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Abstract— We present a novel method for segmenting demon-
strations, recognizing repeated skills, and generalizing complex
tasks from unstructured demonstrations. This method combines
many of the advantages of recent automatic segmentation meth-
ods for learning from demonstration into a single principled,
integrated framework. Specifically, we use the Beta Process
Autoregressive Hidden Markov Model and Dynamic Movement
Primitives to learn and generalize a multi-step task on the PR2
mobile manipulator and to demonstrate the potential of our
framework to learn a large library of skills over time.

I. INTRODUCTION

A simple system that allows end-users to intuitively pro-
gram robots is a key step in getting robots out of the
laboratory and into the real world. Although in many cases
it is possible for an expert to successfully program a robot
to perform complex tasks, such programming requires a
great deal of knowledge, is time-consuming, and is often
task-specific. In response to this, much recent work has
focused on robot learning from demonstration (LfD) [1],
where non-expert users can teach a robot how to perform a
task by example. Such demonstrations eliminate the need for
knowledge of the robotic system, and in many cases require
only a fraction of the time that it would take an expert to
design a controller by hand.

Ideally, an LfD system can learn to perform and generalize
complex tasks given a minimal number of demonstrations
without requiring knowledge about the robot. Much LfD
research has focused on the case in which the robot learns a
monolithic policy from a demonstration of a simple task with
a well-defined beginning and end. This approach often fails
for complex tasks that are difficult to model with a single
policy. Thus, structured demonstrations are often provided
for a sequence of subtasks, or skills, that are easier to learn
and generalize than the task as a whole, and which may be
reusable in other tasks.

However, a number of problems are associated with
segmenting tasks by hand and providing individual skill
demonstrations. Since the most natural way to demonstrate
a task is by performing it continuously from start to finish,
dividing a task into component skills is not only time-
consuming, but often difficult—an effective segmentation
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can require knowledge of the robot’s kinematic properties,
internal representations, and existing skill competencies.
Since skills may be repeated within and across tasks, defining
skills also requires qualitative judgements about when two
segments can be considered a single skill, or in deciding
the appropriate level of granularity at which to perform
segmentation. Users cannot be expected to manually manage
this collection of skills as it grows over time.

For this reason, recent work has aimed at automating the
segmentation process. Collectively, this body of work has
addressed four key issues that are critical to any system that
aims to learn increasingly complex tasks from unstructured
demonstrations. (By unstructured, we refer to demonstrations
that are unsegmented, possibly incomplete, and may come
from multiple tasks or skills.) First, the robot must be able
to recognize repeated instances of skills and generalize them
to new settings. Second, segmentation should be able to be
performed without the need for a priori knowledge about
the number or structure of skills involved in a task. Third,
the robot should be able to identify a broad, general class
of skills, including object manipulation skills, gestures, and
goal-based actions. Fourth, the representation of skill policies
should be such that they can be improved through practice.

Although many of these issues have already been ad-
dressed individually, no system that we are aware of has
jointly addressed them all in a principled manner. Our
contribution is a framework that addresses all of these issues
by integrating a principled Bayesian nonparametric approach
to segmentation with state-of-the-art LfD techniques as a
first step towards a natural, scalable system that will be
practical for deployment to end users. Segmentation and
recognition are achieved using a Beta-Process Autoregressive
HMM [2], while Dynamic Movement Primitives [3] are used
to address LfD, policy representation, and generalization. We
apply our framework to acquire skills from demonstration in
simulation, and on the PR2 mobile manipulator.

II. BACKGROUND

A. Bayesian Nonparametric Time Series Analysis

Hidden Markov models (HMMs) are generative Bayesian
models that have long been used to make inferences about
time series data. An HMM models a Markov process with
discrete, unobservable hidden states, or modes1, which gen-
erate observations through mode-specific emission distri-
butions. A transition function describes the probability of

1We refer to hidden states as modes, as to not confuse them with the RL
concept of states.



each mode at time t + 1 given the mode at time t, but
observations are limited to being conditionally independent
given the generating modes. Given a set of observations,
the forward-backward and Viterbi algorithms can be used
to efficiently infer parameters for the model and determine
the most likely sequence of modes that generated the data.
Unfortunately, the number of modes must be specified a
priori or chosen via model selection, which is prone to
overfitting. This severely limits the usefulness of HMM
inference when dealing with unstructured data. However,
recent work in Bayesian nonparametrics offers a principled
way to overcome these limitations.

