product over simple quantities for each element of Z.

From Lemma 27, the quantities µf→z(0)∀z ∈ Z can be computed jointly in O(|Z|) time by

applying Observation 1. The quantities µf→z(1)∀z ∈ Z can also be computed jointly in O(|Z|)
time by applying Observation 1 to compute

(∏
u∈Z\z µu→f (0)

)
, and applying Observation 1 in the

log domain to compute
∑

v∈Z\z θv
µv→f (1)
µv→f (0) . Therefore, all messages from a Selection factor node to
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its neighbouring variables nodes can be computed in O(|Z|) time. Noting the degree of the Selection

factor node is |Z|+ 1 completes the proof.

5.2.3 Message passing for Berns factors

Recall the definitions of the Berns potential in Definition 14, and the general message passing

equation for factors nodes to variable nodes given in Eqn. 5.2. We will show that exploiting the

structure of the Berns potential allows one to compute all messages from a Berns factor node to its

neighbouring variable nodes in time linear in the degree of the factor node. The Berns factor can

be expressed as a product of pairwise factors connecting the input binary variable and one of the

output binary variables. Since the Berns factor can be expressed as a product of factors, it is intuitive

that message computation can be performed in time linear in the degree of the Berns potential. For

completeness, we will prove this result and derive the message passing equation for a Berns factor to

its neighbouring variable nodes.

Below, let ΨB
θ be a Berns potential and let f be the corresponding Berns factor node. As

illustrated in Figure 4.1(c), the factor has neighbouring nodes N(f) = Z ∪ {y}. We assume that

µu→f (xu) > 0 and
∑

xu
µu→f (xu) = 1, ∀u ∈ N(f) and xu ∈ {0, 1}.

Theorem 28 All messages from a Berns factor node to all of its neighbouring variable nodes can be

computed in time linear in the degree of the factor node.

To prove Theorem 28, we require two lemmas.

Lemma 29 The message passing equations µf→y(xy) can be expressed as

µf→y(0) ∝
∏
z∈Z

µz→f (0) (5.41)

µf→y(1) ∝
∏
z∈Z

((1− θz)µz→f (0) + θzµz→f (1)) (5.42)

where the constants of proportionality are chosen so that µf→y(0) + µf→y(1) = 1.

Lemma 30 The message passing equations µf→z(xz) ∀z ∈ Z can be expressed as
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µf→z(0) ∝ µy→f (0)
∏

u∈Z\z

µu→f (0) (5.43)

+(1− θz)µy→f (1)
∏

u∈Z\z

((1− θu)µu→f (0) + θuµu→f (1))

µf→z(1) ∝ θzµy→f (1)
∏

u∈Z\z

((1− θu)µu→f (0) + θuµu→f (1)) (5.44)

where the constants of proportionality are chosen so that µf→z(0) + µf→z(1) = 1.

Proof of Lemma 29
Substituting the form of the Berns potential defined in Definition 14 into the general message

passing equation given in Eqn. 5.2 and noting that the quantity of interest is µf→y(xy) yields:

µf→y(xy) ∝
∑
xZ

ΨB
θ (xy, xZ)

∏
u∈Z

µu→f (xu) (5.45)

where the summation is over all possible configurations of xZ .

Consider the case of xy = 0:

µf→y(0) ∝
∑
xZ

ΨB
θ (0, xZ)

∏
u∈Z

µu→f (xu) (5.46)

=
∏
z∈Z

µz→f (0). (5.47)

Consider the case of xy = 1:

µf→y(1) ∝
∑
xZ

ΨB
θ (1, xZ)

∏
z∈Z

µz→f (xz) (5.48)

=
∑
xZ

∏
z∈Z

(
θxzz (1− θz)1−xzµz→f (xz)

)
(5.49)

=
∏
z∈Z

(
(1− θz)µz→f (0) + θzµz→f (1)

)
. (5.50)

Proof of Lemma 30 Substituting the form of the Berns potential defined in Definition 14 into

the general message passing equation given in Eqn. 5.2 and noting that the quantity of interest is

µf→z(xz), z ∈ Z yields:
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µf→z(xz) ∝
∑
xZ\z

∑
xy

ΨB
θ (xy, xZ)µy→f (xy)

∏
u∈Z\z

µu→f (xu) (5.51)

where
∑

xZ\z
is a summation over all configurations of xZ\z . Consider the case xz = 0:

µf→z(0) ∝
∑
xZ\z

(
ΨB
θ (0, xZ)µy→f (0)

∏
u∈Z\z

µu→f (xu)
)

(5.52)

+
∑
xZ\z

(
ΨB
θ (1, xZ)µy→f (1)

∏
u∈Z\z

µu→f (xu)
)

= µy→f (0)
∏

u∈Z\z

µu→f (0) (5.53)

+(1− θz)µy→f (1)
∏

u∈Z\z

((1− θu)µu→f (0) + θuµu→f (1)).

Consider the case xz = 1:

µf→z(1) ∝
∑
xZ\z

(
ΨB
θ (0, xZ)µy→f (0)

∏
u∈Z\z

µu→f (xu)
)

(5.54)

+
∑
xZ\z

(
ΨB
θ (1, xZ)µy→f (1)

∏
u∈Z\z

µu→f (xu)
)

= θzµy→f (1)
∏

u∈Z\z

((1− θu)µu→f (0) + θuµu→f (1)). (5.55)

Proof of Theorem 28
From Lemma 29, the messages µf→y(xy), xy ∈ {0, 1} can be computed in time O(|Z|) since it

only requires computing a product over easily computable quantities for each element of Z.

From Lemma 30, the quantities µf→z(xz)∀z ∈ Z,xz ∈ {0, 1} can be computed jointly inO(|Z|)
time by applying Observation 1. Therefore, all messages from a Berns factor node to its neighbouring

variables nodes can be computed in O(|Z|) time. Noting the degree of the Berns factor node is

|Z|+ 1 completes the proof.
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5.2.4 Proof of Theorem 20

Proof The result follows directly from Theorems 21, 22, 25, and 28.

5.3 Markov Chain Monte Carlo as an alternative to LBP

In this thesis, we are mainly concerned with computing marginal probabilities such as the probability

of the presence/absence of bricks in a given scene. As pointed out in Chapter 1, Markov Chain

Monte Carlo (MCMC) techniques have been successfully used for inference in other grammar-based

frameworks. A natural question is if MCMC is a feasible alternative to LBP for inference in the

PSG framework. For the factor graphs we consider, simple MCMC schemes such as Gibbs sampling

([20]) and Metropolis-Hastings ([25]) are impractical.

The main issue with applying Gibbs sampling or Metropolis-Hastings sampling here is that

the factor graph under consideration may contain on the order of millions to billions of tightly

coupled random variables. Because of the tight coupling, it is extremely difficult to design good

move proposals for Metropolis-Hastings, and Gibbs sampling may be unable to mix since sampling

a random variable from its conditional distribution is likely to result in no change in state. The crux

of the issue is that due to the tight coupling of random variables, it is difficult to design a transition

kernel that defines an irreducible Markov Chain yet also has a reasonable probability that proposed

moves will be accepted. The sheer size of the factor graph exacerbates the problem of the MCMC

chain mixing.

Consider using Metropolis-Hastings MCMC as the inference engine for the toy grammar listed

in Grammar 4 and consider the following situation. Let A = {(B, 3), (C, 3), (D, 3)} be a set of

bricks. Considering the setting X(a) = 1, a ∈ A and X(a′) = 0 ∀a′ 6∈ A. In this setting, the

random variable X(C, 3) can have value 1 only if the brick (B, 3) generated it. Similarly, the random

variable X(D, 3) can only have value 1 if the brick (C, 3) generated it. Now, consider proposing a

new value for the random variable X(C, 3). Its state cannot be set to 0 since the brick (B, 3) will

have no generated bricks, which is impossible under the model. Also, the brick (D, 3) will have no

parent, which is also impossible under the model. Similarly, it not possible for Metropolis-Hastings

to propose a different state for X(B, 3) or X(D, 3); Metropolis-Hastings is “stuck”.

As we have demonstrated, for inference in the factor graph representing the model described

in Grammar 4, serial MCMC techniques are too slow to be practical and will suffer from getting

“stuck” in a particular state. To alleviate these difficulties, one may try block-move schemes such

as Block Gibbs Sampling and Block Metropolis-Hastings whereby a large joint move involving the
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random variables of multiple bricks is considered. However, the tight coupling of random variables

will still pose a problem since for the factors graphs we consider, most joint assignments to random

variables will be extremely unlikely or invalid. One could imagine designing effective model-specific

block sampling schemes. But, as we are interested in a general, problem-agnostic framework for

scene understanding, we wish to avoid inference schemes that are sensitive to the problem under

consideration.

It may be possible to use more sophisticated MCMC methods, such as Slice Sampling ([43])

which was effective in the Picture framework ([34]), Hybrid Monte Carlo([44]), or a combination of

MCMC methods. Such an approach may be viable and is an interesting direction for future research.



Chapter 6

Example grammars: Inference with LBP

In this chapter we examine the results obtained by running LBP on the factor graph representation

of the example grammars in Chapter 3. In the examples in this chapter, we condition on the

presence/absence of a set of bricks in the scene and run LBP to convergence. We then compute

approximate marginals for each unconditioned brick using Eqn. 5.3.

6.1 LBP computations with a curve grammar

In this section we demonstrate the ability of the PSG framework to perform contour completion

using Grammar 1. Figure 6.1 shows two examples of contour completions. In these experiments we

condition on the presence of some INK bricks (shown in red) and compute the approximate marginal

probabilities of the remaining INK bricks being present in the scene using LBP. As shown in the

figure, the PSG framework is capable of completing gaps in contours. Note that in both contour

completions, there is uncertainty in the precise completions.

In the example in Figure 6.1(a), there is uncertainty as to whether the contour should be straight

or if there are slight deviations along the contour in the vertical direction. Also, the PSG framework

places non-trivial probability mass on the event that the contour continues on either side.

In the example in Figure 6.1(b), the model captures uncertainty in the precise completion of

the contour(s). Also, the PSG framework places little probability mass on the event that observed

contours intersect and extend past the point of intersection. Instead, the PSG framework estimates

that it is more likely that each observed contour “turns” into a neighbouring contour via a change of

orientation.

As these two examples demonstrate, the PSG framework uses some notion of context to perform

contour completion.

51
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(a) Contour gap completions. Note that the PSG
framework expresses variability in the precise gap
completions. Also, there is some uncertainty as to
whether the contour extends to the left and to the
right.

(b) Completion of several contour gaps. Here, the
PSG framework is capable of filling in gaps be-
tween observed contours around plausible intersec-
tion points. As with the example in Figure 6.1(a),
there is variability over the precise completions.
See text for discussion.

Figure 6.1: A visualization of two contour completion examples. Each pixel represents an INK brick
present at that location. The INK bricks conditioned to be present in the scene are denoted by a
red pixel; all other bricks in the scene are unconditioned. The gray-scale values show the resulting
approximate marginal probabilities computed by LBP. Darker pixels indicate a higher approximate
marginal probability for the corresponding INK brick to be present in the scene.
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6.2 LBP computations with a face grammar

In this section we demonstrate the ability of the PSG framework to perform face and face part

localization using Grammar 2. Note that the grammar forms a two level hierarchy in that FACE

bricks generate EYE, NOSE, and MOUTH bricks. So, one can talk about top-down contextual

information in the sense of a FACE brick providing context for EYE, NOSE, and MOUTH bricks,

and bottom-up contextual information in the sense of EYE, NOSE, and MOUTH bricks providing

context for a FACE brick. Figure 6.2 shows the results of inference after conditioning on the presence

of three different sets of bricks in the scene.

FACE EYE NOSE MOUTH

Figure 6.2: A visualization of face and face part localization in various contexts. Each row is a
different example where a different set of bricks was conditioned to be present in the scene. Each
column represents a symbol of the grammar. Each pixel represents a brick at that pixel location.
The bricks conditioned to be present in the image are denoted by a red pixel with a red arrow
pointing to them. All other bricks in the scene are unconditioned. The gray-scale values are a
visualization of the resulting approximate marginal probabilities of a brick being present in the scene
as computed by LBP. Darker pixels indicate a higher approximate marginal probability to be present.
For visualization purposes, a non-linear monotonic transformation was applied to the approximate
marginal probabilities to enhance contrast. See text for an analysis of the results of inference.
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Row 1 of Figure 6.2 shows the results of LBP when the FACE brick at the centre of the scene is

conditioned to be present. The PSG framework performs top-down reasoning and posits possible

locations for the face parts. Since this grammar model allows for variability in the location of the

face parts, there is a region of plausible locations for each part.

Row 2 of Figure 6.2 shows the results of LBP when the EYE brick at the centre of the scene is

conditioned to be present. Here, the PSG framework performs bottom-up and top-down reasoning.

First, since an EYE seldom appears on its own, the PSG framework infers that it is likely that there is

a FACE present in the scene. This is an example of bottom-up reasoning. Due to the variability in

the relative poses between a FACE and a constituent EYE, the framework is uncertain of the precise

location of the FACE. Moreover, the distribution over possible FACE poses is bimodal since an EYE

can either be the left eye or the right eye, so the framework reasons about both possibilities. For each

FACE brick that may be present in the scene, the framework reasons about all of its constituent parts,

hence the distribution over NOSE and MOUTH bricks is bimodal as well. This is an example of

top-down reasoning. Note that to make the deduction that there is likely to be a NOSE or MOUTH in

the scene based solely on observing an EYE requires a chain of reasoning that goes from bottom-up

to infer the presence of a FACE, and then to top-down to infer the presence of the other FACE parts.

Row 3 of Figure 6.2 shows the results of LBP when two EYE bricks that can both be generated by

a single FACE brick are conditioned to be present in the scene. Note that the approximate marginal

distribution of the FACE bricks present in the scene is trimodal. The two smaller modes correspond

to the possibility that each EYE brick is generated by a different FACE brick, and so there may be

two FACE bricks present in the scene. The centre mode corresponds to the possibility that both

EYE bricks are generated by the same FACE brick. The face grammar used here indicates that the

presence of any particular FACE brick in a scene is rare through a low self-rooting probability for

FACE bricks. Because of this, the PSG framework places higher probability on the event that there is

a single FACE brick present in the scene with both conditioned-on EYE bricks as constituent parts

and a lower probability on the event that there are two FACE bricks present in the scene with each

EYE brick being generated by a different FACE brick.

The three examples in Figure 6.2 showcase the ability of the PSG framework to simultaneously

perform top-down and bottom-up reasoning. Both kinds of reasoning are crucial to capture a notion

of context. Note that there is no explicit notion of top-down nor bottom-up here, but such a concept

naturally emerges due to the hierarchical nature of Grammar 2. We argue that the ability to reason

contextually in a top-down and bottom-up fashion is crucial if one wishes to capture the notion of

context and leverage it in scene understanding tasks. Here, we have demonstrated the ability of the

PSG framework to capture a notion of context.
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6.3 LBP computations with a binary segmentation grammar

In this section, we analyze the capability of the PSG framework to reason about binary image

segments using Grammar 3. Figure 6.3 shows the results of inference on three examples scenes.

(a) (b) (c)

Figure 6.3: A visualization of three binary image segmentation examples. Each pixel represents
an FG brick at that location. FG bricks conditioned to be present in the scene are denoted by a red
pixel. FG bricks conditioned to be absent in the scene are denoted by a blue pixel. All other bricks
in the scene are unconditioned. The gray-scale values show the resulting approximate marginal
probabilities computed by LBP. Darker pixels indicate a higher approximate marginal probability to
be present in the scene. See text for discussion. Best viewed in colour.

In Figure 6.3(a), we condition on the presence of the FG brick in the centre of the scene. Its

presence influences other FG bricks near it to be present in the scene as well, with its influence

decreasing with distance. The most probable interpretation of the scene under this grammar is that

the SEED brick chose the FG brick indicated by the red pixel to be present, and the chosen FG

brick potentially generates other FG bricks. However, another possible scene interpretation is that

the SEED brick chose some other FG brick to be present, and through the generative process, the

FG brick indicated by the red pixel was generated. The latter event has many ways to occur since

the SEED brick could have chosen any other FG brick to start the generative process. The PSG

framework reasons about both of these scene interpretations.

In Figure 6.3(b), we condition on a set of FG bricks being present in the scene. The FG bricks

that are conditioned to be present form the boundary of a square in the scene. Here, there are

many possible scene interpretations since the SEED brick could have chosen any of the FG bricks

conditioned to be present to start the generative process. The results of inference suggests that

there is a high probability that the FG bricks inside the square are present. Outside the square, the

approximate marginal probabilities computed by LBP decay rapidly with distance from the square’s

boundary. Note that the approximate marginal probability for the FG brick at the centre of the square
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is higher than most of the FG bricks outside of the square. In fact, the set of FG bricks outside

the square and more than 2 pixels from the square’s boundary have lower approximate marginal

probability to be present in the scene than the centre FG brick, despite the centre FG brick being 16

pixels away from the square’s boundary. This suggests that the PSG framework is capable of “filling

in” shapes.

In Figure 6.3(c), we condition on a set of FG bricks being present in the scene, and condition on

another set of FG bricks being absent in the scene. Both sets of FG form squares in the scene. Note

that this example is similar to the example shown in Figure 6.3(b), except now we also condition

on the absence of a set of bricks. Recall that Grammar 3 generates scenes with a single, non-empty

connected foreground component. So, under the distribution over scenes induced by Grammar, 3, it

is impossible for FG bricks outside the blue square to be present in the scene since some FG bricks

inside the blue square must be present. The approximate marginals estimated by LBP reflect this fact.

However, LBP is not always able to reason about such global constraints correctly.

Figure 6.4 shows another run of LBP using the same set of conditioned on bricks as the example

in Figure 6.3(c). Here, LBP produces very different results. Recall from Chapter 5 that LBP requires

an initialization of messages. In the example shown in Figure 6.4, the messages of LBP were

initialized to favour the presence of all unconditioned FG in the scene. In contrast, in the example

shown in Figure 6.3(c), the messages of LBP were initialized to discourage the presence of any

unconditioned FG bricks in the scene. In Figure 6.4, the approximate marginals computed by LBP

are inconsistent with the distribution over scenes induced by Grammar 3 since under the distribution

over scenes induced by Grammar 3, it is impossible for any FG bricks outside of the blue square to

be present.

There are three causes that contribute to the mismatch between the approximate marginals

produced by LBP and the distribution over scenes induced by Grammar 3 in the example shown in

Figure 6.4. The first issue is numerical. In our implementation of LBP, messages are constrained

to be non-zero to avoid numerical issues. If one uses Eqn. 5.3 to compute approximate marginal

probabilities, then it is impossible to have a marginal probability be exactly 0 since that requires at

least one of the LBP messages to be exactly 0. Hence, in our implementation of LBP, we cannot

capture the notion that it is impossible for some set of bricks to be present in the scene.

The second issue is that the distribution over scenes represented by the factor graph constructed

from Grammar 3 using Definition 16 is different than the distribution over scenes represented by

the original grammar. The factor graph construction assumes an acyclic grammar, but Grammar

3 is cyclic, and hence the distributions over scenes are not the same. Since we perform inference

using the constructed factor graph, we are performing inference with a distribution over scenes that

is related to but different from the one induced by Grammar 3.
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Figure 6.4: A visualization of a binary image segmentation task where the approximate marginals
computed by LBP are inconsistent with the underlying grammar model. The gray-scale values show
the resulting approximate marginal probabilities computed by LBP. Darker pixels indicate a higher
approximate marginal probability to be present in the scene. The set of FG bricks conditioned on
is the same as in Figure 6.3(c), but here the messages of LBP have been initialized to favour the
presence of all FG bricks in the scene. Note that as in Figure 6.3(c), according to the generative
process, it is impossible for any FG brick outside of the blue square to be present. However, in this
case LBP incorrectly reasons about this constraint.

The third issue is that LBP is a heuristic for performing approximate inference in loopy factor

graphs. Although in practice LBP seems to produce reasonable approximations to marginal quantities

for many tasks (see [42, 33, 14]), there is no guarantee it will work well for arbitrary tasks and factor

graphs. Empirically, LBP has difficulty producing accurate approximations when the underlying

factor graph contains many loops, as is the case here.



