SUN Attribute Database:
Discovering, Annotating, and Recognizing Scene Attributes

Hays Lab | 2011



In this paper we present the first large-scale scene attribute database. First, we perform crowd-sourced human studies to find a taxonomy of 102 discriminative attributes. Next, we build the "SUN attribute database'' on top of the fine-grained SUN categorical database. Our attribute database spans more than 700 categories and 14,000 images and has potential for use in high-level scene understanding and fine-grained scene recognition. We use our dataset to train attribute classifiers, and evaluate how well these relatively simple classifiers can recognize a variety of attributes related to materials, surface properties, lighting, functions and affordances, and spatial envelope properties.


Genevieve Patterson, Chen Xu, Hang Su, James Hays. The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding. IJCV 2014.
paper, Bibtex
Genevieve Patterson, James Hays. SUN Attribute Database: Discovering, Annotating, and Recognizing Scene Attributes. Proceedings of CVPR 2012.
paper, Bibtex

SUN Attribute Dataset

This dataset includes the 102 attribute labels x 3 worker annotations for each of the 14340 images included. The subset of images from the SUN Dataset used in this project are also available for download from the link below. Users can also download the SUN dataset images used in this project at the SUN Database website.

Attribute Labels(532 KB) including list of images used from SUN dataset.
AttributeDB Images(1.7 GB) including all 14340 images used in the SUN Attribute dataset.
Attribute Detectors 102 SUN scene attribute detectors using FC7 feature of Places205-AlexNet, courtesy Bolei Zhou (MIT).