The Beta Process Autoregressive HMM (BP-AR-HMM)
[2] fixes two major problems with the HMM model. First,
it uses a beta process prior that leverages an infinite feature-
based representation, in which each time series can exhibit a
subset of the total number of discovered modes and switch
between them in a unique manner. Thus, a potentially infinite
library of modes can be constructed in a fully Bayesian way,
in which modes are flexibly shared between time series, and
an appropriate number of modes is inferred directly from
the data, without the need for model selection. Second, the
BP-AR-HMM is autoregressive and can describe temporal
dependencies between continuous observations as a Vector
Autoregressive (VAR) process, a special case of a linear
dynamical system (LDS). The generative model for the BP-
AR-HMM can be summarized as follows [4]:

B|B0 ∼ BP(1, B0)
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First, a draw B from a Beta Process (BP) provides a set of
global weights for the potentially infinite number of modes.
Then, for each time series, an Xi is drawn from a Bernoulli
Process (BeP) parameterized by B. Each Xi can be used to
construct a binary vector fi indicating which of the global
features, or modes, are present in the ith time series. Thus, B
encourages sharing of features amongst multiple time series,
while the Xi leave room for variability. Next, given the
features that are present in each time series, for all modes
j, the transition probability vector π(i)

j is drawn from a
Dirichlet distribution with self transition bias κ. A mode
z
(i)
t is then drawn for each time step t from the transition

distribution of the mode at the previous time step. Finally,
given the mode at each time step and the order of the model,
r, the observation is computed as a sum of mode-dependent
linear transformations of the previous r observations, plus
mode-dependent noise.

B. Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) [3] provide a
framework in which dynamical systems can be described as a

set of nonlinear differential equations in which a linear point
attractive system or limit cycle oscillator is modulated by a
nonlinear function. Stability and convergence are guaranteed
by introducing an additional canonical system, governed
by linear equations that control a 0 to 1 phase variable
that attenuates the influence of the nonlinear function over
time. DMPs provide simple mechanisms for LfD, RL policy
improvement, and execution, which scale easily in time and
space and can support discrete or oscillatory movements [5].
In this paper, we focus on the use of point attractive systems
for implementing discrete movements with DMPs.

A discrete movement DMP can be described by the
transformation system,

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s) (1)
τ ẋ = v, (2)

and the canonical system,

τ ṡ = −αs, (3)

for spring constant K, damping constant D, position x,
velocity v, goal g, phase s, temporal scaling factor τ , and
constant α [6]. The nonlinear function f can be represented
as a linear combination of basis functions ψi(s), scaled by
the phase variable, s: f(s) =

∑N
i=1 wiψi(s)s. We use the

univariate Fourier basis [7] for our function approximator,
though others have commonly used normalized radial basis
functions [6]. The spring and damping constants can be set
to ensure critical damping, but we still must find appropriate
weights wi for the nonlinear function f .

Given a demonstration trajectory x(t), ẋ(t), ẍ(t) with
duration T , we can use LfD to learn a set of values for these
weights [5]. Rearranging equation 1, integrating equation 3 to
convert time to phase, and substituting in the demonstration
for the appropriate variables, we get:

ftarget(s) =
−K(g − x(s)) +Dẋ(s) + τ ẍ(s)

g − x0
. (4)

Setting the goal to g = x(T ), and choosing τ such that the
DMP reaches 95% convergence at time t = T , we obtain a
simple supervised learning problem to find the weights wi

for the basis functions. We use standard linear regression for
this task. This LfD procedure provides us with weights for
a baseline controller that can be further improved through
practice using RL [5], though we do not do so in this paper.

III. LEARNING FROM UNSTRUCTURED
DEMONSTRATIONS

We now introduce a framework which integrates four
major capabilities critical for the robust learning of complex
tasks from unstructured demonstrations. First, the robot must
be able to recognize repeated instances of skills and general-
ize them to new settings. Given a set of demonstrations for a
task, we use the BP-AR-HMM to parse the demonstrations
into segments that can be explained by a set of latent skills,
represented as VAR processes. The BP-AR-HMM enables
these skills to be shared across demonstrations and tasks by
employing a feature-based representation in which each skill



Fig. 1. Overview of the framework used in the experiments, as described in section IV

corresponds to a feature that may or may not be present
in a particular trajectory. Furthermore, this representation
allows each trajectory to transition between skills in a unique
manner, so that skills can be identified flexibly in a variety
of situations, while still retaining globally shared properties.

Segmentation of trajectories into VAR models allows
for tractable inference over the time-series dependencies of
observations and provides a parameterization of each skill so
that repeat instances can be recognized. This representation
models how state changes over time, based on previous
state values, potentially allowing instances of the same
underlying skill to be recognized, even when performed with
respect to different coordinate frames. The BP-AR-HMM
also models skill-dependent noise characteristics to improve
the identification of repeated skills. By recognizing repeated
skills, a skill library can be incrementally constructed over
time to assist in segmenting new demonstrations. Addition-
ally, skill controllers that have been previously learned and
improved through practice can be reused on new tasks.
Thus, recognition of repeated skills can reduce the amount
of demonstration data required to successfully segment and
learn complex tasks. Similarly, if we have multiple examples
of a skill, we can discover invariants that allow us to
generalize the skill to new situations robustly. In this paper,
we use this data to identify the coordinate frames that each
skill takes place in, as described in detail in the next section.