Chapter 7

Connections to Pictorial Structures

In this chapter, we elucidate the connections between the PSG framework and Pictorial Structures

described in [13]. In particular, we show that the prior over scenes that a Pictorial Structure (PS)

model defines can be expressed as a PSG as described in Chapter 2, but the reverse is not true.

Thus, the PSG representation can be viewed as a generalization of the PS model representation.

Also, the graphical model representation of a PS model differs significantly from the factor graph

representation used in the PSG framework. The difference in graphical model representation has

consequences on the accuracy and speed of inference. Namely, the PS graphical model allows

for efficient and exact maximum a posteriori (MAP) estimation via dynamic programming and

generalized distance transforms. Recall from Chapter 5 that in contrast, the PSG framework employs

the approximate inference scheme of LBP which, in practice, is slower than the exact inference

schemed used in the PS framework.

7.1 Pictorial Structures: Overview

We first describe the PS model, as presented in [13]. A PS model represents objects as a collection

of parts and connections between parts. A PS model can be represented as an undirected graph

G = (V,E), where V = {v1, . . . vn} represents a set of objects/parts, and E is a set of pairs {vi, vj}.
A configuration of parts is given by L = {l1, . . . ln} where li specifies the pose of part vi in the

scene. Poses may correspond to pixel coordinates, for example. Importantly, a PS model implicitly

assumes that there is one instance of each object in the scene since li represents a single pose for part

vi. To model the geometric relationship between parts, a PS model has pairwise terms dij(li, lj) that

measures the degree of disagreement between the placement of parts vi and vj at locations li and
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lj , respectively. Finally, given an image Y , the term mi(li, Y ) is a cost for placing the object vi at

location li based on the image evidence.

The energy of a configuration L given an image Y is defined to be

F (L, Y ) =
∑

{vi,vj}∈E

dij(li, lj) +

n∑
i=1

mi(li, Y ). (7.1)

The energy in Eqn. 7.1 defines a probability

p(L, Y ) =
1

Z

∏
{vi,vj}∈E

(
e−dij(li,lj)

)( n∏
i=1

e−mi(li,Y )
)
. (7.2)

Eqn. 7.2 can be viewed as a conditional probability of L given Y defined by a product of a prior

over scenes, p(L), and an image likelihood p(Y | L), where

p(L) ∝
∏

{vi,vj}∈E

e−dij(li,lj) (7.3)

p(Y | L) ∝
n∏
i=1

e−mi(li,Y ). (7.4)

In [13], inference is performed using maximum a posteriori (MAP) by minimizing Eqn. 7.1.

For efficient inference, G = (V,E) is constrained to be a tree and the dij must be expressible

as a Mahalanobis distance between locations in a transformed space. These constraints allow for

exact MAP estimation using dynamic programming and generalized distance transforms. [13] also

discusses the computation of marginal distributions. Here, we will focus on the MAP setting but

the connections outlined in this chapter are equally applicable to the setting where marginals are

computed.

7.2 Expressing a Pictorial Structure model as a PSG

In this section, we show how to represent the prior over scenes defined by a PS model, p(L), in the

language of a PSG as in Definition 1.

We describe the construction of a PSG from an arbitrary PS model below. Since a PS model is

restricted to be tree-structured, without loss of generality, we take the root of the tree to be v1 and we

assume that the vi are ordered with a breadth-first search starting at v1.

Definition 31 Construction process for transforming a PS model into a PSG:
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1. Represent each object/part vi ∈ V in the PS model as a symbol in the PSG. For simplicity, we

will use vi 1 ≤ i ≤ n as symbols in the PSG.

2. Let Li be the set of possible values for li, 1 ≤ i ≤ n. Define the pose space of vi to be Li.

3. For each vi, create one production rule with vi in the LHS and include vj in the RHS if

{i, j} ∈ E and j > i. Assign this rule probability 1. Since each symbol vi appears only once

in the LHS of the set of production rules, without loss of generality, assume rule r has vr in the

LHS.

4. Set all conditional pose distributions to be Categorical distributions. For all pairs {vi, vj}
where {vi, vj} ∈ E and j > i, set the parameter θ(li,i,k,lj) ∝ e−dij(li,lj) for li ∈ Li and

lj ∈ Lj . The constant of proportionality is chosen so that the set of parameters θ(li,i,k) sums

to 1.

5. Set εvi = 0, 1 ≤ i ≤ n.

6. Introduce a symbol vSEED. This symbol will be used to ensure that there is exactly one instance

of v1 in the scene.

7. Set the pose space of vSEED to be [1].

8. Set εvSEED = 1.

9. Create a production rule with vSEED in the LHS and only v1 in the RHS. Without loss of

generality, assume this rule is the (n+ 1)th rule.

10. Set γ(n+1,1) to be a Uniform distribution over the elements of L1.

11. Set all rule probabilities to 1.

Following the construction above yields a PSG that describes a prior over scenes that matches an

arbitrary PS model’s prior over scenes.

Although the prior over scenes that a PS model defines can be represented as a PSG, the reverse

is not true. Below are several aspects of a PSG model that cannot be expressed in a PS model.

• A PSG can have multiple instances of each object in the scene.

• The conditional pose distributions in a PSG can be an IndBern distribution.

• A PSG can have multiple possible compositions for a given object, with each composition

having a different probability of occurring.



61

• The grammar of a PSG need not be tree-structured.

Since a PS model’s prior over scenes, p(L), can be represented as a PSG but the reverse is not

true, we say that the PSG representation described in Chapter 2 is a generalization of the PS model

representation.

7.2.1 Example construction

In this subsection, we give a concrete example of using the construction described in Definition 31 to

represent a PS model as a PSG .

V1

V2

V3

V4 V5

Figure 7.1: Undirected graphical model representation for a PS model where V = {v1, . . . , v5}.

Figure 7.1 represents the undirected graphical model for a PS model where V = {v1, . . . , v5}
and the state space of vi is Li. Following the construction process described in Definition 31, the

corresponding PSG is given in Grammar 5.

Grammar 5 A PSG representation of the PS model in Figure 7.1:

Σ = {v1, . . . , v5, vSEED}.
Ωvi = Li, 1 ≤ i ≤ 5.

ΩvSEED = [1].

Rules:
1.0, (v1, l1) → (v2,Categorical(· | θ(l1,1,1)),

(v3,Categorical(· | θ(l1,1,2)),

(v4,Categorical(· | θ(l1,1,3)),

1.0, (v2, l2) → ∅
1.0, (v3, l3) → ∅
1.0, (v4, l4) → (v5,Categorical(· | θ(l4,4,1)),

1.0, (v5, l5) → ∅
1.0, (vSEED, 1) → (v1,Uniform(L1))
εvi = 0, 1 ≤ i ≤ 5,

εvSEED = 1
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Grammar 5 induces a distribution over scenes where each object/part vi ∈ {v1, . . . , v5} appears

exactly once in the scene, and the probability of placing vj at lj given that object vi is placed at li is

proportional to e−dij(li,lj) for {vi, vj} ∈ E and j > i. This prior over scenes induced by the PSG in

Grammar 5 matches the prior over scenes induced by the PS model depicted in Figure 7.1.

7.3 Pictorial Structures vs. PSG : graphical models and inference

Inference in the PS framework differs substantially from inference in the PSG framework. The

differences in inference can be attributed to the underlying graphical model representations. For

a PS model, the graphical model representation is a tree-structured Markov random field (MRF).

Examining the Eqn. 7.1, one takes the li, 1 ≤ i ≤ n, to be the random variables of the MRF, and the

terms e−dij(li,lj) and e−mi(li,Y ) correspond to the pairwise and unary potentials, respectively. This

formulation is significantly different than the PSG factor graph. The key differences are that 1) the

PS graphical model is tree-structured while the PSG graphical model is not tree-structured, and 2)

the PS graphical model typically has a few random variables with large state spaces while the PSG

graphical model typically has a large number of binary random variables. These differences have

implications for both the accuracy and speed of inference. For PS, MAP estimation with its graphical

model is exact and fast since one can use dynamic programming and generalized distance transforms.

On the other hand, if one were to perform MAP estimation with the PSG factor graph, 1 inference

would only be approximate and slower than inference in the PS framework since the PSG framework

uses LBP in a loopy graph.

As shown in Section 7.2, a PS model can be expressed in the PSG framework, but the reverse

is not true; the set of models expressible in the PS framework is a proper subset of the models

expressible in the PSG framework. However, the cost for the additional modeling power of the PSG

framework is that inference is only approximate and slower than in the PS framework.

1Although we use LBP to compute marginals as stated in Chapter 5, we could use max-product LBP to perform

inference in a MAP setting.



Chapter 8

Learning Model Parameters

Recall from Definition 1 that a PSG is defined by a 6-tuple G = (Σ,Ω,R, q, γ, ε). The chief learning

problem we consider in this work is estimating model parameters q, γ, and ε.

We first formalize the parameter estimation problem, briefly describe the Expectation-Maximization

(EM) algorithm, and finally describe a modification to the EM algorithm so that it can be applied

in the PSG framework. The modification is to replace exact posterior quantities required by the

Maximization-step of the EM algorithm with approximate posterior quantities by computed LBP.

The general idea of replacing the exact posteriors by approximate posteriors computed by LBP is

related to the work of [26]. The learning algorithm described in this chapter can be thought of as an

approximation variant of the EM algorithm.

8.1 Maximum likelihood estimation

Consider a set of n datapoints D = {D1, · · · ,Dn} that are independent and identically distributed.

Let Φ be the set of model parameters. The data likelihood function is

p(D | Φ) =
n∏
i=1

p(Di | Φ). (8.1)

In the maximum likelihood setting, the goal is to find a setting for Φ that maximizes the data

likelihood, or equivalently, the data log-likelihood. Formally, we seek to solve

Φ∗ = arg max
Φ

log p(D | Φ) (8.2)

= arg max
Φ

n∑
i=1

log p(Di | Φ). (8.3)

63
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Suppose that the probabilistic model under consideration has hidden variables Z = {Z1, · · · ,Zn}
where Zi is the set of hidden variables associated with datapoint Di. The hidden variables can

represent missing observations, or variables that cannot be directly observed. The joint distribution

p(D,Z | Φ) is commonly called the complete-data likelihood. With hidden variables, Eqn. 8.3 can

be written as

Φ∗ = arg max
Φ

n∑
i=1

log
(∑

Zi

p(Di,Zi | Φ)
)
. (8.4)

Unfortunately, solving Eqn. 8.4 exactly in the general case is intractable. Fortunately, the EM

algorithm is specifically designed to address the maximum-likelihood estimation problem given in

Eqn. 8.3. We describe the EM algorithm in the next section.

8.2 EM algorithm

Recall that the EM algorithm first described in [10] can be applied to maximum-likelihood estimation

problems with hidden variables. When used to solve 8.4, the EM algorithm produces a locally

optimal solution for Φ.

Generally, the EM algorithm is an iterative algorithm that alternates between computing the

posterior distribution over hidden variables given a setting of the model parameters, and comput-

ing a setting of the model parameters given a posterior distribution over hidden variables. The

two alternating steps are called the Expectation-step (E-step) and the Maximization-step (M-step),

respectively.

Definition 32 Let Z denote the hidden variables of a probabilistic model, let D denote the observed

data, and let Φ denote the model parameters. The E-step of the EM algorithm computes the posterior

distribution p(Z | D,Φ).

The M-step of EM algorithm makes use of the expectation of the complete-data likelihood

under the posterior distribution over hidden variables. This expectation is commonly called the

Q-distribution and is defined below.

Definition 33 The Q-distribution is defined as

Q(Φ′,Φ) = Ep(Z|D,Φ)[log p(D,Z | Φ′)]. (8.5)
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Definition 34 Let Φ(t) be the set of model parameters at EM iteration t. The M-step of the EM

algorithm involves solving the optimization problem

Φ(t+1) = arg max
Φ′

Q(Φ′,Φ(t)). (8.6)

In the EM algorithm, the model parameters are first initialized to some starting value. Then, the

algorithm alternates between performing the E-step and M-step described in Definitions 32 and 34,

respectively. The algorithm is guaranteed to converge (see [10] for proof) and the resulting solution

for the model parameters Φ are taken as an approximate solution to maximum-likelihood estimation

problem. Although the EM algorithm is not guaranteed to find the global optimal solution for Φ, it is

guaranteed to find a locally optimal solution.

8.3 Applying EM to the PSG framework

In the PSG framework, we seek to fit the model parameters Φ = {q, ε, γ} (fitting the conditional

pose distributions γ entails fitting the set of parameters θ which govern those distributions). Here,

we assume that the PSG is acyclic and work with its factor graph representation, as described in

Section 4.2. In our setting, each datapoint Di corresponds to an image. Note that we differentiate

between an image and a scene; a scene is a description of the image that contains higher level infor-

mation, such as what objects are present in the image and what are the compositional relationships

between them.

Denote by Xi(A,ω) the random variable X(A,ω) associated with scene i. Define Ri(A,ω) and

Ci(A,ω) analogously. Define the following sets of random variables:

Xi = {Xi(A,ω) | A ∈ Σ, ω ∈ ΩA}

Ri = {Ri(A,ω) | A ∈ Σ, ω ∈ ΩA}

Ci = {Ci(A,ω) | A ∈ Σ, ω ∈ ΩA}

Zi = {Xi,Ri,Ci}.

We have implicitly assumed that all scenes have the same set of bricks, which may not be true in

practice. For example, scenes may be different sizes and so the pose spaces of the symbols may differ.

The results in this chapter can be modified to accommodate scenes of varying sizes. For simplicity,

we assume below that all scenes are the same size.

Generally, the PSG framework contains hidden variables. For example, although a FACE brick

may be present in a scene, there may be no direct image evidence as to which rule was chosen
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to expand that FACE brick. In general, the PSG framework treats the set of random variables

Z = {Z1, · · ·Zn} as hidden variables. Estimating the parameters Φ can be formulated in the

maximum likelihood setting with hidden variables, as in Eqn. 8.4.

Below, we first outline the M-step updates assuming that the posterior distribution computed

in the E-step is available. We then outline a modification to the EM algorithm’s E-step whereby

computation of the exact posterior distribution is replaced by computation of an approximation to the

posterior.

8.3.1 M-step

In this subsection, given a set of model parameters Φ(t), we show how to solve for the updated model

parameters Φ(t+1), as in Eqn. 8.6.

We assume that the posterior quantity p(Z | D,Φ(t)) has been computed in the E-step (see next

subsection). Since we assume the Di’s are independent and identically distributed, theQ-distribution

can be expressed as

Q(Φ′,Φ(t)) =
n∑
i=1

Ep(Zi|Di,Φ(t))[log p(Zi | Φ′) + log p(Di | Zi,Φ′)] (8.7)

where p(Di | Zi,Φ′) is the likelihood of the i-th datapoint and p(Zi | Φ′) is the prior distribution

over scenes defined by the PSG factor graph. We assume that the PSG model parameters do not

appear in the likelihood p(Di | Zi,Φ′).

Proposition 35 Let par(Xi(A,ω)) = 0 denote the setting in which C = 0 ∀C ∈ par(Xi(A,ω)).

The M-step update for the self-rooting parameters εA, A ∈ Σ, is

εA =

n∑
i=1

∑
ω∈ΩA

p(Xi(A,ω) = 1, par(Xi(A,ω) = 0) | Di,Φ
(t))

n∑
i=1

∑
ω∈ΩA

∑
x∈{0,1}

p(Xi(A,ω) = x, par(Xi(A,ω) = 0) | Di,Φ(t))

. (8.8)

Proposition 36 Let q(A,r) denote the probability of choosing rule r ∈ RA. The M-step update for

the rule selection probability q(A,r), A ∈ Σ, r ∈ RA is

q(A,r) =

n∑
i=1

∑
ω∈ΩA

p(Xi(A,ω) = 1,Ri(A,ω) = I(Er) | Di,Φ
(t))

n∑
i=1

∑
ω∈ΩA

∑
r′∈RA

p(Xi(A,ω) = 1,Ri(A,ω) = I(Er′) | Di,Φ(t))

. (8.9)
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where E denotes a set of binary random variables indexed byRA, and I(Er) denotes the setting

Er = 1, Er′ = 0 ∀r′ 6= r (i.e., I(Er) indicates that rule r was selected).

To prove the propositions above, we require the following lemma:

Lemma 37 In the the PSG framework, the Q-distribution can be expressed in the form

Q(Φ′,Φ(t)) =
n∑
i=1

Ep(Zi|Di,Φ(t))[log p(Di | Zi,Φ′)] (8.10)

+
n∑
i=1

∑
(A,ω)∈B

Ep(Xi(A,ω),par(Xi(A,ω))|Di,Φ(t))

[
log ΨL

εA
(xpar(Xi(A,ω)), xXi(A,ω))

]

+

n∑
i=1

∑
(A,ω)∈B

Ep(Xi(A,ω),Ri(A,ω)|Di,Φ(t))

[
log ΨS

qA
(xXi(A,ω), xRi(A,ω))

]

+
n∑
i=1

∑
(A,ω)∈B

Ep(Ri(A,ω),Ci(A,ω)|Di,Φ(t))

[ ∑
r∈RA

1≤j≤nr

log p(Ci(A,ω, r, j) | Ri(A,ω, r),Φ
′)
]
.

Proof of Lemma 37
Recall from Eqn. 4.4 that we express the prior distribution over scenes in a factorized form.

Substituting Eqn. 4.4 into Eqn. 8.7 yields

Q(Φ′,Φ(t)) =

n∑
i=1

Ep(Zi|Di,Φ(t))[log p(Di | Zi,Φ′)] (8.11)

+

n∑
i=1

Ep(Zi|Di,Φ(t))

[ ∑
(A,ω)∈B

log p(Xi(A,ω) | par(Xi(A,ω)),Φ′)
]

+
n∑
i=1

Ep(Zi|Di,Φ(t))

[ ∑
(A,ω)∈B

log p(Ri(A,ω) | Xi(A,ω),Φ′)
]

+
n∑
i=1

Ep(Zi|Di,Φ(t))

[ ∑
(A,ω)∈B
r∈RA

1≤j≤nr

log p(Ci(A,ω, r, j) | Ri(A,ω, r),Φ
′)
]
.

Simplifying,
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Q(Φ′,Φ(t)) =

n∑
i=1

Ep(Zi|Di,Φ(t))[log p(Di | Zi,Φ′)] (8.12)

+

n∑
i=1

Ep(Xi,Ci|Di,Φ(t))

[ ∑
(A,ω)∈B

log p(Xi(A,ω) | par(Xi(A,ω)),Φ′)
]

+
n∑
i=1

Ep(Xi,Ri|Di,Φ(t))

[ ∑
(A,ω)∈B

log p(Ri(A,ω) | Xi(A,ω),Φ′)
]

+
n∑
i=1

Ep(Ri,Ci|Di,Φ(t))

[ ∑
(A,ω)∈B
r∈RA

1≤j≤nr

log p(Ci(A,ω, r, j) | Ri(A,ω, r),Φ
′)
]
.

The conditional terms p(Xi(A,ω) | par(Xi(A,ω)),Φ′) and p(Ri(A,ω) | Xi(A,ω),Φ′) can be

expressed in terms of a Leaky-OR potential (Definition 12) and a Selection potential (Defintion 13),

respectively, using a subset of the model parameters. Substituting the form of the potential functions

yields

Q(Φ′,Φ(t)) =

n∑
i=1

Ep(Zi|Di,Φ(t))[log p(Di | Zi,Φ′)] (8.13)

+
n∑
i=1

Ep(Xi,Ci|Di,Φ(t))

[ ∑
(A,ω)∈B

log ΨL
εA

(xpar(Xi(A,ω)), xXi(A,ω))
]

+

n∑
i=1

Ep(Xi,Ri|Di,Φ(t))

[ ∑
(A,ω)∈B

log ΨS
qA

(xXi(A,ω), xRi(A,ω))
]

+

n∑
i=1

Ep(Ri,Ci|Di,Φ(t))

[ ∑
(A,ω)∈B
r∈RA

1≤j≤nr

log p(Ci(A,ω, r, j) | Ri(A,ω, r),Φ
′)
]
.

Using the linearity of expectations,
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Q(Φ′,Φ(t)) =

n∑
i=1

Ep(Zi|Di,Φ(t))[log p(Di | Zi,Φ′)] (8.14)

+

n∑
i=1

∑
(A,ω)∈B

Ep(Xi(A,ω),par(Xi(A,ω))|Di,Φ(t))

[
log ΨL

εA
(xpar(Xi(A,ω)), xXi(A,ω))

]

+
n∑
i=1

∑
(A,ω)∈B

Ep(Xi(A,ω),Ri(A,ω)|Di,Φ(t))

[
log ΨS

qA
(xXi(A,ω), xRi(A,ω))

]

+
n∑
i=1

∑
(A,ω)∈B

Ep(Ri(A,ω),Ci(A,ω)|Di,Φ(t))

[ ∑
r∈RA

1≤j≤nr

log p(Ci(A,ω, r, j) | Ri(A,ω, r),Φ
′)
]
.

Proof of Proposition 35
The M-step involves optimizing theQ-distribution with respect to the model parameters. Consider

setting the self-rooting parameters εA, A ∈ Σ, to optimize the factorized Q-distribution given in Eqn.

8.10. From the definition of the Leaky-OR potential in Definition 12, the self-rooting parameter is

used only when all the input values are zero. Hence, in fitting εA, we only need to consider the case

par(Xi(A,ω)) = 0, 1 ≤ i ≤ n, ω ∈ ΩA.

Substituting the form of the Leaky-OR potential for the case par(Xi(A,ω)) = 0 into Eqn. 8.10

and taking the partial derivative with respect to εA,

∂Q(Φ′,Φ(t))

∂εA
= (8.15)

n∑
i=1

∑
ω∈ΩA

∑
x∈{0,1}

p(Xi(A,ω) = x,par(Xi(A,ω) = 0) | Di,Φ
(t))
( x
εA
− 1− x

1− εA

)
where we have written the form of the expectation under the posterior explicitly. Setting the

derivative to zero and solving for εA yields

εA =

n∑
i=1

∑
ω∈ΩA

p(Xi(A,ω) = 1,par(Xi(A,ω) = 0) | Di,Φ
(t))

n∑
i=1

∑
ω∈ΩA

∑
x∈{0,1}

p(Xi(A,ω) = x,par(Xi(A,ω) = 0) | Di,Φ(t))

. (8.16)
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Proof of Proposition 36
Consider setting the parameter qA to optimize the factorized Q-distribution given in Eqn. 8.10.

From the definition of the Selection potential in Definition 13, the selection probabilities are used

only when the binary input value is 1. Hence, in fitting qA, we need only consider the case where

Xi(A,ω) = 1, 1 ≤ i ≤ n, ω ∈ ΩA.

Recall that qA represents rule selection probabilities, so we have the constraint
∑

r∈RA
q(A,r) = 1.

Hence, optimizing theQ-distribution with respect to qA is a constrained optimization problem. Recall

that the method of Lagrange multipliers is a method that allows one to find local maxima/minima

of a function subject to equality constraints. Using the method of Lagrange multipliers, we seek to

maximize the Lagrange function L(Φ′,Φ(t)):

L(Φ′,Φ(t)) = Q(Φ′,Φ(t))− λ(
∑
r∈RA

q(A,r) − 1). (8.17)

Taking the partial derivative of Eqn. 8.17 with respect to q(A,r),

∂L(Φ′,Φ(t))

∂q(A,r)
=
∂Q(Φ′,Φ(t))

∂q(A,r)
− λ. (8.18)

Substituting the form of the Selection potential for the case Xi(A,ω) = 1 into Eqn. 8.10, and

taking the partial derivative with respect to q(A,r),

∂Q(Φ′,Φ(t))

∂q(A,r)
=

n∑
i=1

∑
ω∈ΩA

p(Xi(A,ω) = 1,Ri(A,ω) = I(Er) | Di,Φ
(t))
( 1

q(A,r)

)
.(8.19)

Now, plug-in Eqn. 8.19 into Eqn. 8.18, set ∂L(Φ′,Φ(t))
∂q(A,r)

= 0, and solve for q(A,r). This yields the

solution

q(A,r) =

n∑
i=1

∑
ω∈ΩA

p(Xi(A,ω) = 1,Ri(A,ω) = I(Er) | Di,Φ
(t))

n∑
i=1

∑
ω∈ΩA

∑
r′∈RA

p(Xi(A,ω) = 1,Ri(A,ω) = I(Er′) | Di,Φ(t))

. (8.20)

We now detail how to fit the conditional pose distributions γ, which can either represent a

Categorical distribution or an IndBern distribution. In both cases, distributions γ are governed by

parameters θ.
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Below, we assume that the operation of subtraction is defined on the pose spaces ΩA ∈ Ω. For

example, a pose ω ∈ ΩA for a brick could represent a vector. We use the notation

K(r,j) = {∆ | ∆ = ω − z, ω ∈ ΩA(r,0)
, z ∈ ΩA(r,j)

}.

K(r,j) represents the set of possible differences between the pose of a brick of type A(r,0) and the

pose of a brick of type A(r,j) for a rule r and the j-th symbol in the RHS of the rule.

In practice, it may be helpful to tie together parameters of the model to represent invariances in

the model. One such invariance often useful in computer vision is shift-invariance. For example,

consider selecting the location for the mouth of a face; the distribution over the location of the mouth

may be most naturally expressed relative to the centre of the face. Below, we derive updates for θ

when the conditional pose distributions they parameterize are shift-invariant.

We can reparameterize the parameters θ to represent shift invariance. Consider the parameters

θ(ω,r,j), r ∈ R, 1 ≤ j ≤ nr, ω ∈ ΩA(r,0)
. We tie together the set of parameters of {θ(ω,r,j) |

ω ∈ ΩA(r,0)
} so that θ(ω,r,j,z) = θ(ω′,r,j,z′) whenever (ω − z) = (ω′ − z′). Now, associate with

each ∆ ∈ K(r,j) a parameter θ̂(∆,r,j). The parameters θ(ω,r,j) can be written in terms of θ̂(∆,r,j).

Concretely, θ(ω,r,j,z) = θ̂(∆,r,j) where ∆ = ω − z. Note that a setting for the parameters θ̂ implies a

setting for the parameters θ.

Proposition 38 Suppose the set of conditional pose distributions {γ(ω,r,j) | ω ∈ ΩA(r,0)
}, r ∈ R,

1 ≤ j ≤ nr, is a set of shift-invariant Categorical distributions. This implies that the conditional

pose distributions p(Ci(A,ω, r, j) | Ri(A,ω, r),Di,Φ
(t)), ω ∈ ΩA(r,0)

, r ∈ R, 1 ≤ j ≤ nr are

represented by Selection potentials. The M-step update for the parameter θ̂(∆,r,j) is given by

θ̂(∆,r,j) =

n∑
i=1

∑
ω∈ΩA

∑
z∈Γ(ω,r,j):
ω−z=∆

p(Ci(A,ω, r, j) = I(Ez), | Ri(A,ω, r) = 1,Di,Φ
(t))

∑
∆′∈K

n∑
i=1

∑
ω∈ΩA

∑
z∈Γ(ω,r,j):

ω−z=∆′

p(Ci(A,ω, r, j) = I(Ez), | Ri(A,ω, r) = 1,Di,Φ(t))

(8.21)

where E denotes a set of binary random variables indexed by ΩA(r,j)
and I(Ez) denotes the

setting Ez = 1, Ez′ = 0 ∀z′ 6= z (i.e., I(Ez) indicates that pose z was selected).

Proposition 39 Suppose the set of conditional pose distributions {γ(ω,r,j) | ω ∈ ΩA(r,0)
}, r ∈ R,

1 ≤ j ≤ nr, is a set of shift-invariant IndBern distributions. This implies that the conditional

pose distributions p(Ci(A,ω, r, j) | Ri(A,ω, r),Di,Φ
(t)), ω ∈ ΩA(r,0)

, r ∈ R, 1 ≤ j ≤ nr, are

represented by a Berns potential. The M-step update for the parameter θ̂(∆,r,j) is given by
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θ̂(∆,r,j) =

n∑
i=1

∑
ω∈ΩA

∑
z∈Γ(ω,r,j):
ω−z=∆

p(Ci(A,ω, r, j, z) = 1, | Ri(A,ω, r) = 1,Di,Φ
(t))

n
∑

ω∈ΩA

∑
z∈Γ(ω,r,j):
ω−z=∆

1
.

(8.22)

Proof of Proposition 38
From the definition of the Selection potential in Definition 13, the parameters θ(ω,r,j) (and so

θ̂(∆,r,j)), are used only when the binary input value is 1. Hence, we need only consider cases when

Ri(A,ω, r) = 1, 1 ≤ i ≤ n.

Here, the set of parameters {θ̂(∆,r,j) | ∆ ∈ K(r,j)} represents the selection probabilities of

a Categorical distribution, so we have the constraint
∑

∆∈K
θ̂(∆,r,j) = 1. Hence, optimizing the

Q-distribution with respect to θ̂(∆,r,j) can be expressed as a constrained optimization problem.

Similar to updating the parameters q, we employ the method of Lagrange multipliers to maximize

the Lagrange function

L(Φ′,Φ(t)) = Q(Φ′,Φ(t))− λ(
∑

∆∈K(r,j)

θ̂(∆,r,j) − 1). (8.23)

Taking the partial derivative of Eqn. 8.23 with respect to θ̂(∆,r,j),

∂L(Φ′,Φ(t))

∂θ̂(∆,r,j)

=
∂Q(Φ′,Φ(t))

∂θ̂(∆,r,j)

− λ. (8.24)

Substituting the form of the Selection potential for the case Ri(A,ω, r) = 1 into Eqn. 8.10, and

taking the partial derivative with respect to θ̂(∆,r,j),

∂Q(Φ′,Φ(t))

∂θ̂(∆,r,j)

=

n∑
i=1

∑
ω∈ΩA

∑
z∈Γ(ω,r,j):
ω−z=∆

p(Ci(A,ω, r, j) = I(Ez), | Ri(A,ω, r) = 1,Di,Φ
(t))

θ̂(∆,r,j)

(8.25)

where we have written the form of the expectation under the posterior explicitly. Now, plug-in

Eqn. 8.25 into Eqn. 8.24, set ∂L(Φ′,Φ(t))

∂θ̂(∆,r,j)
= 0, and solve for θ̂(∆,r,j). This yields the solution
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θ̂(∆,r,j) =

n∑
i=1

∑
ω∈ΩA

∑
z∈Γ(ω,r,j):
ω−z=∆

p(Ci(A,ω, r, j) = I(Ez), | Ri(A,ω, r) = 1,Di,Φ
(t))

∑
∆′∈K

n∑
i=1

∑
ω∈ΩA

∑
z∈Γ(ω,r,j):

ω−z=∆′

p(Ci(A,ω, r, j) = I(Ez), | Ri(A,ω, r) = 1,Di,Φ(t))

.

(8.26)

Proof of Proposition 39
From the definition of the IndBern potential in Definition 14, the parameters θ(ω,r,j) (and so

θ̂(∆,r,j)), are only used when the binary input value is 1. Hence, we need only consider cases when

Ri(A,ω, r) = 1, 1 ≤ i ≤ n.

Unlike in Proposition 38, the parameters here do not have a constraint. Hence, we can directly

optimize the Q-distribution with respect to θ̂(∆,r,j).

Substituting the form of the Berns potential for the case Ri(A,ω, r) = 1 into Eqn. 8.10 and

taking the partial derivative with respect to θ̂(∆,r,j),

∂Q(Φ′,Φ(t))

∂θ̂(∆,r,j)

= (8.27)

n∑
i=1

∑
ω∈ΩA

∑
z∈Γ(ω,r,j):
ω−z=∆

∑
c′∈{0,1}

p(Ci(A,ω, r, j, z) = c′, | Ri(A,ω, r) = 1,Di,Φ
(t))
( c′

θ̂(∆,r,j)

)

−
n∑
i=1

∑
ω∈ΩA

∑
z∈Γ(ω,r,j):
ω−z=∆

∑
c′∈{0,1}

p(Ci(A,ω, r, j, z) = c′, | Ri(A,ω, r) = 1,Di,Φ
(t))
( 1− c′

1− θ̂(∆,r,j)

)

where we have written the form of the expectation under the posterior explicitly. Setting the

derivative to zero and solving for θ̂(∆,r,j) yields

θ̂(∆,r,j) =

n∑
i=1

∑
ω∈ΩA

∑
z∈Γ(ω,r,j):
ω−z=∆

p(Ci(A,ω, r, j, z) = 1, | Ri(A,ω, r) = 1,Di,Φ
(t))

n
∑

ω∈ΩA

∑
z∈Γ(ω,r,j):
ω−z=∆

1
.

(8.28)
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8.3.2 Approximate E-step

In this subsection, we describe an approximation scheme to compute the posterior quantities necessary

for the M-step updates of the model parameters Φ.

Recall that in addition to computing approximate marginals over a single random variable, the

results of LBP can be used to compute approximate joint marginals over a set of random variables.

Definition 40 Let f be a factor node with neighbours U = N(f) and potential Ψf . Let xU denote

an outcome for the variables in U . LBP approximates the joint marginal disttribution p(xU ) by

p̂(xU ) ∝ Ψf (xU )
∏
u∈U

µu→f (xu) (8.29)

where the distribution is normalized to sum to one over all possible settings of xU .

When the factor graph contains no loops p̂(xU ) matches the true joint marginal. However, the

factor graphs considered in the PSG framework generally contain loops, and so p̂(xU ) is generally

only an approximation to the true joint marginal. Nevertheless, in practice, p̂(xU ) serves as a useful

approximation.

The main result of this subsection is stated below.

Proposition 41 Consider the posterior quantities necessary for the M-step updates of Φ. All such

posterior quantities can be approximated using the messages of LBP and Eqn. 8.29.

Proof of Proposition 41
The posterior quantities we seek to approximate are

• p(Xi(A,ω),par(Xi(A,ω) = 0) | Di,Φ
(t)) for (A,ω) ∈ B, 1 ≤ i ≤ n,

• p(Xi(A,ω) = 1,Ri(A,ω) = I(Er) | Di,Φ
(t)) for (A,ω) ∈ B, r ∈ RA, 1 ≤ i ≤ n,

• p(Ci(A,ω, r, j) | Ri(A,ω, r) = 1,Di,Φ
(t)) for (A,ω) ∈ B, r ∈ RA, j ∈ ΩA(r,j)

, 1 ≤ i ≤
n.
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Let U be a set of random variables that participates in a posterior quantity we seek to approximate.

To prove the proposition, it is sufficient to show that there exists a factor f with U ⊆ N(f) for each

posterior quantity of interest. Recall the factor graph representation from Figure 4.2.

For the posterior quantities of the form p(Xi(A,ω),par(Xi(A,ω) = 0) | Di,Φ
(t)), the factors

f1
(A,ω) contain the random variables Xi(A,ω) and par(Xi(A,ω)) as neighbours.

For the posterior quantities of the form p(Xi(A,ω) = 1,Ri(A,ω) = er | Di,Φ
(t)), the factors

f2
(A,ω) contain the random variables p(Xi(A,ω)) and Ri(A,ω) as neighbours.

For the posterior quantities of the form p(Ci(A,ω, r, j) | Ri(A,ω, r) = 1,Di,Φ
(t)), the factors

f3
(A,ω,r,i) contain the random variables Ci(A,ω, r, j) and Ri(A,ω, r) as neighbours.

To perform an approximate E-step in the PSG framework, we run LBP to convergence and use

Eqn. 8.29 to approximate each posterior quantity of interest.

8.4 Effectiveness of approximate EM learning

Unlike the standard EM algorithm, the approximate EM algorithm we describe in this chapter is not

guaranteed to increase a lower bound on the marginal likelihood of the observed data. Also, note

that the approximate EM algorithm has two sources of approximation. First, recall that the E-step in

the EM algorithm described in Section 8.2 requires computation of exact posterior quantities. Here,

we use an E-step that computes approximate posterior quantities by running LBP. Second, recall

that the factor graph construction described in Definition 16 leads to an exact representation of the

distribution over scenes induced by a PSG only when the grammar is acyclic. When the grammar

is cyclic, the factor graph construction leads to an approximate representation of the PSG , and so

any learning algorithm defined using the factor graph construction is fitting a potentially different

(but related) model. Despite the different sources of approximation, in practice, the approximate EM

algorithm outlined here is effective in learning model parameters.

To demonstrate the effectiveness of the approximate EM algorithm described in this chapter, we

show the performance of several PSG models on two scene understanding tasks as a function of

approximate EM iteration. In Figure 8.1, we show performance in terms of area under a precision-

recall curve (AUC) for several PSG models on the tasks of contour detection and image segmentation

(see Chapter 9 for a full description of the models and tasks). Note that higher AUC indicates superior

performance. As shown in the figure, performance tends to improve with subsequent approximate EM
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Figure 8.1: Area under the precision-recall curve (AUC) as a function of approximate EM iteration.
Higher AUC indicates better performance. Each line in the plot corresponds to a PSG model for a
particular scene understanding task indicated in brackets. Overall, the approximate EM algorithm
described in this chapter seems to improve performance. See Chapter 9 for a full description of the
models and tasks.

iterations. Although the performance decreases slightly for one of the models/tasks, the approximate

EM algorithm generally seems to improve performance.



Chapter 9

Experiments

To demonstrate the generality of the PSG framework, we show experimental results on three different

scene understanding tasks: contour detection, face localization, and binary image segmentation. As

discussed in Chapter 1, previous approaches for these tasks have typically employed fairly distinct

methods. Here, we demonstrate that the PSG framework can address all three problems. In particular,

we describe PSGs for each scene understanding task in the language of Definition 1 and demonstrate

that LBP can be used as the inference engine for these tasks. We use partially-supervised learning1 to

fit model parameters for contour detection and binary image segmentation, and supervised learning to

fit model parameters for face localization. We report the speed of inference as performed on a laptop

with an Intel R© i7 2.5GHz CPU and 16 GB of RAM. Our framework is implemented in Matlab/C

using a single thread.

All experiments were performed using a common and general implementation of the PSG

framework. To handle the different tasks in this general implementation, one simply expresses an

appropriate PSG in a high-level “language” like the one used in Chapter3 and designs an appropriate

data model. The implementation automatically constructs the factor graph, and performs parameter

estimation (learning) and inference.

9.1 Contour detection

To study contour detection, we use the Berkeley Segmentation Dataset (BSD500) described in [1]

following the experimental setup described in [16]. The dataset contains natural images and object

boundaries manually marked by human annotators. For our experiments, we used the standard

split of the dataset with 200 training images and 200 test images. For each image we use the
1So-called because the supervision labels specify only the presence/absence of a subset of bricks.

77
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boundaries marked by a single human annotator to define ground-truth binary contour maps. From

a binary contour map B we generate a noisy real-valued image D by sampling each pixel D(i, j)

independently from a Normal distribution whose mean depends on the value of B(i, j). Formally,

D(i, j) ∼ N (µB(i,j), σ). (9.1)

For the experiments, we used µ0 = 150, and µ1 = 100, σ = 40.

9.1.1 The PSG contour model

The contour model we use in the experiments below is similar to the model described in Grammar 1,

but with the model parameters {ε, q} learned in a partially-supervised approach. For learning, we

treat the ground-truth contour maps B as observations for the grammar symbol INK, and use the

approximate EM algorithm described in Chapter 8 to fit parameters. Note that we do not have fully

observed data, since 1) we do not have observations for the states of the CURVE bricks, and 2) we

do not have observations for the rule choices made by the bricks present in the scene. Recall that

for approximate EM learning, we use LBP to compute approximations to the posterior quantities

of interest during the E-step. To speed-up convergence of LBP, we use warm-starts between EM

iterations. I.e., the LBP messages for the E-step of EM iteration t+ 1 are initialized to the converged

LBP messages from the E-step of EM iteration t.

Grammar 6 shows the learned contour model. We will refer to this contour model as the “PSG

contour model”.

Grammar 6 PSG contour model: a grammar for contour detection learned in a partially-supervised

setting. The function Tθ denotes a rotation in the plane by an angle θ and Round maps a point in

the plane to the nearest grid point.



79

Σ = {CURVE, INK}.
ΩCURVE = [N ]× [M ]× [8].

ΩINK = [N ]× [M ].

Rules:
0.647, (CURVE, (x, y, θ)) → (INK, δ((x, y))), (CURVE, δ(((x, y) + Round(Tθ(1, 0)), θ)))

0.147, (CURVE, (x, y, θ)) → (INK, δ((x, y))), (CURVE, δ(((x, y) + Round(Tθ(1,−1)), θ)))

0.152, (CURVE, (x, y, θ)) → (INK, δ((x, y))), (CURVE, δ(((x, y) + Round(Tθ(1,+1)), θ)))

0.019, (CURVE, (x, y, θ)) → (CURVE, δ((x, y, θ − 1)))

0.019, (CURVE, (x, y, θ)) → (CURVE, δ((x, y, θ + 1)))

0.012, (CURVE, (x, y, θ)) → (INK, δ((x, y)))

1.00, (INK, (x, y)) → ∅
εCURVE = 4.28× 10−5, εINK = 1.87× 10−12.

Recall that for inference, we convert a PSG to a factor graph and run LBP. To incorporate the

data model given in Eqn. 9.1 into the factor graph representation, we attach unary potentials to the set

of variables nodes {X(INK, (i, j)) | (i, j) ∈ ΩINK}. For a variable node X(INK, (i, j)) we attach a

unary potential f0
(INK,(i,j))(X(INK, (i, j)) = x,D) = N (D(i, j);µx, σ). In this case, the resulting

factor graph represents the conditional distribution p(S | D).

9.1.2 Qualitative contour detection results

In Figure 9.1 we show contour detection results on examples from the BSDS500 test set. We

show the approximate marginal probability that each pixel is part of a curve as computed by LBP,

p̂(X(INK, (i, j)) = 1 | D). Running LBP to convergence on a 481× 321 test image took on average

1.5 hours.

As shown in Figure 9.1, despite the PSG contour model’s simplicity, it is able to perform

reasonably well in detecting contours in noisy images. Note that the model sometimes has trouble

localizing curved contours. Since the model is similar to a first-order Markov model, it is unable

to faithfully model and capture high-order contour statistics, such as curvature, thus hampering its

ability to detect contours that do not have low curvature. This suggests that modelling curvature

is important for contour detection. As such, we believe more realistic models of contours will be

able to capture richer curvature information and outperform the simple contour model described

in 6. Nevertheless, the qualitative contour detection results demonstrate the feasibility of the PSG

framework’s approach on this task. In the next section, we provide a qualitative analysis of the

performance of the PSG contour model.

Figures 9.2 shows more contour detection results on images from the BSDS500 at a larger

resolution so the reader can examine more details.
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Figure 9.1: Contour detection results on four examples from the BSDS500 test set. Top row:
Ground-truth contour maps B. Middle row: Noisy observations, D. Bottom row: Visualization of
the approximate marginal probabilities of INK bricks present in the scene computed by LBP. Each
pixel represents an INK brick at that location. The gray-scale values show the approximate marginal
probabilities p̂(X(INK, (i, j)) = 1 | D) at each pixel (i, j) computed by LBP. Darker pixels indicate
a higher marginal probability. Despite the PSG contour model’s simplicity, the model is able to
perform reasonably in detecting contours in noisy images. However, the model has trouble localizing
curved contours; this is particularly evident in the left and rightmost examples.

9.1.3 Quantitative contour detection results

In this subsection we perform a quantitative comparison between the PSG contour model and baseline

models. Our chief comparison is to the Field-of-Patterns (FOP) models of [16], wherein their

proposed model is specifically designed to recover binary images. To demonstrate the importance of

context for contour detection, we also compare against a PSG where all of the compositional rules

are of the form A→ ∅; i.e. all bricks are independent. We will refer to this PSG as the “No-Context

PSG ” since such a PSG relies solely on the data model for contour detection. For the PSG contour

model and the No-Context PSG, we compute the area under the precision-recall curve (AUC) by

threshholding p̂(X(INK, (i, j)) = 1 | D), (i, j) ∈ ΩINK, over a range of values. The authors of [16]

have provided us with their experimental data, which we use to make comparisons.

Table 9.1 compares the AUC of the PSG contour model to baselines. Figure 9.3 compares

the precision-recall curves of the PSG contour model and baseline methods. Comparing the AUC

achieved by the PSG contour model to the No-Context PSG it is clear that the use of contextual
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Figure 9.2: Contour detection results for three examples from the BSDS500 test set. Top row:
Ground-truth contour maps B. Middle row: Noisy observations, D. Bottom row: Visualization of
the approximate marginal probabilities of INK bricks present in the scene computed by LBP. Each
pixel represents an INK brick at that location. The gray-scale values show the approximate marginal
probabilities p̂(X(INK, (i, j)) = 1 | D) at each pixel (i, j) computed by LBP. Darker pixels indicate
a higher marginal probability.
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Model AUC
No-Context PSG 0.12

PSG contour model 0.75
1-level FOP, [16] 0.73
4-level FOP, [16] 0.78

Table 9.1: AUC for the No-Context PSG, PSG contour model, and the 1-level and 4-level field-of-
patterns (FOP) models from [16]. Note that the PSG contour model is competitive with the 1-level
FOP model of [16] which is specifically designed to recover binary images from noisy images.
While the 4-level FOP model outperforms the PSG contour model, the PSG contour model is still
competitive despite the generality of the PSG framework. Note that the No-Context PSG performs
poorly, demonstrating that the use of contextual information is crucial for contour detection.

information is of critical importance for high-quality contour detection. Note that the PSG contour

model achieves competitive results compared to the FOP models described in [16], despite the PSG

framework’s general-purpose nature.

We believe it is possible to define more realistic models of contours in the PSG framework to

improve performance. For example, one could make use of higher-order contour statistics such as

curvature information, and operate in a multi-scale fashion similar to the 4-level FOP model; both

of these concepts can in principle be described in the language of a PSG. However, the goal of this

thesis is to demonstrate the generality of the PSG framework and we leave the design and structure

learning of more sophisticated contour models for future research.
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Figure 9.3: Precision-recall curves for the PSG contour model and baseline models. The FOP results
were obtained from the authors of [16]. The AUC for each method is shown in the legend. The
PSG contour model is competitive with the 1-level FOP model from [16], but is outperformed by
the 4-level FOP model. The overall poor performance of the No-Context PSG demonstrates the
importance of using a notion of context for contour detection.
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9.2 Face Localization

The PSG framework can be applied to the problem of object localization. Here, we demonstrate the

application of PSGs to the problem of face localization. The goal is to localize one or more faces in a

set of images, as well as the faces’ left eye, right eye, nose, and mouth. We study face localization on

two datasets; one dataset has a single face per image, and the other has multiple faces per image. We

describe the datasets below.

9.2.1 Dataset: Labelled Faces in the Wild

To study face localization when there is exactly one face in the image, we use the Labelled Faces in

the Wild (LFW) dataset introduced in [27]. The dataset contains faces in unconstrained environments.

We randomly select 200 images for training, and 100 images for testing. Although the dataset comes

annotated with the identity of the person in the image, it does not come with part annotations. We

manually annotate all training and test images with bounding box information for the face, left eye,

right eye, nose, and mouth. Examples of bounding box annotations are shown Figure 9.4.

9.2.2 Dataset: Family Portraits

The LFW dataset images are constrained to have only one face per image and is not suitable for

evaluating localization performance when there are multiple faces in an image. To study multiple

face detection, we collect a dataset of 40 images of family and class portraits taken from the Internet.

We used the search string “family portraits”, “class portraits” and “school portraits” on GoogleTM in

November 2016. We manually annotated each image with bounding box information for the face,

left eye, right eye, nose, and mouth. Examples of bounding box annotations are shown in the Figure

9.5. On average, there are 5.9 faces per image. We refer to this dataset as “Portraits”.

9.2.3 Face Detection Grammar

The PSG we use for face detection experiments is similar to the grammar described in Grammar 2,

but with several differences:

• The EYE symbol in the grammar is replaced by LEFT-EYE and RIGHT-EYE symbols. Thus,

the grammar distinguishes between left eyes and right eyes.

• Scale information is included in the pose space. This enables the grammar to express rela-

tionships such as “a small face has a small mouth that is only a few pixels below the centre

of the face” and “a large face has a large mouth that can be many pixels below the centre of
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Figure 9.4: Examples of manually annotated images from the LFW dataset. Images are annotated
with bounding boxes for the face (red), left eye (green), right eye (blue), nose (cyan), and mouth
(magenta). Note that we distinguish between left and right eyes. All LFW images are 250 × 250
pixels.

the face”. The pose space is defined so that objects detected at smaller scales can be localized

with higher precision than objects detected at larger scales.

• The grammar does not use Uniform conditional pose distributions to express the geometric

relationship between a face and its constituent parts. Instead, the conditional pose distributions

are Categorical distributions whose parameters are learned in a supervised learning approach

described later in Section 9.2.5

• The grammar contains symbols that represent the concept of “look-alikes”. “Look-alike”

symbols provide a mechanism for the PSG to handle false positives that arise due to weaknesses

in the given data model. For example, a MOUTH “look-alike” brick represents an entity that

merely looks like a mouth under the data model, but may not truly be a mouth. Given an

image patch that looks like a mouth, there are two possibilities for the image patch: 1) the

image patch is truly a mouth with other face parts nearby, or 2) the image patch only looks

like a mouth with no other face parts nearby. The “look-alike” symbols explicitly model these

possibilities in the grammar. We include corresponding look-alike symbols for the FACE

LEFT-EYE, RIGHT-EYE, NOSE, and MOUTH symbols. Although not an integral part of

the model, we have found that in practice, “look-alike” symbols improve performance by

reducing false detections. The problem of false detections caused by weaknesses in the data

model, especially those based on gradient information, is discussed in [62]. We will denote

“look-alike” symbols with the prefix T−.

We will refer to our PSG for face localization as the “PSG Face Grammar” model. The spec-

ification of the PSG Face Grammar is given in Grammar 7. We use L to denote the number of
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Figure 9.5: Examples of manually annotated images from the Portraits dataset. Images for both
datasets are annotated with bounding boxes for the face (red), left eye (green), right eye (blue), nose
(cyan), and mouth (magenta). Note that we distinguish between left and right eyes. The sizes of the
images in the Portraits dataset is variable.
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scales considered for all symbols in the grammar, and [Ns]× [Ms] denotes a grid of points at a scale

1 ≤ s ≤ L.

Grammar 7 The PSG Face Grammar:

Σ = {FACE, LEFT-EYE,RIGHT-EYE,NOSE,MOUTH,

T-FACE,T-LEFT-EYE,T-RIGHT-EYE,T-NOSE,T-MOUTH}

∀A ∈ Σ, ΩA =
L⋃
s=1
{[Ns]× [Ms]}.

Rules:
1.0, (FACE, ω) → (T-FACE,Categorical(· | θ(ω,1,1))),

(LEFT-EYE,Categorical(· | θ(ω,1,2))),

(RIGHT-EYE,Categorical(· | θ(ω,1,3))),

(NOSE,Categorical(· | θ(ω,1,4)),

(MOUTH,Categorical(· | θ(ω,1,5)))

1.0, (LEFT-EYE, ω) → (T-LEFT-EYE, δ(ω))

1.0, (RIGHT-EYE, ω) → (T-RIGHT-EYE, δ(ω))

1.0, (NOSE, ω) → (T-NOSE, δ(ω))

1.0, (MOUTH, ω) → (T-MOUTH, δ(ω))

1.0, (T-LEFT-EYE, ω) → ∅
1.0, (T-RIGHT-EYE, ω) → ∅
1.0, (T-NOSE, ω) → ∅
1.0, (T-MOUTH, ω) → ∅
εFACE = 10−4

εLEFT-EYE = εRIGHT-EYE = εNOSE = εMOUTH = 10−12

εT-FACE = εT-LEFT-EYE = εT-RIGHT-EYE = εT-NOSE = εT-MOUTH = 10−4.

9.2.4 Face data model

We incorporate image evidence for a brick (A,ω) to be present/absent in a scene by attaching a unary

potential to the variable node X(A,ω), A ∈ {T-FACE,T-LEFT-EYE,T-RIGHT-EYE,T-NOSE,

T-MOUTH}, ω ∈ ΩA in the factor graph. In other words, only the “look-alike” symbols have an

associated data model. Here, we describe the form of the factor f0
(A,ω) we use for face and face part

localization.

Given an image Y, we denote a unary potential attached to X(A,ω) by f0
(A,ω)(X(A,ω),Y). We

define the unary potentials for a symbol A using a histogram-of-oriented-gradients (HOG) filter (see
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[9] for a description of HOG features). Let H(A,ω)(Y) be the response of a HOG filter associated

with symbol A and pose ω in an image Y. We define

f0
(A,ω)(X(A,ω),Y) = pA(H(A,ω)(Y) | X(A,ω)) (9.2)

where pA is a conditional distribution over discretized HOG detection scores for symbol A. The

procedure to fit these distributions is described below.

Note that each brick associated with a unary potential is also associated with a HOG detection

score, and so a HOG filter. Thus, each brick has a bounding box associated with it corresponding to

the spatial extent of the HOG filter.

To build the data model, we first train HOG filters using publicly-available code from [12]2.

We train separate filters for each “look-alike” symbol using annotated bounding boxes to define

positive examples. The negative examples are taken from the PASCAL VOC 2012 dataset described

in [11], with images containing the class “People” removed. We use 10 scales per octave for each

object/part and do not use hard negative mining. Figure 9.6 shows a visualization of the HOG filters

learned using 200 images from the LFW as positive examples. For all face detection experiments,

the positive examples are taken from the LFW dataset.

For a symbol A, to construct pA(· | X(A,ω) = 1) we first obtain a set of detection scores

by finding in each image the highest HOG detection score whose associated spatial extent has an

intersection-over-union measure of at least 0.7 with the ground truth bounding box. We then clamp

the detection scores to be in the range [−2, 2], construct a 20-bin frequency histogram of detection

scores, normalize the histogram to sum to 1, and finally smooth the distribution by a Gaussian kernel

to obtain pA(· | X(A,ω) = 1). To construct pA(· | X(A,ω) = 0), we use a similar approach, but

we use all the detection scores in each image as the set of HOG detection scores. Figure 9.7 shows

the learned distributions pA(· | X(A,ω) = 1) and pA(· | X(A,ω) = 0).

9.2.5 Fitting model parameters

For all face detection experiments, we fit the conditional pose distributions of the PSG Face Grammar

using the LFW dataset. To fit the conditional pose distributions, we use ground truth bounding

information to provide supervision. For each face in the training set, we have its bounding box and

the bounding box for its constituent parts. We convert each ground truth bounding box for the face,

left eye, right eye, nose, and mouth into a pose for the corresponding symbol in the grammar. To do

this, first recall that bricks has an associated bounding box. We select the pose associated with the
2https://cs.brown.edu/~pff/latent-release4/

https://cs.brown.edu/~pff/latent-release4/
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Figure 9.6: Visualization of the HOG filters learned using 200 examples from the LFW as positive
examples. Note that the HOG filters for the T-LEFT-EYE and T-RIGHT-EYE symbols are subtly
different, indicating there is a visual difference between the two parts. Also note that the T-MOUTH
filter shares some similarities to both the T-LEFT-EYE and T-RIGHT-EYE filters, indicating that
HOG filters may not be an ideal feature representation to distinguish between mouths and eyes.
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Figure 9.7: Distributions over HOG detections scores representing the data model.
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highest detection score with an intersection-over-union measure of at least 0.7 as the ground truth

bounding box. This process converts each annotated bounding box into a pose in the pose space of

the corresponding symbol. Using this information, we can fit the conditional pose distributions using

maximum likelihood estimation.

Note that since each symbol occurs only once in the left-hand-side of in the set of rules, there is

no need learn the parameters q.

We keep the self-rooting probabilities fixed to those given in the PSG Face Grammar model

(Grammar 7). Note that the parts of the face, {LEFT-EYE, RIGHT-EYE, NOSE, MOUTH }, have

low self-rooting probability (10−12), indicating that the model places low probability on the event

that these symbols appear on their own. In contrast, the corresponding “look-alike” symbols have a

much higher self-rooting probability (10−4). As a result, an image region that looks like a face part

but appears on its own is more likely to be explained as a self-rooting “look-alike” symbol rather

than as a true face part.

9.2.6 Face localization results on single-face images: LFW

The data model and conditional pose distributions were fit using 200 annotated training examples

from the LFW dataset. We use a separate 100 examples for testing.

The output of LBP with the PSG Face Grammar gives for each brick (A,ω) in the scene, an

approximate marginal probability that the brick is present: p̂(X(A,ω) = 1 | Y). Since there is

only a single face in each image in the LFW dataset, to perform face localization in an image,

∀A ∈ {FACE,RIGHT-EYE, LEFT-EYE,NOSE,MOUTH} we output

ω∗ = arg max
ω∈ΩA

p̂(X(A,ω) = 1 | Y) (9.3)

as the predicted pose for symbol A in the scene.

As baseline models, we use our own implementation of Pictorial Structures and a model that uses

only the individual HOG filter scores to perform localization of each part independently. We refer to

the latter approach as the “HOG Filters” approach.

To perform inference with Pictorial Structures, we use the MRF representation of a Pictorial

Structures model described in Chapter 7. The symbols of the Pictorial Structures model are FACE,

LEFT-EYE, RIGHT-EYE, NOSE, and MOUTH. The pose spaces for the symbols are the same as

in the PSG Face Grammar. Since the MRF is acyclic, the marginal probabilities can be computed

exactly using dynamic programming and we use Eqn. 9.3 to output a predicted pose for each symbol.

To perform inference using only HOG filter scores, the predicted pose for each symbol A ∈
{FACE, LEFT-EYE,RIGHT-EYE,NOSE,MOUTH} given an image Y is
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ω∗ = arg max
ω∈ΩA

pA(H(A,ω)(Y) | X(A,ω) = 1)

pA(H(A,ω)(Y) | X(A,ω) = 0)
. (9.4)

Inference for the PSG Face Grammar model using LBP on a 250 × 250 test image took 120

seconds, and inference for both Pictorial Structures and the HOG Filters baseline models took around

5 seconds. We show qualitative localization results in Figure 9.8.

As shown in Figure 9.8, the HOG Filters model performs poorly and often confuses mouths with

left eyes and right eyes. This occurs in three of the four examples shown and can be attributed to the

similarity of the learned HOG filters for mouths and eyes, as shown in Figure 9.6. In contrast, the

PSG Face Grammar does not confuse mouths and eyes since it uses geometric information encoded in

the conditional pose distributions to localize the parts of the face. The use of geometric structure and

“look-alike” symbols help the PSG Face Grammar to compensate for the ambiguous data model and

robustly perform face localization. Pictorial Structures performs similarly to the PSG Face Grammar

on this dataset. This is to be expected since one major difference between Pictorial Structures and

the PSG Face Grammar is that Pictorial Structures assumes there is only one object of each type

per image, which is an accurate assumption for the LFW dataset. Comparing the results of the

HOG Filters to the results of the PSG Face Grammar and Pictorial Structures models demonstrates

contextual information is crucial for accurate face and face-part localization.

Table 9.2 provides a quantitative evaluation of the PSG Face Grammar model and the baseline

models in terms of mean distance away from centre of the ground truth bounding box.

Model FACE LEFT-EYE RIGHT-EYE NOSE MOUTH Average
HOG Filters 3.7 4.7 8.2 3.3 13.6 6.7

Pictorial Structures 3.3 2.6 3.1 2.4 3.4 3.0
PSG Face Grammar 3.5 2.6 3.3 2.4 3.5 3.1

Table 9.2: Mean distance of top detections to the centre of the ground truth bounding box, in pixels,
on the LFW dataset. A key difference between Pictorial Structures and the PSG Face Grammar is
that Pictorial Structures assumes one object per image, while the PSG Face Grammar makes no such
assumption. However, in the LFW dataset, there is indeed only one face per image, and so the two
models perform similarly on this dataset.

Table 9.3 provides an evaluation in terms of area under the precision-recall curves. For this

evaluation, we perform non-maximum suppression for the symbols FACE, LEFT-EYE, RIGHT-EYE,

NOSE, MOUTH separately. We first sort the detection probabilities for each symbol, then perform

suppression so that no two detections of the same symbol overlap. We consider a detection to be

a true positive if it is the highest scoring detection with an intersection-over-union ratio of at least

0.5 with the ground truth bounding box. We consider a detection a false positive if it is not the
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Ground Truth HOG Filters PSG Face Grammar Pictorial Structures

Figure 9.8: Localization results on four examples from the LFW dataset. Left: annotated ground-
truth bounding boxes. Middle-Left: results of the HOG Filters model. Middle-Right: results of
the PSG Face Grammar model. Right: results of Pictorial Structures. The parts are FACE (red),
LEFT-EYE (green), RIGHT-EYE (blue), NOSE (cyan), and MOUTH (magenta). For each symbol,
we show the bounding box corresponding to the pose with the highest computed marginal probability.
Note that both the PSG Face Grammar model and Pictorial Structures perform well while the HOG
Filter model performs poorly in some cases, suggesting that using geometric information is crucial
for accurate localization.
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highest scoring detection with an intersection-over-union ratio of at least 0.5 with the ground truth

bounding box, thus penalizing multiple detections of the same object. Once again, the HOG Filters

model performs poorly while the PSG Face Grammar model and Pictorial Structures perform well,

demonstrating the importance of geometric information.

Model FACE LEFT-EYE RIGHT-EYE NOSE MOUTH Average
HOG Filters 1.00 0.76 0.65 0.96 0.60 0.80

Pictorial Structures 1.00 0.97 0.93 0.98 0.90 0.96
PSG Face Grammar 1.00 0.98 0.92 0.98 0.92 0.96

Table 9.3: Area under the precision-recall curve on the LFW dataset. Note that the HOG Filters
model performs significantly worse than the PSG Face Grammar model and Pictorial Structures,
demonstrating the importance of contextual information for accurate object localization. The PSG
Face Grammar model and Pictorial Structures perform similarly, as is expected since there is only
one face per image in this dataset.

9.2.7 Face localization results on multiple-face images: Portraits

A key difference between the general PSG framework and the Pictorial Structures model of [13] is

that the PSG framework makes no assumptions concerning the number of symbols of each type in an

image, while Pictorial Structures assumes there is exactly one symbol of each type in an image. As

such, while the performance of both approaches may be similar when localizing faces in scenes with

a single face, performance may be quite different in scenes with a variable number of faces.

To study the ability of the PSG Face Grammar and baseline methods to detect multiple faces

in an image, we perform face localization on the Portraits dataset described in Section 9.2.2. We

use the same PSG Face Grammar, model parameters, and data model as in the LFW face detection

experiments.

Figures 9.4 and 9.5 shows a qualitative localization comparison between the PSG Face Grammar

and the baseline methods on the Portraits dataset. We show the top K detection for each symbol after

performing non-maximum suppression, where K is the ground truth number of faces in the image.

Non-maximum is performed in the same fashion as described in Section 9.2.6.

Table 9.6 compares the area under the precision-recall curves for the PSG Face Grammar and

baseline methods. For this evaluation, we use the same non-maxima suppression approach and

criterion for true/false positives as for the LFW dataset. In particular, we perform non-maximum

suppression for the symbols FACE, LEFT-EYE, RIGHT-EYE, NOSE, MOUTH separately. We first

sort the detection probabilities for each symbol, then perform suppression so that no two detections

of the same symbol overlap. We consider a detection to be a true positive if it is the highest scoring
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Table 9.4: Top K localization results on two examples from the Portraits dataset after non-maximum
suppresion. K is set to the ground-truth number of faces in the image for visualization purposes.
Top row: annotated ground-truth bounding boxes. Middle-top row: results of the HOG Filters
model. Middle-bottom row: results of Pictorial Structures. Bottom row: results of the PSG Face
Grammar model. The parts are FACE (red), LEFT-EYE (green), RIGHT-EYE (blue), NOSE (cyan),
and MOUTH (magenta). Note that in the both examples, Pictorial Structures makes a mistake in
localizing the mouth of one of the subjects. However, the PSG Face Grammar model does not make
this mistake. This is because of the PSG Face Grammar model’s use of “look-alike” symbols, which
is a concept that cannot be captured in Pictorial Structures. The HOG Filters model performs poorly,
demonstrating the importance of using contextual information in object localization.
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Table 9.5: Top K localization results on two examples from the Portraits dataset after non-maximum
suppression. Top row: annotated ground-truth bounding boxes. K is set to the ground-truth number
of faces in the image for visualization purposes. Middle-top row: results of the HOG Filters model.
Middle-bottom row: results of Pictorial Structures. Bottom row: results of the PSG Face Grammar
model. The parts are FACE (red), LEFT-EYE (green), RIGHT-EYE (blue), NOSE (cyan), and
MOUTH (magenta). The example on the right shows a failure mode for all models. The lightning
creates a challenging environment due to shadows, the left-most subject’s head is significantly rotated,
and the pattern on the couch resembles a face. A richer PSG model that includes in-plane rotation as
part of the pose space may be able to address the failure modes in the example on the right.
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detection with an intersection-over-union ratio of at least 0.5 with the ground truth bounding box. We

consider a detection a false positive if it is not the highest scoring detection with an intersection-over-

union ratio of at least 0.5 with the ground truth bounding box, thus penalizing multiple detections of

the same object.

Model FACE LEFT-EYE RIGHT-EYE NOSE MOUTH Average
HOG Filters 0.95 0.50 0.48 0.90 0.32 0.63

Pictorial Structures 0.97 0.78 0.69 0.96 0.73 0.82
PSG Face Grammar 0.97 0.81 0.81 0.96 0.80 0.87

Table 9.6: Area under the Precision-Recall curves for the Portraits dataset. Note that the HOG Filters
model performs much worse than the PSG Face Grammar, as was the case in the LFW dataset results.
Here, however, the PSG Face Grammar outperforms the Pictorial Structures model. A key difference
between the two models is that the Pictorial Structures model assumes that there is one face per
image, while the PSG Face Grammar does not. Since the Portraits dataset contains a variable number
of faces per image, the one-face assumption made by Pictorial Structures is violated, thus leading to
degraded performance.

Unlike the results on the LFW dataset, on the Portraits dataset, the PSG Face Grammar model

significantly outperforms the Pictorial Structures model. The key difference between the two models

is that the Pictorial Structures model assumes that there is one face per image, while the PSG Face

Grammar does not make that assumption. Since the Portraits dataset contains a variable number

of faces per image, the one-face assumption made by Pictorial Structures is violated. This causes

Pictorial Structures to become unable to select a consistent detection threshold to report positive

detections since such a threshold is dependent on the number of faces in the scene. To demonstrate

this point, consider the case where there are K identical faces in a scene. Since Pictorial Structures

assumes that there is only one face in the scene, each of the K faces receives 1
K of the probability

mass. If K can vary between images, as is the case here, it is not possible to set a consistently tight

detection threshold. The PSG Face Grammar model does not suffer from this consistent threshold

issue since it does not make any assumptions concerning the number of faces in the scene.

9.2.8 Face localization without a Face data model

We argue that contextual information plays a key role in object localization. To study the role of

contextual information in the task of face localization, we repeat the experiments on the LFW and

Portraits dataset using the PSG Face Grammar, but without a data model for the T-FACE symbol.

In other words, there are no unary potentials attached to the random variables X(T-FACE, ω), ω ∈
ΩT-FACE. In this setting, the notion of a face is solely defined in terms of its relationship to its parts;
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the idea of a face is a purely abstract concept. In this section, we explore the ability of this “Faceless

Grammar” to perform face localization despite not having a data model for faces.

We compare the area under the precision-recall curves on the Portraits dataset in Table 9.7.

Although the Faceless Grammar model does worse on this measure, the face localization still performs

reasonably well, achieving an area under the precision-recall curve of 0.93.This demonstrates that it

is possible to perform face localization without an explicit data model for faces.

Model FACE LEFT-EYE RIGHT-EYE NOSE MOUTH Average
PSG Face Grammar 0.97 0.81 0.81 0.96 0.80 0.87
Faceless Grammar 0.93 0.78 0.80 0.95 0.76 0.84

Table 9.7: Area under the precision-recall curves on the Portraits dataset. Note that the Faceless
Grammar performs worse than the PSG Face Grammar. However, the Faceless Grammar performs
reasonably well considering it is attempting to localize an object for which it has no image evidence.
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9.3 Binary image segmentation

To study binary image segmentation, we use the Swedish Leaf Dataset described in [53]. We use

only the Rowan leaves class in our experiments because of their varied and complex shapes. The

Rowan leaf class contains 75 examples. Following the experimental setup described in [16], we use

50 examples for training and the rest for testing. Each example contains exactly one Rowan leaf and

is encoded as a binary map B.

From a binary map B we generate a noisy real-valued image D by sampling each pixel D(i, j)

independently from a Normal distribution whose mean depends on the value of B(i, j). Formally,

D(i, j) ∼ N (µB(i,j), σ). (9.5)

For the experiments, we used µ0 = 150, µ1 = 100, σ = 100.

Note that the data model in 9.5 is the same as for contour detection, but in these experiments we

use a higher value of σ.

Figure 9.9 shows examples of binary maps and the noisy real-valued images.

Figure 9.9: Examples of the data used for the binary image segmentation experiments. Top row:
examples of B. Foreground pixels are shown in black. Bottom row: corresponding examples of D.
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9.3.1 The PSG binary image segmentation models

In the experiments below, we study two PSGs for binary image segmentation. Both PSG grammars

are cyclic, and we constrain the parameters θ so that θ(ω,r,i,z) = θ(ω′,r,i,z′) whenever ω− z = ω′− z′.
I.e., the conditional pose distributions are constrained to be shift-invariant. We also constrain the

PSGs so that no brick may generate itself in one production rule.

The first PSG we study for binary image segmentation is similar to the one described in Grammar

3, but with different model parameters. The model parameters are learned by using the ground-truth

contour maps B as observations for the symbol FG then using the approximate EM algorithm

described in Chapter 8. Note that this is a partially-supervised setting since the supervision labels

specify only the presence/absence of a subset of bricks.

The learned grammar is shown in Grammar 8. Note that this grammar is cyclic, and so the

factor graph construction described in Definition 16 leads to a different (but related) distribution over

scenes. We will refer to this grammar as the “Simple Segmentation Grammar”.

For readability, we denote θ(ω,1,1) by θSEED since |ΩSEED| = 1, and θ(ω,2,1) by θ(ω,FG) ∀ω ∈ ΩFG.

Grammar 8 The “Simple Segmentation Grammar” for 2-D binary image segmentation in anN×M
scene with model parameters learned in a partially unsupervised setting:

Σ = {SEED,FG}.
ΩSEED = [1].

ΩFG = [N ]× [M ].

Rules:
1.0, (SEED, 1) → (FG,Categorical(· | θSEED))

1.0, (FG, ω) → (FG, IndBern(· | θ(ω,FG)))
εSEED = 1,

εFG = 0.

Recall that for inference, we convert a PSG to a factor graph and run LBP. To incorporate the

data model given in 9.5 into the factor graph representation, we attach unary potentials to the set

of variables nodes {X(FG, (i, j)) | (i, j) ∈ ΩFG}. In particular, for variable node X(FG, (i, j)) we

attach a unary potential f0
(FG,(i,j))(X(FG, (i, j)) = x,D) = N (D(i, j);µx, σ).

One weakness of the Simple Segmentation Grammar is that it is incapable of modeling structured

variations in local shape. Compare the shapes of the foreground in 3× 3 regions around a pixel on

stem of the leaf, and 3×3 regions around a pixel on a lobe (components jutting off the stem). Locally,

the shape of the foreground is very different around these two areas. Around a pixel located on the

stem of the leaf, the foreground tends to extend above and below the pixel. Around a pixel located
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in the middle of a lobe, the foreground tends to extend in all directions. To model these structured

variations in the local shape of the foreground, we use a PSG that has the capacity to model different

local foreground shapes.

Grammar 9 describes a binary image segmentation model with a capacity to model different

local foreground shapes 3. Note that this grammar is cyclic, and so the factor graph construction

described in Definition 16 leads to a different (but related) distribution over scenes Each symbol Sj ,

1 ≤ j ≤ 5 models a different local shape. Each brick (Sj , ω), ω ∈ ΩSj can generate a brick (FG, ω)

and other Sj bricks in an 8-neighbourhood around it, or it can generate a brick (Sk, ω), k 6= j to

model a change of local shape. The single SEED brick chooses an S1 brick to start the generative

process. The model parameters are learned in the same fashion as for Grammar 8.

Note that apriori, the set of symbols symbols {Sj | 2 ≤ j ≤ 5} have no semantic meaning and

are exchangeable in the model. To break symmetries in the model, we randomly initialize the model

parameters relating to the set of symbols symbols {Sj | 2 ≤ j ≤ 5}. We will refer to this model as

the “5-component Segmentation Grammar”.

For both binary segmentation models described above, to incorporate the data model given in

Eqn. 9.5 into the factor graph representation, we attach unary potentials to the set of variables

nodes {X(FG, (i, j)) | (i, j) ∈ ΩFG}. For a variable node X(FG, (i, j)) we attach a unary potential

f0
(FG,(i,j))(X(FG, (i, j)) = x,D) = N (D(i, j);µx, σ). In this case, the resulting factor graph

represents the conditional distribution p(S | D).

3For readability, we denote θ(ω,1,1) by θSEED since |ΩSEED| = 1. We also denote θ(ω,2,1) by θ(ω,S1), θ(ω,7,1) by

θ(ω,S2), θ(ω,12,1) by θ(ω,S3), θ(ω,17,1) by θ(ω,S4), and θ(ω,22,1) by θ(ω,S5).
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Grammar 9 The “5-component Segmentation Grammar” for 2-D binary image segmentation in an

N ×M scene with model parameters learned in a partially unsupervised setting:
Σ = {SEED,FG,S1, S2,S3,S4, S5}.
ΩSEED = [1].

ΩFG = [N ]× [M ].

ΩSj = [N ]× [M ], 1 ≤ j ≤ 5.

Rules:
1.000, (SEED, 1) → (S1,Categorical(· | θSEED))

0.841, (S1, ω) → (S1, IndBern(· | θ(ω,S1))), (FG, δ(ω))

0.042, (S1, ω) → (S2, δ(ω))

0.040, (S1, ω) → (S3, δ(ω))

0.037, (S1, ω) → (S4, δ(ω))

0.040, (S1, ω) → (S5, δ(ω))

0.824, (S2, ω) → (S2, IndBern(· | θ(ω,S2))), (FG, δ(ω))

0.043, (S2, ω) → (S1, δ(ω))

0.045, (S2, ω) → (S3, δ(ω))

0.042, (S2, ω) → (S4, δ(ω))

0.045, (S2, ω) → (S5, δ(ω))

0.842, (S3, ω) → (S3, IndBern(· | θ(ω,S3))), (FG, δ(ω))

0.038, (S3, ω) → (S1, δ(ω))

0.043, (S3, ω) → (S2, δ(ω))

0.037, (S3, ω) → (S4, δ(ω))

0.040, (S3, ω) → (S5, δ(ω))

0.858, (S4, ω) → (S4, IndBern(· | θ(ω,S4))), (FG, δ(ω))

0.033, (S4, ω) → (S1, δ(ω))

0.038, (S4, ω) → (S2, δ(ω))

0.036, (S4, ω) → (S3, δ(ω))

0.035, (S4, ω) → (S5, δ(ω))

0.844, (S5, ω) → (S5, IndBern(· | θ(ω,S5))), (FG, δ(ω))

0.037, (S5, ω) → (S1, δ(ω))

0.042, (S5, ω) → (S2, δ(ω))

0.040, (S5, ω) → (S3, δ(ω))

0.037, (S5, ω) → (S4, δ(ω))
εSEED = 1, εFG = 0, εSj = 0, 1 ≤ j ≤ 5.

To gain insight into the PSGs learned, we study the model parameters θ learned by both models.

First, consider the parameters θSEED. For both models, this parameter encodes the distribution over
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the FG brick that will start the generative process of creating the foreground of the leaf. The models

must consider two issues in setting the parameters θSEED. Let B̄ represent the mean of the binary

maps across training examples. Intuitively, one might expect θSEED to resemble B̄ since B̄(i, j) is

the probability that the brick (FG, (i, j)) will be present in a scene in the training set. On the other

hand, the model might prefer to start the generative process at a more central FG brick in the scene.

Consider the probability that the generative process will cause brick (FG, (i, j)) to be present in the

scene when the generative process starts at brick (FG, (i0, j0)). This probability decreases as the

distance between (i, j) and (i0, j0) increases, and so the model may favour more central locations to

the start the generative process. Figure 9.10 shows a visualization of B̄ and the parameters θSEED
learned for the Simple Segmentation Grammar and the 5-component Segmentation Grammar. Note

that log(θSEED) for both models resembles B̄.

(a) Visualization of B̄. Darker pixels
correspond to a higher probability of
that pixel being labeled foreground
in the training images.

(b) Visualization of log(θSEED)
learned for the Simple Segmentation
Grammar.

(c) Visualization of log(θSEED)
learned for the 5-component
Segmentation Grammar.

Figure 9.10: Visualization of B̄ and the parameters θSEED learned for the Simple Segmentation
Grammar and the 5-component Segmentation Grammar. For panels (b) and (c), darker pixels
correspond to a higher value of θSEED for that location. For visualization, the parameters θSEED are
shown in the log domain and linearly scaled to be between 0 and 1.

In Figure 9.11, we show a visualization for the parameters θ(ω,FG) learned for the Simple

Segmentation Grammar and θ(ω,Sj), 1 ≤ j ≤ 5, learned for the 5-component Segmentation Grammar.

As shown in the figure, the parameter θ(ω,FG) learned for the Simple Segmentation Grammar tends

to favour expanding a FG brick in all directions, while the parameters θ(ω,Sj), 1 ≤ j ≤ 5, encode

variations in the shape of the local foreground.
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Figure 9.11: Visualization of the learned parameters θ(ω,FG) and θ(ω,Sj), 1 ≤ j ≤ 5, for the Simple
Segmentation Grammar and 5-component Segmentation Grammar, respectively. Darker pixels
indicate a higher value of θ. Recall that we constrain the parameters θ(ω,FG) and θ(ω,Sj), 1 ≤ j ≤ 5,
to be shift-invariant and so that a brick may not generate itself in one production. Given a brick with
pose ω, the visualizations show the probability that the brick will generate each of its 8-neighbours
where the centre pixel corresponds to the brick with pose ω. The visualizations have been scaled
consistently for comparison. Top row: Visualization of the parameters θ(ω,FG) learned for the Simple
Segmentation Grammar. Bottom row: Left to right: a visualization of the parameters θ(ω,Sj) for
j = [1, · · · , 5] learned for the 5-component Segmentation Grammar.

9.3.2 Qualitative binary image segmentation results

In Figure 9.12 we show binary image segmentation results on examples from the Swedish Leaf

Dataset described in [53]. We show the approximate marginal probability that each FG brick is

present in the scene, p̂(X(FG, (i, j)) = 1 | D), as computed by LBP. On 256 × 256 test images,

running LBP to convergence took less than 260 and 1900 seconds for the Simple Segmentation

Grammar and the 5-component Segmentation Grammar, respectively.

As shown in Figure 9.12, the Simple Segmentation Grammar creates “blob-like” foreground

segmentations and does a poor job of differentiating the lobes of the leaves. In contrast, the 5-

component Segmentation Grammar can more faithfully capture the shape of the lobes of the leaves,

although it does so crudely. The ability to more finely capture the shape of the lobes can be attributed

to the explicit modeling of local variations in the shape of the foreground. However, the 5-component

Segmentation Grammar is more susceptible to picking up speckled noise, as shown in the figure.

Note that although both grammar models constrain scenes to have a single non-empty connected

foreground component, the results of inference indicate that this constraint is being violated. As

discussed in Section 6.3, the factor graph construction described in Chapter 4 does not match the

distribution over scenes induced by a cyclic grammar. Since both the Simple Segmentation Grammar
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Figure 9.12: Binary image segmentation results on three examples from the Swedish Leaf test set.
In the bottom two rows, each pixel represents an FG brick at that location. The gray-scale values
show the approximate marginal probabilities p̂(X(FG, (i, j)) = 1 | D) computed by LBP. Darker
pixels indicate a higher approximate marginal probability. First row: Ground-truth contour maps
B. Second row: Noisy observations, D. Third row: Results of the Simple Segmentation Grammar.
Fourth row: Results of the 5-component Segmentation Grammar.
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and the 5-component Segmentation Grammar are cyclic, the factor graphs on which LBP are run

do not faithfully represent the PSGs they are derived from. Moreover, since LBP is an approximate

inference scheme, there is no guarantee that LBP will produce marginals consistent with the single

non-empty connected foreground constraint even if the factor graphs were faithful representations

of the PSGs they are derived from. These two issues result in the approximate marginals produced

by LBP being inconsistent with the constraint that the foreground be a single non-empty connected

component. Nevertheless, as Figure 9.12 shows, the PSG framework still produces reasonable binary

image segmentations despite these flaws.

9.3.3 Quantitative binary image segmentation results

In this subsection, we perform a quantitative comparison between the Simple Segmentation Grammar,

5-component Segmentation Grammar, and the baseline methods. Our chief comparison is to the

work FOP models of [16]. To demonstrate the importance of context for binary image segmentation

detection, we also compare against a PSG where Σ = {FG}, the FG bricks are allowed to self-root,

and the PSG’s only rule is FG→ ∅; i.e., all bricks are independent. We will refer to this model as the

“No-Context PSG”.

As in the task of contour detection, for the PSG models, we compare performance using the

area under the precision-recall curve (AUC) by thresholding p̂(X(FG, (i, j)) = 1 | D), (i, j) ∈ ΩFG,

over a range of values. For the work of [16], the authors have shared their experimental results and

we compute AUC in a similar fashion as for the PSG models.

Table 9.8 compares the AUC of the Simple Segmentation Grammar, 5-component Segmentation

Grammar, and No-context PSG as well as the 1-level and 4-level FOP models of [16]. Figure 9.13

compares the precision-recall curves of these methods. Note that the No-context PSG performs the

worst out of all methods tested, demonstrating that some notion of context is crucial for producing

high-quality binary image segmentations on this dataset. Also, the 5-component Segmentation

Grammar significantly outperforms the Simple Segmentation Grammar, indicating the importance

of modeling the variation in local foreground shape. Although the PSG segmentation models are

outperformed by both FOP models, both the Simple Segmenetation Grammar and the 5-component

Segmentation Grammar give reasonable results despite the general-purpose nature of the PSG

framework. Also, the gap in performance between the best performing PSG model and the 1-level

FOP model is relatively small.

We believe it is possible to define more effective models for binary image segmentation. As

illustrated in Section 6.3, the use of cyclic grammars can sometimes be problematic in the PSG

framework. A different model for binary image segmentation could perhaps be specified as an acyclic



107

PSG, which may prove to be more effective than cyclic PSGs. For example, one could design a

hierarchical acyclic PSG that can express long-range dependencies between FG bricks. The design

of more sophisticated image segmentation models in the PSG framework is a future research goal.

Model AUC
No-context PSG 0.310

Simple Segmentation Grammar 0.911
5-component Segmentation Grammar 0.956

1-level FOP, [16] 0.967
4-level FOP, [16] 0.976

Table 9.8: Comparison of AUC for several different models. See text for discussion.

Figure 9.13: Precision-recall curves for several PSGs and the 1-level and 4-level FOP models. The
AUC for each model is shown in the legend. Note the poor performance of the No-context PSG,
demonstrating the importance of contextual information in binary image segmentation. Also note
that the 5-component Segmentation Grammar significantly outperforms the Simple Segmentation
Grammar, illustrating the importance of modeling the variation in the local shape of the foreground.
Lastly, the best performing PSG model, the 5-component Segmentation Grammar, is competitive
with the 1-level FOP model.



Chapter 10

Grammar Transformations

As discussed in Chapter 1, we seek efficient approximate inference algorithms as a scene under-

standing framework in practice may be deployed in time-sensitive scenarios. Recall that the run

time of LBP in the factor graph representation of a PSG is linear in the number of edges of the

factor graph. Unfortunately, the PSG factor graph may contain upwards of millions of edges for a

moderately sized model and so LBP inference may be slow. For example, in the contour detection

experiments described in Section 9.1, the factor graph had roughly 50 million edges and running

LBP to convergence on a modern machine took approximately 1.5 hours. If one wishes to apply the

PSG framework to more complex models than the ones expressed in this thesis and on larger scenes,

then it is clear that the practical issues of run time (and memory) must be dealt with. In this chapter,

we discuss strategies for reducing the number of edges in the factor graph representation of a PSG .

The main idea presented in this chapter is that a Categorical conditional pose distribution in the

PSG can be represented by a combination of distributions. In the PSG framework, as we will see

shortly, the “cost” of representing a distribution is the support size of the distribution. So, we seek

strategies and approximations of distributions that reduce their support size.

We consider two special cases. First, we approximate a general N -D Categorical conditional

pose distribution by a product of N one-dimensional Categorical conditional pose distributions. For

example, suppose we have a distribution over two variables, p(X,Y ). We seek to represent this

distribution by a factorized distribution p(X)p(Y ). Here, the total support size of p(X) and p(Y )

can be significantly less than the support size of p(X,Y ).

Second, consider a Uniform distribution over K elements. We approximate this distribution

as a combination of Uniform distributions, each one over a set of fewer elements. For example,

consider a Uniform distribution over the set {0, 1, . . . , 99}. One could sample from this distribution

by the process of first drawing X uniformly from the set {0, 10, . . . , 90}, Y uniformly from the set

108
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{0, . . . , 9}, then declaring Z = X + Y as the sample drawn. The distribution over Z is uniform on

the set {0, . . . , 99}, but here, Z is represented as a combination of two Uniform distributions over

10 elements. We make these ideas more concrete in the rest of this chapter and show how they can

be applied in the PSG framework.

10.1 Counting factor graph edges

In order to reduce the number of edges in the factor graph representation of a PSG, we first analyze

how the number of edges depends on the parameters of the PSG . To simplify the analysis below, we

assume that |Γ(ω,r,i)| = |Γ(ω′,r,i)| ∀ω, ω′ ∈ ΩA(r,i)
(i.e., |Γ(ω,r,i)| is a constant with respect to ω). We

will use the notation |Γ(ω,r,i)| = S(r,i) ∀ω ∈ ΩA(r,i)
.

Recall the factor graph representation in Figure 4.2 for a single brick (A,ω), A ∈ Σ, ω ∈ ΩA.

We can read off the number of edges connected to (degree of) each factor for a single brick. Table

10.1 summarizes the results as a function of the parameters of the PSG .

Factor node type Degree of factor
f1

(A,ω) 1 + |par(X(A,ω))|
f2

(A,ω) 1 + |RA|

f3
(A,ω,·,·) |RA|+

∑
r∈RA

nr∑
i=1

S(r,i)

Table 10.1: Number of edges connected to each type of factor for a single brick (A,ω).

The total number of edges associated with each type of factor can be computed by summing over

all bricks in the factor graph. Table 10.2 summarizes the results.

Factor node type Number of edges connected to factors of this type

f1
(·,·)

∑
A∈Σ

|ΩA|+
∑
A∈Σ

∑
ω∈ΩA

| par(X(A,ω))|

=
∑
A∈Σ

|ΩA|+
∑
A∈Σ

|ΩA|
∑

r∈RA

nr∑
i=1

S(r,i)

f2
(·,·)

∑
A∈Σ

|ΩA|+
∑
A∈Σ

|ΩA||RA|

f3
(·,·)

∑
A∈Σ

|ΩA||RA|+
∑
A∈Σ

|ΩA|
∑

r∈RA

nr∑
i=1

S(r,i)

Table 10.2: Number of edges connected to each type of factor over all bricks in the PSG factor graph.

From Table 10.2, we can express the total number of edges in the factor graph as

number of edges in factor graph = 2
∑
A∈Σ

|ΩA|(1 + |RA|+
∑
r∈RA

nr∑
i=1

S(r,i)). (10.1)
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10.2 Reducing the number of factor graph edges

We first define the Uniform distribution.

Definition 42 Let W be a set of binary random variables indexed by a set Υ. Also, let T ⊆ Υ be a

set. Recall that we define the set I(W ) = {k |Wk = 1, k ∈ Υ}. We define the Uniform distribution

as

Uniform(W ;T ) =


1
|T | ,

∑
k∈Υ

Wk = 1, I(W ) ⊆ T

0 , otherwise
(10.2)

For brevity, for the rest of this chapter we drop the argument W from the Uniform distribution,

and will denote it as Uniform(T ).

Examining Eqn. 10.1, to reduce the number of edges in the factor graph representation of a

PSG, we can reduce the size of the pose spaces, the number of productions rules, and the size of the

support of the conditional pose distributions.

For some PSG models, the size of the pose spaces can be reduced without greatly affecting

modeling power. For example, suppose the pose space for a symbol of a grammar was all pixel

locations in a scene. Rather than consider all pixel locations, one could consider a coarse grid of pixel

locations, e.g., every other pixel. If the pose space of a symbol includes orientation, as in Grammar 1,

one could reduce the number of orientations considered.

Production rules often model compositions between objects. For example, a compositional rule

may model that a FACE is comprised of a LEFT-EYE, RIGHT-EYE, NOSE, and a MOUTH, as in

Grammar 2. So, it may not be possible to reduce the number of production rules without drastically

changing the model.

Conditional pose distributions represent geometric relationships between objects. For example,

such a distribution may encode the fact that the NOSE of a FACE is located somewhere in the middle

of the FACE within a region of uncertainty. As can be seen from Eqn. 10.1, the number of edges in

the factor graph grows linearly with the total size of the support of the conditional pose distributions.

In the next two sections, we focus on strategies for representing and approximating conditional pose

distributions as combinations of distributions. We consider two special cases. In Section 10.3, we

consider approximating a general N -D Categorical distribution by a product of N one-dimensional

distributions. In Section 10.4, we consider representing a Uniform distribution as a combination of

Categorical distributions. These techniques will allow us to reduce the number of edges in the factor

graph via reducing the term
∑

r∈RA

∑nr
i=1 S(r,i) in Eqn. 10.1.
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10.3 Approximating an N -D distribution by a product of N 1-D dis-
tributions

First, recall that we use the notation [M ] to indicate the set of points {0, . . . ,M − 1}. Let X =

{x1, . . . , xN} with xi ∈ [Mi]. Let p(X) be an N -D distribution. Our goal is to approximate p(X)

by a product of N one-dimensional distributions
∏N
i=1 pi(xi). Note that the representation of p(X)

by
∏N
i=1 pi(xi) is exact only when the xi are independent. Also, while ‖p(X)‖0 =

∏N
i=1(Mi − 1),∑N

i=1 ‖pi(xi)‖0 =
∑N

i=1(Mi − 1), and so approximating p(X) by
∏N
i=1 pi(xi) can lead to a

significantly smaller total support size.

To measure the quality of approximation of p(X) by
∏N
i=1 pi(xi), we use the Kullback-Leibler

(KL) divergence, defined below.

Definition 43 The Kullback-Leibler (KL) divergence between discrete probability distributions r

and s is defined to be

DKL(r||s) =
∑
X

r(X) log(
r(X)

s(X)
) (10.3)

where the summation is the over the union of the supports of r and s.

Proposition 44 Let X = {x1, . . . , xN} with xi ∈ [Mi]. Let p(X) be an N -D distribution

that we seek to approximate by
∏N
i=1 pi(xi). If the quality of approximation is measured as

DKL(p(X)||
∏N
i=1 pi(xi)) and we seek to solve the optimization problem

p∗1(x1), . . . , p∗N (xN ) = arg min
p1(x1),...,pN (xN )

DKL(p(X)||
N∏
i=1

pi(xi)) (10.4)

then

p∗i (xi) = p(xi), 1 ≤ i ≤ N (10.5)

Proof of Proposition 44
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DKL(p(X)||
N∏
i=1

pi(xi)) =
∑
X

p(X) log
( p(X)∏N

i=1 pi(xi)

)
(10.6)

=
∑
X

p(X) log p(X)−
∑
X

N∑
i=1

p(X) log(pi(xi)) (10.7)

=
∑
X

p(X) log p(X)−
N∑
i=1

∑
xi

p(xi) log(pi(xi)) (10.8)

Since the pi(xi) are probability distributions, we have the constraint that they must sum to 1.

Hence, solving Eqn. 10.4 is a constrained optimization problem. We use the method of Lagrange

multipliers to enforce the constraint that
∑

xi
pi(xi) = 1. We formulate the Lagrange function

L(p(X),
∏N
i=1 pi(xi)):

L(p(X),
N∏
i=1

pi(xi)) = DKL(p(X)||
N∏
i=1

pi(xi))− λi(
∑
xi

pi(xi)− 1). (10.9)

Now, taking the partial derivative of the Lagrangian with respect to pi(xi),

L(p(X),
N∏
i=1

pi(xi))

∂pi(xi)
=

∂DKL(p(X)||
N∏
i=1

pi(xi))

∂pi(xi)
− λi (10.10)

=
p(xi)

pi(xi)
− λi. (10.11)

Setting L(p(X),
∏N

i=1 pi(xi))
∂pi(xi)

= 0 and solving yields

p∗i (xi) = p(xi), 1 ≤ i ≤ N. (10.12)

Next, we give some examples of using Proposition 44 to approximate a 2-D distribution as a

product of two 1-D distributions. Figure 10.1 shows examples of this approximation.

Note that if the distribution p(x1, x2) can be factorized, thenDKL(p(x1, x2)||p∗1(x1)p∗2(x2)) = 0

and p(x1, x2) = p∗1(x1)p∗2(x2). Figure 10.1(a) shows an example where p(x1, x2) can be factorized,

and indeed, the solution given by Eqn. 10.5 is the factorization. Figures 10.1(b) and 10.1(c) show

examples where p(x1, x2) cannot be factorized. As can be seen, the quality of the approximation can

sometimes be poor, especially if there is no structure to the distribution being approximated. A more

thorough analysis of the approximation produced by Eqn. 10.5 can be found in [4].
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(a) Visualization of factorizing a separable 2-D Gaussian. Since the Gaussian is
separable, it can be represented exactly as the product of two 1-D Gaussians.

(b) Visualization of factorizing a non-separable 2-D Gaussian. Since this Gaus-
sian is not separable, it cannot be represented exactly as the product of two 1-D
Gaussians.

(c) Visualization of factorizing a randomly-generated 2-D probability distri-
bution. Note that the distribution is not separable, so its representation as the
product of two 1-D distributions is not exact.

Figure 10.1: Visualization of three examples of using Proposition 44 to approximate a 2-D probability
distribution by a product two 1-D distributions. Left figures: visualization of a 2-D distribution
p(x1, x2). Right figures: visualization of p∗1(x1)p∗2(x2). Darker pixels correspond to higher probabil-
ities.
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10.3.1 Alternative approximations

To measure the disagreement between two distributions, one could use a function different than the

particular KL divergence used in Proposition 44. One alternative is to reverse the direction of the

KL divergence and instead use DKL(
∏N
i=1 pi(xi)||p(X)). This direction of the KL divergence is

the same as the one used in variational inference (see [63] and [4]), while the direction of the KL

divergence in Proposition 44 is the same as in Expectation-Propagation (see [39]).

Another alternative function to measure the disagreement between two distributions is the

Frobenius Norm. In the special case of a 2-D distribution, the problem of finding an optimal

decomposition of a 2-D distribution in terms of two 1-D distributions is related to finding the best

rank-1 approximation of a matrix in the Frobenius Norm sense, which can be solved using the

Singular Value Decomposition. This problem is also related to generating separable filters (see [52]).

10.4 Decomposing a 1D Uniform distribution

Consider a Uniform distribution over the set [K]. In this section, we consider representing this

distribution as a combination of Categorical distributions. Our motivation for doing so is that a

Uniform distribution over the set [K] has support size of K, but a representation of this distribution

as a combination of Categorical distributions may have total support less than K. As shown in

Eqn. 10.1 the number of edges in the factor graph representation of a PSG is proportional to the

total support of the conditional pose distributions. By representing a Uniform distribution as a

combination of Categorical distributions, the PSG factor graph may have fewer edges. As an

example, suppose p(z) is a Uniform distribution over the set [100]. Then, let p1(z1) be a Uniform

distribution over the set [10] and let p2(z2) be a Uniform distribution over the set {0, 10, . . . , 90}.
The distribution over z0 = z1 + z2 is uniform over the set [100] and the total support is 20.

Definition 45 Consider a set of Categorical distributions P = {pi(z) | 1 ≤ i ≤ N}. Let Λi denote

the support of pi(z) and let Λ = {Λi | 1 ≤ i ≤ N}. Define

|Λ| =
N∑
i=1

|Λi|. (10.13)

Intuitively, the higher |Λ| is, the more factor graph edges must be used to represent P in the PSG

factor graph. In this section, given a Uniform distribution, we seek a representation of it as a set of

Categorical distributions P with an associated set of supports Λ such that |Λ| is minimized over all

possible choices of P . We first show how to compute the minimum value of |Λ|, and then show how

one can find such a P that achieves this minimum value for |Λ|.
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Theorem 46 Let P = {pi(z) | 1 ≤ i ≤ N} be a set of Categorical distributions specified so that

the sum z0 =
∑N

i=1 zi, zi ∼ pi(z) is distributed uniformly on the set [K]. Let Λ = {Λi | 1 ≤ i ≤ N}
where Λi is the support of pi(z). The minimum possible value of |Λ| is the sum of the prime factors

(with repetition) of K.

Consider again the problem of representing a Uniform distribution over the set [100]. Here,

K = 100, so Theorem 46 states that the minimum possible value of |Λ| is 14 in this situation since

100 = 2× 2× 5× 5.

Before proving 46, we require some intermediate results.

Theorem 47 Let P = {pi(z) | 1 ≤ i ≤ N} be a set of Categorical distributions and define

z0 =
∑N

i=1 zi, zi ∼ pi(z). Then, p(z0) can be expressed as

p(z0) = p1(z0) ∗ p2(z0) ∗ . . . ∗ pN (z0)

where ∗ is the convolution operator.

Theorem 47 is a well-known result from the statistics literature.

Proposition 48 Let p1(z) and p2(z) be two Categorical distributions such that p(z) = p1(z)∗p2(z)

is a Uniform distribution on the set [K]. Let Λi be the support set of pi(z). Then, p1(z) = 1
|Λ1|

∀z ∈ Λ1, and p2(z) = 1
|Λ2| ∀z ∈ Λ2. In other words, both p1(z) and p2(z) are Uniform distributions

over the sets Λ1 and Λ2, respectively.

The proof of Proposition 48 can be found in [69].

Proposition 49 Let P = {pi(z) | 1 ≤ i ≤ N} be a set of Categorical distributions such that

p(z) = p1(z) ∗ p2(z) ∗ . . . ∗ pN (z) is a Uniform distribution on the set [K]. Let Λi be the support

of pi(z). Then, there exists a setting of P such that pi(z) = 1
|Λi| ∀z ∈ Λi, 1 ≤ i ≤ N (i.e., the pi(z)

are Uniform distributions).

Proof of Proposition 49
The result follows by mathematical induction and using Proposition 48 as the base case.

Proposition 50 Let P = {pi(z) | 1 ≤ i ≤ N} be a set of Categorical distributions such that

p(z) = p1(z) ∗ p2(z) ∗ . . . ∗ pN (z) is a Uniform distribution on the set [K]. Let P be specified such

that pi(z) = 1
|Λi| ∀z ∈ Λi, 1 ≤ i ≤ N . Consider the quantity z0 =

∑N
i=1 zi, zi ∼ pi(z). For all

possible values of z0, there is a unique setting of the zi that sums to z0.
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Proof of Proposition 50
Consider the smallest possible value of z0. Denote this value by z†. There is only one setting of

the zi that sums to z†; in particular, this setting is to choose the smallest possible value for each of

the zi. From Proposition 49, p(z†) =
∏N
i=1

1
|Λi| .

Suppose there was value of z0 for which there were multiple settings of the zi that sum to

it. Denote this value by z∗. By Proposition 50, each setting of the zi that sums to z∗ is drawn

with probability
∏N
i=1

1
|Λi| . Therefore, if there are m settings of the zi that sum to z∗, then

p(z∗) = m
∏N
i=1

1
|Λi| . However, since P is specified so that p(z) is a Uniform distribution, then we

must have p(z†) = p(z∗). This implies that m = 1, which implies that z∗ has a unique setting of the

zi that sums to it. We have arrived at a contradiction.

Proposition 51 Suppose we express a number K as a product of natural numbers, K =
∏N
i=1 ai,

ai ∈ N. Suppose we wish to minimize the quantity a0 =
∑N

i=1 ai over all possible choices for N

and all settings of the ai. Setting the ai to be the prime factors (with repetition) of K achieves the

minimum value of a.

Proof of Proposition 51
Suppose there exists a number K and a setting for the ai for which the proposition does not hold.

Then, one of the ai must not be prime. Without loss of generality, suppose a1 is not prime. If a1 is

not prime, then it must have at least two factors neither of which are 1. Denote these factors by c and

d. Suppose we replace a1 by cd. Let a∗0 = c+ d+
∑N

i=2 ai, which represents the effect of replacing

a1 by cd on a0. Now,

a0 − a∗0 =
N∑
i=1

ai − (c+ d+
N∑
i=2

ai) (10.14)

= a1 − c− d (10.15)

= cd− c− d (10.16)

= (c− 1)(d− 1)− 1 (10.17)

and so a0 − a∗0 ≥ 0 whenever c ≥ 2 and d ≥ 2, which implies a0 ≥ a∗0 whenever c ≥ 2 and

d ≥ 2. This is a contradiction and the proposition must hold.

We are now ready to prove Theorem 46.

Proof of Theorem 46
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From Theorem 47, p(z0) can be represented as p(z0) = p1(z0) ∗ p2(z0) ∗ . . . ∗ pN (z0). Let

Λ0 denote the set of possible values of z0. From Proposition 50, each possible value of z0 has a

unique setting of the zi that sums to it. This implies that |Λ0| =
∏N
i=1 |Λi|. Since p(z0) is distributed

uniformly on the set [K], |Λ0| = K. Therefore, we seek a setting for P such that K =
∏N
i=1 |Λi|

and |Λ| =
∑N

i=1 |Λi| is minimized. From Proposition 51, the minimum is achieve when P is set

such that the |Λi| are the prime factors (with repetition) of K, and so the minimal value of |Λ| is the

sum of the prime factors (with repetition) of K.

We finish this subsection by giving a construction of P that realizes the minimum value of |Λ|.

Proposition 52 Suppose we seek a set of Categorical distributions P = {pi(z) | 1 ≤ i ≤ N} such

that p1(z) ∗ p2(z) ∗ . . . ∗ pN (z) is a Uniform distribution on the set [K]. Denote the support of pi(z)

by Λi, and let Λ = {Λi | 1 ≤ i ≤ N}. Let li =
∑i−1

j=1 |Λj |. Consider the following specification of

P .

Set N to be the number of prime factors (with repetition) of K, set the |Λi| to be the prime

factors (with repetition) of K, and set p1(z) = Uniform({0, 1, . . . , |Λ1| − 1}) and pi(z) =

Uniform({0, li, 2li, . . . , (|Λi| − 1)li}) for 2 ≤ i ≤ N . Then, p(z) = p1(z) ∗ p2(z) ∗ . . . ∗ pN (z)

is a Uniform distribution on the set [K] and out of all settings of P that represents a Uniform

distribution on the set [K], the above construction achieves the minimum value for |Λ|.

Proof of Proposition 52
First, p(z) represents a Uniform distribution over the set [K] since each value of z has a unique

representation as a sum of the possible values of the zi, zi ∼ pi(z) Finally, since the |Λi| are set to

be the prime factors of K (with repetition), by Theorem 46, the construction achieves the minimum

value for |Λ|.

Theorem 46 can be trivially extended to Uniform distributions on the set {N,N + 1, . . . , N +

K − 1}. To construct a set of distributions P that represents such a Uniform distribution, use the

construction described in Proposition 52 except set p1(z) = Uniform({N,N+1, . . . , N+|Λ1|−1})
We give some examples of using the construction described in Proposition 52 to represent a 1D

Uniform distribution. Figures 10.2 and 10.3 show examples of this construction. As can be seen in

the figures, the constructions are exact and according to Theorem 46, achieve the minimal value of

|Λ|.
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(a) pi(z), 1 ≤ i ≤ 4 for representing a Uniform distribution on the set [100] constructed using the process described
in Proposition 52. Note that the support sizes are 2,2,5,5.

(b) Probability distribution p(z) = p1(z) ∗ p2(z) ∗ p3(z) ∗ p4(z). Note that p(z) is uniform over the set [100].

Figure 10.2: Example of using the construction described in Proposition 52 to represent a Uniform
distribution over the set [100].
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(a) pi(z), 1 ≤ i ≤ 8 for representing a Uniform distribution on the set [256] constructed
using the process described in Proposition 52. Note that the support size of each distribution
is 2.

(b) Probability distribution p(z) = p1(z) ∗ p2(z) ∗ . . . ∗ p8(z). Note that p(z) is exactly
uniform over the set [256].

Figure 10.3: Example of using the construction described in Proposition 52 to represent a Uniform
distribution over the set [256].
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10.5 Applications to PSG design

In the PSG framework, a PSG G is associated with a factor graph F whose construction is described

in Chapter 4. Suppose one wishes to specify a PSG G′ such that its associated factor graph F ′ has

fewer edges than F , but G′ induces a similar distribution over scenes as G. In this section, given

G, we outline a construction of such a grammar G′ using the techniques developed in Sections 10.3

and 10.4. In particular, we will apply the approximation scheme described in Proposition 44 and the

construction described in Proposition 52 to reduce the total size of the supports of the conditional

pose distributions.

Section 10.5.2 describes how the distributions over scenes induced by G and G′ are related.

10.5.1 Constructing G ′

Informally, we construct a PSG G′ from a G by adding symbols and modifying and adding composi-

tional rules to G.

Let G =(Σ,Ω,R, q, ε, γ) represent a PSG. Let the conditional pose distribution γ(ω,r,i), ω ∈
ΩA(r,i)

, r ∈ R, 1 ≤ i ≤ nr be a Categorical distribution. Suppose we wish to represent γ(ω,r,i)

as a combination of distributions, as in Propositions 44 and 52 . If γ(ω,r,i) is an N -D Categorical

distribution, apply the approximation described in Proposition 44 to approximate it as N 1-D

Categorical distributions. If γ(ω,r,i) is a 1-D Uniform distribution, use the construction described in

Proposition 52 to represent it as a set of Categorical distributions. In both cases, γ(ω,r,i) is replaced

by a set of distributions P(ω,r,i) = {p(ω,r,i,j) | 1 ≤ j ≤ k(ω,r,i)} where k(ω,r,i) is the number of

distributions γ(ω,r,i) is represented by. For simplicity, we assume that k(ω,r,i) is a constant with

respect to ω. For brevity, we will denote k(ω,r,i) by k(r,i) ∀ω ∈ ΩA(r,i)
.

Below, let r = A0 → A1, . . . , An be a rule. To denote the rule r, the rule selection probability,

qr, and the conditional pose distributions γ(ω,r,i) for 1 ≤ i ≤ nr and a given pose ω ∈ ΩA0 , we write,

qr, (A0, ω) → (A1, γ(ω,r,1)), . . . , (An, γ(ω,r,n)). (10.18)

Definition 53 Given a PSG G =(Σ,Ω,R, q, ε, γ) , a rule r ∈ R and the i-th symbol in the RHS of r,

consider replacing the conditional pose distribution γ(ω,r,i), ω ∈ ΩA(r,i)
, with a set of distributions

P(ω,r,i) = {p(ω,r,i,j) | 1 ≤ j ≤ k(r,i)} ∀ω ∈ ΩA(r,i)
. Let G′ = (Σ′,Ω′,R′, q′, ε′, γ′) be a PSG that

realizes such a replacement. Below is a process of constructing G′ from G. The process is to be

followed in the order given.

1. Create a set of fresh symbols B = {Bj | 1 ≤ j ≤ k(r,i) − 1}.
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2. Set Ωb = ΩA(r,i)
, ∀b ∈ B.

3. Set εb = 0, ∀b ∈ B.

4. Assign Σ′ = Σ ∪B.

5. Assign Ω′ = Ω
⋃

ΩB1

⋃
. . .
⋃

ΩBk(r,i)−1
.

6. Assign ε′ = ε
⋃
εB1

⋃
. . .
⋃
εBk(r,i)−1

.

7. AssignR′ = R, q′ = q, γ′ = γ.

8. Rule r ∈ R′ has the form

qr, (A0, ω) → (A1, γ(ω,r,1)), . . . , (Ai, γ(ω,r,i)), . . . , (An, γ(ω,r,n)).

Replace it by the rule

qr, (A0, ω) → (A1, γ(ω,r,1)), . . . , (B1, p(ω,r,i,1)), . . . , (An, γ(ω,r,n)).

9. Add rules of the form

1.0, (Bj−1, ω) → (Bj , p(ω,r,i,j)),

2 ≤ j ≤ k(r,i) − 1, to G′.

10. Add a rule of the form

1.0, (Bk(r,i)−1, ω) → (A(r,i), p(ω,r,i,k(r,i)))

to G′.

The transformation process described in Definition 53 can be repeated for as many pairs (r, i),

r ∈ R, 1 ≤ i ≤ nr as one desires. As we will see in the next subsection where we give examples of

using the process above, this transformation process can reduce the number of factor graph edges

used to represent the PSG.

10.5.2 Examples: transformation of grammars

Consider the PSG below that models faces and noses.

Grammar 10 A grammar that models faces and noses in an N ×M scene:
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Σ = {FACE,NOSE}.
∀A ∈ Σ, ΩA = [N ]× [M ].

Rules:
1.0, (FACE, ω) → (NOSE,UniformRect(ω − (12, 12), ω + (12, 12)))

1.0, (NOSE, ω) → ∅
εFACE = εNOSE = 10−4,

We apply Proposition 53 to transform Grammar 10 into Grammar 11 below. In particular, we apply

the approximation described in Proposition 44 to rule 1 and the first RHS symbol to factorize its

associated 2-D distribution conditional pose distribution.

Grammar 11 A transformation of Grammar 10 for an N ×M scene using Proposition 44:

Σ = {FACE,NOSE,NOSE-Y}.
∀A ∈ Σ, ΩA = [N ]× [M ].

Rules:
1.0, (FACE, ω) → (NOSE-Y,Uniform({ω + (0,−12), . . . , ω + (0, 12)}))
1.0, (NOSE-Y, ω) → (NOSE,Uniform({ω + (−12, 0), . . . , ω + (12, 0)}))
1.0, (NOSE, ω) → ∅
εFACE = εNOSE = 10−4,

εNOSE-Y = 0.

Consider expanding a FACE brick using Grammar 11. Rules 1 and 2 model a FACE brick

generating a NOSE brick. In particular, rules 1 and 2 model the sequential process of a FACE brick

first choosing a Y coordinate for the NOSE brick, then choosing an X coordinate for the NOSE

brick.

Finally, we apply the process described in Definition 53 to transform Grammar 11 into Grammar

12 below. In particular, we use the construction described in Proposition 52 to the first RHS symbol

of rules 1 and 2.

Grammar 12 A transformation of Grammar 11 for an N ×M scene using Proposition 52:
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Σ = {FACE,NOSE,NOSE-Y,NOSE-Y1,NOSE-Y2}.
∀A ∈ Σ, ΩA = [N ]× [M ].

Rules:
1.0, (FACE, ω) → (NOSE-Y1,Uniform({ω + (0,−12), . . . , ω + (0,−8)}))
1.0, (NOSE-Y1, ω) → (NOSE-Y,Uniform({ω + (0, 0), ω + (0, 5), . . . , ω + (0, 20)}))
1.0, (NOSE-Y, ω) → (NOSE-Y2,Uniform({ω + (−12, 0), . . . , ω + (−8, 0)}))
1.0, (NOSE-Y2, ω) → (NOSE,Uniform({ω + (0, 0), ω + (5, 0), . . . , ω + (20, 0)}))
1.0, (NOSE, ω) → ∅
εFACE = εNOSE = 10−4,

εNOSE-Y = εNOSE-Y1 = εNOSE-Y2 = 0.

Consider expanding a FACE brick using Grammar 12. Rules 1-4 model a FACE brick generating

a NOSE brick. In particular, rules 1 and 2 model the process of choosing a Y coordinate for the

NOSE brick in terms of a two-stage process, and rules 3 and 4 model the process of choosing an X

coordinate for the NOSE brick in terms of a two-stage process.

Table 10.3 summarizes the effect of recursively applying the construction process outlined in

Section 10.5.1 to Grammar 10 on the number of factor graph edges. Note that Grammar 11 has

more than an order of magnitude fewer edges in its associated factor graph than Grammar 10, and

Grammar 12 has even fewer edges than Grammar 11. Recall from Chapter 5 that the run time of

one iteration of LBP is linear in the number of edges in the factor graph. Thus, recursively applying

the techniques described in Sections 10.3 and 10.3 on Grammar 12 confers an approximately 21x

speed-up.

Grammar Number of edges in the factor graph
Grammar 10 1258NM

Grammar 11 112NM

Grammar 12 60NM

Table 10.3: Number of edges in the factor graph of the Grammar models described in this section.
Recall that the grammar consider an N ×M scene.

Next, we study the distribution over scenes induced by Grammars 10, 11, and 12. In particular,

we show that the distribution over scenes is not the same and show a scenario in which they are not

the same.

Figure 10.4 shows the approximate marginals computed by running LBP on the factor graph

representations of Grammars 10, 11, and 12 for several examples. Note that the approximate

marginals are similar across all examples for the three grammars. This suggests that in practice,

any of Grammars 10, 11, or 12 can be used in place of any of the other grammars. However, the
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computed approximate marginals are not the same for all grammars. Let p̂0
A, p̂1

A, and p̂2
A denote the

largest approximate marginals computed by LBP for a symbol A ∈ {FACE,NOSE} for Grammars

10, 11, and 12, respectively. Table 10.4 lists the ratios p̂0
A

p̂1
A

and p̂0
A

p̂1
A
A ∈ {FACE,NOSE}.

Ratio Example:
Figure 10.4(a)

Example:
Figure 10.4(b)

Example:
Figure 10.4(c)

Example:
Figure 10.4(d)

p̂0
FACE/p̂

1
FACE 1.0000 1.0000 1.0000 1.0000

p̂0
NOSE/p̂

1
NOSE 1.0001 1.0185 1.0000 1.0095

p̂0
FACE/p̂

2
FACE 1.0000 1.0000 1.0023 1.0000

p̂0
NOSE/p̂

2
NOSE 1.0000 1.0187 1.0001 1.0097

Table 10.4: p̂0
A, p̂1

A, and p̂2
A denote the largest approximate marginals computed by LBP for a symbol

A ∈ {FACE,NOSE} for Grammars 10, 11, and 12, respectively. Some ratios of these approximate
marginals are shown in the table. As shown, the largest approximate marginals computed by LBP are
not identical across the grammars, suggesting that each of the grammars models induces a different
distribution over scenes.

The ratios in Table 10.4 show that the approximate marginals produced by LBP are not identical,

suggesting that Grammars 10, 11, and 12 each induce a slightly different distribution over scenes. In

general, a PSG G and a transformation of it G′ constructed using the process described in Section

10.5.1 do not induce the same distribution over scenes. We demonstrate this fact below for Grammars

10, 11, and 12.

Consider two bricks (FACE, ω) and (FACE, ω + (0, 1)). Suppose these bricks are present in a

scene, and consider the probability of the event that a sequence of expansions for both bricks leads

to the generation of a single NOSE brick (i.e., their expansions “collide” and only one NOSE brick

is generated instead of two). For Grammar 10, the probability of this event is 600
625 ×

1
625 = 600

6252 .

For Grammars 11 and 12, two FACE bricks will generate the same NOSE brick if and only if they

generate the same NOSE-Y brick. So, the probability of the event is 24
25 ×

1
25 = 24

252 for Grammar 11,

and 4
5 ×

1
5 = 4

25 for Grammar 12. Thus, the probability of the event that the sequence of expansions

for both bricks leads to the generation of a single NOSE brick is different for Grammars 10, 11, and

12.

In general, the probability that a sequence of expansions for two bricks b1 and b2 leads to the

generation of a common brick (i.e., their expansions “collide”) is a function of 1) the number of

bricks b1 can generate, 2) the number of bricks b2 can generate, and 3) the number of common bricks

b1 and b2 can generate. As such, any PSG transformation that changes these three quantities may

change the distributions over scenes induced by the PSG.
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(a) (b)

(c) (d)

Figure 10.4: A visualization of the approximate marginals computed by LBP when conditioning on
sets of bricks. Each subfigure represents a different example, and the top, middle, and bottom rows
of each subfigure show the results of running LBP on the factor graph representation of Grammars
10, 11, and 12, respectively. We show only the approximate marginals for the FACE and NOSE
bricks. Each pixel represents a brick at that pixel location. The bricks conditioned to be present in the
image are denoted by a red pixel and a red arrow pointing to them. Darker pixels indicate a higher
approximate marginal probability of being present. Note that for all examples, the approximate
marginals produced by LBP are similar across the different grammars.
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10.6 Notes on 1-D Uniform distributions with a prime support size

Given Theorem 46, one may be concerned that it is not possible to represent a 1-D Uniform

distribution p(z) with a prime support size in a manner that will result in a reduction in the number

of edges of the PSG factor graph. For example, consider a Uniform distribution over [101]; Theorem

46 indicates that expressing this distribution as a convolution of a set of 1-D Categorical results in

no computational savings since 101 is a prime number.

To deal with this scenario, one can partition the support of p(z) into L contiguous partitions,

express a Categorical distribution over these partitions with each partition being chosen proportional

to size of the partition, and apply the decomposition in Proposition 52 to represent a Uniform

distribution over the elements of each of the L partitions. The process to sample from p(z) with

support of size K given a partitioning of the support proceeds as follows: first, choose a partition

with probability |Λi|
K where |Λi| is the size of partition i. Then, sample an element from the selected

partition uniformly using the representation described in Proposition 52. The total support of this

representation for p(z) is L+
∑L

i=1 |Λi| where |Λi| is the size of partition i.

As an example, let p(z) be a Uniform distribution over the set {0, . . . , 100}. One can partition

the support into two sets, Λ1 = {0, . . . , 50} and Λ2 = {51, . . . , 100}. A Uniform distribution over

the elements of each of these partitions can be represented using the decomposition in Proposition

52 . To sample from p(z), first choose either L1 or L2 with probability 51
101 and 50

101 , respectively.

Then, sample an element from the selected partition uniformly using the representation described in

Proposition 52 . The total support of representing a Uniform distribution over the set {0, . . . , 100}
in this fashion is 2 + 20 + 12 = 34. This technique can be applied even if the support of p(z) is not

prime. The solution to finding an optimal partitioning of the support of p(z) to minimize the total

support of the representation scheme given here is currently unknown and is a direction for future

research.

10.7 Notes on general 1-D Categorical distributions

The techniques to decompose a 1-D distribution outlined in Section 10.4 only apply to 1-D Uniform

distributions. In the case of a general 1-D Categorical distribution, one cannot use the aforemen-

tioned techniques. The general problem of decomposing a general 1-D Categorical distribution

into a set of 1-D Categorical distributions with smaller total support is related to the problem of

blind deconvolution (see [37]) with a prior that encourages sparsity in the composing distributions.

This general problem is more difficult than the special case considered in this thesis where the 1-D

distribution is Uniform. The solution to this more general problem is a goal of future research.
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In this work, the task of decomposing a 1-D Categorical distribution into a set of 1-D Categorical

distributions with smaller total support is motivated by a desire to define a PSG that gives rise to

a factor graph with a smaller number edges. If one wishes to use a particular 1-D Categorical

distribution to define a PSG, presumably that distribution was estimated from training data. In-

stead of decomposing a given Categorical distribution directly, one can first define a family of 1-D

Categorical distributions parameterized by the parameters of N 1-D Categorical distributions with

fixed support. Then, one can express this decomposition directly in a PSG as was done in Section

10.5.2. Finally, one can fit the parameters of the N 1-D Categorical distributions with the learning

algorithm defined in Chapter 8 using the training data. This process results in a PSG with a smaller

number of factor graph edges and an approximation to the target 1-D Categorical distribution in

terms of a convolution of N 1-D Categorical distributions. Providing a detailed analysis of the

goodness of the resulting approximation is a goal of future research.



Chapter 11

Contributions and Suggestions for
Future Research

To conclude this thesis, we summarize the approach of the PSG framework, outline the research

contributions, and suggest directions of future research that builds on the PSG framework.

11.1 Summary of approach and research contributions

In this thesis, we have introduced the Probabilistic Scene Grammar (PSG) framework: a general-

purpose probabilistic framework for scene understanding tasks. For a given scene understanding task,

we summarize the approach of the PSG framework below:

1. Represent a model for the given scene understanding task in the language of a grammar;

Chapter 2 defines the grammar specification, and Chapter 3 gives examples of grammars for

some scene understanding tasks.

2. Convert the grammar representation to a factor graph, as described in Chapter 4.

3. Directly estimate model parameters if fully-observed data is available. Otherwise, use the

approximate EM learning algorithm described in Chapter 8 to estimate model parameters.

4. Use Loopy Belief Propagation (LBP) as the inference engine, as described in Chapter 5.

Importantly, the approach of the PSG framework is the same no matter the scene understanding

task at hand. In theory, any scene understanding for which a suitable model can be expressed in

the grammar language defined in Chapter 2 may be addressed in the PSG framework. However,

practical limitations of the PSG of the framework may prevent its application to arbitrary scene

128
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understanding tasks with arbitrary grammar models. Chapter 10 takes some steps towards addressing

practical issues that must be resolved to enable the use of larger PSG models on more complex scene

understanding tasks.

Chapter 9 evaluates the PSG framework on the scene understanding tasks of contour detection,

face localization, and binary image segmentation. The PSG framework is competitive with specialized

algorithms for these scene understanding tasks.

The main contributions of this thesis can be summarized as addressing four key aspects of

defining and assessing a general-purpose probabilistic framework for scene understanding: 1) the

representation of scene understanding tasks under a common schema (Chapters 2, 3 and 4), 2)

efficient, problem-agnostic approximate inference (Chapters 5, 6, and 10), 3) the learning of model

parameters under varying levels of supervision (Chapter 8), and 4) the experimental evaluation of

the framework (Chapter 9). The concertization of this framework in a general implementation is a

final, engineering-oriented contribution.

11.2 Directions for future research

In this section, we discuss promising directions for future research that build on the PSG framework.

The proposed directions deal with issues concerning 1) the use of richer data models (e.g., data

models defined by deep learning models), 2) the application of the PSG framework to more scene

understanding tasks, and 3) the practical limitations of the PSG framework in its current form.

11.2.1 Integration of deep learning models

In recent years, the approach of deep learning has demonstrated impressive results on scene un-

derstanding tasks (see [50, 66, 36, 32, 46, 21] for a few examples). In a sense, deep learning is a

general-purpose scene understanding framework as well in the sense that deep learning seeks to

learn a mapping between inputs (e.g., images) and outputs (e.g., class labels, segmentations, object

localizations, etc.). It is crucial to note that deep learning does not have to be viewed as a competitor

to probabilistic models; both can be used together in a coherent system. The emerging subfield of

Bayesian Deep Learning (see [64] for a brief survey) seeks to combine probabilistic approaches with

deep learning techniques.

In the context of the PSG framework, one could imagine using the output of a convolution neural

network (CNN) such as the one described in [32] as a data model. We believe such an approach

could combine the ability of deep learning to produce excellent low-level representations with the

high-level reasoning ability of the PSG framework. Such a combination could allow one to tackle
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scene understanding tasks that are currently difficult for both approaches. Consider, for example,

the problem of detecting conversations in scenes when one has many examples of faces but few

examples of conversations. The notion of a conversation is naturally modeled in a compositional

relationship: a conversation can be thought of as a composition of faces that are facing each other

and in close spatial proximity. Such compositional models can be naturally expressed in the PSG

framework. Deep learning is capable of building a high-quality representation of objects when one

has many examples of that object. In this example, deep learning could be used to build an excellent

face-detector, but perhaps cannot be used to build a conversation-detector. One could use deep

learning to detect faces, and the PSG framework to detect conversations using the face detections as

an input.

11.2.2 Applications to more scene understanding tasks

In this thesis, we evaluate the PSG framework on the scene understanding tasks of face localization,

contour detection, and binary image segmentation. As the PSG framework is general-purpose, there

is a myriad of other scene understanding tasks that can be addressed in this framework. For example,

the PSG framework can be used for motion tracking. The concept of motion can be naturally

expressed in the PSG framework. Consider the problem of tracking a face through time. Recall that

the face models we describe in Chapter 3 describe the location of faces and face parts in terms of

spatial location. One could extend the model to include both spatial and temporal information. For

example, a FACE brick at location (x, y) at time t could generate a FACE brick at location (x, y) at

time t+ 1.

The PSG framework could also be applied to larger and more complex scene understanding

tasks. Consider the problem of localizing tumours from magnetic resonance imaging (MRI) brain

scans. MRI brain scans are volumetric 3-D scans of a patient’s brain. These scans can be fairly

large; a typical scan may contain 200× 200× 144 measurements. Given a brain scan, one seeks to

output a 3-D segmentation of the brain that localizes tumours in the brain, if any. Here, the image

data is the MRI scan which has two orders of magnitude more measurements than any of the scene

understanding tasks we address in this thesis, and so speed/memory issues may arise. Also, the shape

of a tumour can be quite complex, necessitating a more sophisticated notion of shape than the one

used in Chapter 9 for leaf segmentation. Nevertheless, we believe tackling such large, complex scene

understanding tasks is in the realm of possibility.
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11.2.3 Structure learning

Recall from Chapter 8 that in this thesis, we propose a method to estimate model parameters of a PSG.

However, we have not proposed a method to learn the structure of the grammar itself. For example,

the PSG we use for face localization described in Chapter 9 has a notion that a FACE is comprised

of a LEFT-EYE, RIGHT-EYE, NOSE, and a MOUTH. What if we did not know apriori that faces

had this compositional structure? What if we did not know the parts of a face? In the context of

the PSG framework, addressing such questions requires learning the compositional rules of the

model and learning an appropriate set of symbols. The study of learning structure in compositional

models has been examined in [24] and [54]. However, it may not be practical to directly apply the

techniques of [24] and [54] to the PSG framework. The problem of efficiently learning the structure

of a PSG model is difficult and is a key question one must solve before applying the PSG framework

to scene understanding tasks where one cannot rely on expert knowledge to design the structure of

the grammar.



Bibliography

[1] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection

and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 33(5):898–916, May 2011.

[2] Julian Besag. On the statistical analysis of dirty pictures. JOURNAL OF THE ROYAL STATIS-

TICAL SOCIETY B, 48(3):48–259, 1986.

[3] Elie Bienenstock, Stuart Geman, and Daniel Potter. Compositionality, MDL priors, and object

recognition. In Advances in Neural Information Processing Systems, pages 838–844, 1997.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and

Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[5] Yuri Boykov and Gareth Funka-Lea. Graph cuts and efficient n-d image segmentation. Int. J.

Comput. Vision, 70(2):109–131, November 2006.

[6] Yuri Y. Boykov and Marie-Pierre Jolly. Interactive Graph Cuts for Optimal Boundary & Region

Segmentation of Objects in N-D Images. In 8th IEEE International Conference on Computer

Vision, volume 1, pages 105–112. IEEE Comput. Soc, 2001.

[7] J Canny. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell.,

8(6):679–698, June 1986.

[8] Gregory F. Cooper. The computational complexity of probabilistic inference using bayesian

belief networks. Artificial Intelligence, 42(2):393 – 405, 1990.

[9] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 886–893, 2005.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via

the em algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1–38,

1977.

132



133

[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The

PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

[12] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Discriminatively trained deformable

part models, release 4. http://people.cs.uchicago.edu/ pff/latent-release4/.

[13] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Pictorial structures for object recognition.

International Journal of Computer Vision, 61(1):55–79, 2005.

[14] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early vision.

Int. J. Comput. Vision, 70(1):41–54, October 2006.

[15] Pedro F. Felzenszwalb and David McAllester. Object detection grammars. Univerity of Chicago

Computer Science Technical Report 2010-02, 2010.

[16] Pedro F. Felzenszwalb and John G. Oberlin. Multiscale fields of patterns. In Advances in

Neural Information Processing Systems, pages 82–90, 2014.

[17] Sanja Fidler, Marko Boben, and Aleš Leonardis. Learning a hierarchical compositional shape

vocabulary for multi-class object representation. In ArXiv:1408.5516, 2014.

[18] Martin A. Fischler and Robert A. Elschlager. The representation and matching of pictorial

structures. IEEE Transactions on computers, (1):67–92, 1973.

[19] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202,

1980.

[20] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian

restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6(6):721–741, November 1984.

[21] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for

accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2014.

[22] Ross B. Girshick, Pedro F. Felzenszwalb, and David Mcallester. Object detection with grammar

models. In Advances in Neural Information Processing Systems, pages 442–450, 2011.

[23] Kristen Grauman and Trevor Darrell. The pyramid match kernel: Discriminative classification

with sets of image features. In Proceedings of the Tenth IEEE International Conference on



134

Computer Vision - Volume 2, ICCV ’05, pages 1458–1465, Washington, DC, USA, 2005. IEEE

Computer Society.

[24] Matthew T. Harrison. Discovering compositional structures. Technical report, 2005.

[25] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.

Biometrika, 57(1):97–109, April 1970.

[26] Tom Heskes, Onno Zoeter, and Wim Wiegerinck. Approximate expectation maximization. In

S. Thrun, L. K. Saul, and P. B. Schölkopf, editors, Advances in Neural Information Processing

Systems 16, pages 353–360. MIT Press, 2004.

[27] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the

wild: A database for studying face recognition in unconstrained environments. Technical Report

07-49, University of Massachusetts, Amherst, October 2007.

[28] Ya Jin and Stuart Geman. Context and hierarchy in a probabilistic image model. In IEEE

Conference on Computer Vision and Pattern Recognition, volume 2, pages 2145–2152, 2006.

[29] Zoltan Kato and Ting-Chuen Pong. A markov random field image segmentation model for

color textured images. Image and Vision Computing, 24(10):1103–1114, 2006.

[30] Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy minimization.

IEEE Trans. Pattern Anal. Mach. Intell., 28(10):1568–1583, October 2006.

[31] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected crfs with

gaussian edge potentials. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.

Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 109–117.

Curran Associates, Inc., 2011.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing Systems, page

2012.

[33] Frank R Kschischang, Brendan J Frey, and Hans-Andrea Loeliger. Factor graphs and the

sum-product algorithm. IEEE Transactions on Information Theory, 47(2):498–519, 2001.

[34] Tejas D. Kulkarni, Pushmeet Kohli, Joshua B. Tenenbaum, and Vikash K. Mansinghka. Pic-

ture: A probabilistic programming language for scene perception. 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 4390–4399, 2015.



135

[35] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In Proceedings of the 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition - Volume 2, CVPR ’06, pages

2169–2178, Washington, DC, USA, 2006. IEEE Computer Society.

[36] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.

[37] Anat Levin, Yair Weiss, Fredo Durand, and William T. Freeman. Understanding blind decon-

volution algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 33(12):2354–2367, December

2011.

[38] Talya Meltzer, Amir Globerson, and Yair Weiss. Convergent message passing algorithms: A

unifying view. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial

Intelligence, UAI ’09, pages 393–401, Arlington, Virginia, United States, 2009. AUAI Press.

[39] Thomas P. Minka. Expectation propagation for approximate bayesian inference. In Proceedings

of the 17th Conference in Uncertainty in Artificial Intelligence, UAI ’01, pages 362–369, San

Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[40] David Mumford. Optimal approximation by piecewise smooth functions and associated

variational problems. Commun. Pure Applied Mathematics, pages 577–685, 1989.

[41] David Mumford. Elastica and computer vision. In Algebraic geometry and its applications,

pages 491–506. Springer, 1994.

[42] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for approximate

inference: An empirical study. In Uncertainty in Artificial Intelligence, pages 467–475, 1999.

[43] Radford Neal. Slice sampling. Annals of Statistics, 31:705–767, 2000.

[44] Radford M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte

Carlo, 54:113–162, 2010.

[45] Stephen E Palmer. Vision science: Photons to phenomenology, volume 1. MIT press, 1999.

[46] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time

object detection with region proposal networks. In Neural Information Processing Systems

(NIPS), 2015.



136

[47] Zhile Ren and Erik B. Sudderth. Three-dimensional object detection and layout prediction

using clouds of oriented gradients. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1525–1533, 2016.

[48] Daniel Ritchie. Probabilistic Programming for Procedural Modeling and Design. PhD thesis,

Stanford University, 2016.

[49] Florian Schroff, Antonio Criminisi, and Andrew Zisserman. Object class segmentation using

random forests. In Proc. British Machine Vision Conference (BMVC), January 2008.

[50] Wei Shen, Xinggang Wang, Yan Wang, Xiang Bai, and Zhijiang Zhang. Deepcontour: A

deep convolutional feature learned by positive-sharing loss for contour detection. 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 3982–3991, 2015.

[51] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern

Anal. Mach. Intell., 22(8):888–905, August 2000.

[52] Douglas Shy and Pietro Perona. Xy separable pyramid steerable scalable kernels. In CVPR,

pages 237–244, 1994.

[53] Oskar Söderkvist. Computer vision classification of leaves from swedish trees. Master’s thesis,

2001.

[54] Andreas Stolcke. Bayesian learning of probabilistic language models. Technical report, 1994.

[55] Thomas M. Strat. Employing contextual information in computer vision. In In Proceedings of

ARPA Image Understanding Workshop, pages 217–229, 1993.

[56] Erik B. Sudderth, Alexander T. Ihler, Michael Isard, William T. Freeman, and Alan S. Willsky.

Nonparametric belief propagation. Commun. ACM, 53(10):95–103, 2010.

[57] Deqing Sun, Jonas Wulff, Erik B. Sudderth, Hanspeter Pfister, and Michael J. Black. A

fully-connected layered model of foreground and background flow. In 2013 IEEE Conference

on Computer Vision and Pattern Recognition, Portland, OR, USA, June 23-28, 2013, pages

2451–2458, 2013.

[58] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and David M.

Blei. Edward: A library for probabilistic modeling, inference, and criticism. arXiv preprint

arXiv:1610.09787, 2016.



137

[59] Zhuowen Tu, Xiangrong Chen, Alan L. Yuille, and Song-Chun Zhu. Image parsing: Unifying

segmentation, detection, and recognition. International Journal of computer vision, 63(2):113–

140, 2005.

[60] Luminita A Vese and Tony F Chan. A multiphase level set framework for image segmentation

using the mumford and shah model. International journal of computer vision, 50(3):271–293,

2002.

[61] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural

image caption generator. In Computer Vision and Pattern Recognition, 2015.

[62] Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz, and Antonio Torralba. Hoggles: Visualiz-

ing object detection features. In Proceedings of the 2013 IEEE International Conference on

Computer Vision, ICCV ’13, pages 1–8, Washington, DC, USA, 2013. IEEE Computer Society.

[63] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and

variational inference. Found. Trends Mach. Learn., 1(1-2):1–305, January 2008.

[64] Hao Wang and Dit-Yan Yeung. Towards bayesian deep learning: A framework and some

existing methods. IEEE Trans. on Knowl. and Data Eng., 28(12):3395–3408, December 2016.

[65] Yair Weiss. Comparing the mean field method and belief propagation for approximate inference

in mrfs, 2001.

[66] Jimei Yang, Brian L. Price, Scott Cohen, Honglak Lee, and Ming-Hsuan Yang. Object contour

detection with a fully convolutional encoder-decoder network. CoRR, abs/1603.04530, 2016.

[67] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Constructing free energy approxima-

tions and generalized belief propagation algorithms. IEEE Transactions on Information Theory,

51:2282–2312, 2005.

[68] Yibiao Zhao and Song-Chun Zhu. Image parsing with stochastic scene grammar. In Advances

in Neural Information Processing Systems, pages 73–81, 2011.

[69] Anatoly Zhigljavsky, Nina Golyandina, and Svyatoslav Gryaznov. Deconvolution of a discrete

uniform distribution. Statistics and Probability Letters, 118:37 – 44, 2016.

[70] Song-Chun Zhu and David Mumford. A stochastic grammar of images. Found. Trends. Comput.

Graph. Vis., 2(4):259–362, January 2006.


	Introduction
	Design considerations
	Thesis contributions
	Representation
	Approximate inference
	Learning
	Experimental evaluation
	General implementation

	Related work
	Thesis organization

	Probabilistic Scene Grammars
	Example grammars
	Scenes with curves
	Scenes with faces
	Scenes with binary segmentation masks

	Factor Graph Representation
	Factorization
	Graphical Model

	Inference Using Loopy Belief Propagation
	Overview of LBP
	Efficient message computation for LBP in the PSG framework
	Message passing for Leaky-OR factors
	Message passing for Selection factors
	Message passing for Berns factors
	Proof of Theorem 20

	Markov Chain Monte Carlo as an alternative to LBP

	Example grammars: Inference with LBP
	LBP computations with a curve grammar
	LBP computations with a face grammar
	LBP computations with a binary segmentation grammar

	Connections to Pictorial Structures
	Pictorial Structures: Overview
	Expressing a Pictorial Structure model as a PSG 
	Example construction

	Pictorial Structures vs. PSG : graphical models and inference

	Learning Model Parameters
	Maximum likelihood estimation
	EM algorithm
	Applying EM to the PSG framework
	M-step
	Approximate E-step

	Effectiveness of approximate EM learning

	Experiments
	Contour detection
	The PSG contour model
	Qualitative contour detection results
	Quantitative contour detection results

	Face Localization
	Dataset: Labelled Faces in the Wild
	Dataset: Family Portraits
	Face Detection Grammar
	Face data model
	Fitting model parameters
	Face localization results on single-face images: LFW
	Face localization results on multiple-face images: Portraits
	Face localization without a Face data model

	Binary image segmentation
	The PSG binary image segmentation models
	Qualitative binary image segmentation results
	Quantitative binary image segmentation results


	Grammar Transformations
	Counting factor graph edges
	Reducing the number of factor graph edges
	Approximating an N-D distribution by a product of N 1-D distributions
	Alternative approximations

	Decomposing a 1D `39`42`"613A``45`47`"603AUniform distribution
	Applications to PSG design
	Constructing G'
	Examples: transformation of grammars

	Notes on 1-D `39`42`"613A``45`47`"603AUniform distributions with a prime support size
	Notes on general 1-D `39`42`"613A``45`47`"603ACategorical distributions

	Contributions and Suggestions for Future Research
	Summary of approach and research contributions
	Directions for future research
	Integration of deep learning models
	Applications to more scene understanding tasks
	Structure learning


	Bibliography