Second, segmentation must be able to be performed with-
out the need for a priori knowledge about the number or
structure of skills involved in a task. The BP-AR-HMM
places a beta process prior over the matrix of trajectory-
feature assignments, so that a potentially infinite number
of skills can be represented; the actual finite number of
represented skills is decided upon in a principled, fully
Bayesian way. Skill durations are modeled indirectly through
a learned self-transition bias, preventing skills from being
over-segmented into many small components unnecessarily.
The BP-AR-HMM also provides reliable inference, having
only a few free parameters that are robust to a wide range
of initial settings and hyperparameters that conform to the
data as inference progresses. Thus, little tuning should be
necessary for varying tasks for a given robotic platform.

Third, our system must be able to identify a broad, general
class of skills. Since our segmentation method is based upon
state changes, rather than absolute state values, we are able

to identify a wide array of movement types ranging from
object manipulation skills to gestures and goal-based actions.
Furthermore, by identifying the relevant coordinate frame of
repeated skills, we can discover specific objects and goals in
the world that skills are associated with.

Fourth, the representation of skill policies should be such
that they can be easily generalized and improved through
practice. To accomplish this, we represent skill controllers
in the DMP framework. The spring-damper mechanics of
a DMP allow for easy generalization, since the start and
goal set-points can be moved, while still guaranteeing con-
vergence and maintaining the “spirit” of the demonstration
through the output of the nonlinear function.

IV. METHODOLOGY

A. Demonstrations

For the first two experiments in this paper, we use a
simulated Willow Garage PR2 mobile manipulator and the
ROS framework; the final experiment uses a real PR2. We
used hand-coded controllers to provide task demonstrations
to the simulated robot. The robot is placed in a fixed position
in front of a table, as shown in Figure 2. At the beginning of
each demonstration, the robot looks downward and captures
a stereo image of the table. It then removes the flat table top
and obtains a point cloud for each of the objects on the table,
recording their positions and dimensions. On the real robot,
object positions are determined by a visual fiducial placed on
each object of interest. Once the demonstration begins, data
are collected by recording the 7 joint angles in the left arm
and the gripper state (a scalar indicating its degree of closed-
ness). Offline, the joint angles are converted to a series of 3D
Cartesian positions and 4D quaternion orientations, which
are subsampled down to 10 Hz and smoothed, along with
the gripper positions.

B. Segmentation

We build on a BP-AR-HMM implementation made avail-
able by Emily Fox2 to segment sets of demonstration trajec-
tories. We preprocess the demonstrations so that the variance
of the first differences of each dimension of the data is
1, as in Fox et al. [4], and adjust it to be mean zero.
We choose an autoregressive order of 1 and use identical

2http://stat.wharton.upenn.edu/˜ebfox/software



Fig. 2. 5 task demonstration configurations (top) and 5 novel test configurations (bottom).

parameters as those used by Fox on a human exercise motion
capture dataset [4], with one exception—in the simulated
experiments, we adjust the matrix-normal inverse-Wishart
prior on the dynamic parameters, since the simulated data has
significantly different statistical properties from that in Fox et
al. [4]. To segment the demonstrations, we run the combined
Metropolis-Hastings and Gibbs sampler 10 times for 1000
iterations each, producing 10 segmentations. Qualitatively,
the segmentations across runs were very consistent, but to
ensure good results, the segmentation from the 10 runs with
the highest log likelihood of the feature settings is selected.

C. Coordinate Frame Detection
After the demonstrations are segmented, each segment is

examined to infer the coordinate frame that it is occurring in.
Even though segments assigned to the same skill correspond
to similar movements, they may be happening in different
frames of reference. For example, a repeated reaching motion
may be classified as being generated by the same skill, but
be reaching toward several different objects. In order to
robustly replay tasks in novel configurations, it is desirable to
determine which coordinate frame each segment is associated
with, so that DMP goals can be generalized correctly.

We define a coordinate frame centered on each known
object, along with one centered at the torso of the robot.
Other frames could be used as well if desired, such as a
frame relative to the gripper, or a world frame. Then, the
final point of each segment is plotted separately in each of
the coordinate frames, and clusters are found in each frame
by identifying points within a Euclidean distance threshold
of each other. The reasoning is that clusters of points indicate
that multiple segments have similar endpoints in a particular
coordinate frame, suggesting that the skill often occurs in
that frame of reference.

After the points are clustered in each frame, all the single-
ton clusters are discarded. If any remaining segment endpoint
belongs only to a cluster in a single coordinate frame, then
the evidence is unambiguous, and that segment is assigned
to that coordinate frame. Otherwise, if a segment endpoint
belongs to clusters in multiple frames, it is simply assigned
to the frame corresponding to the largest cluster. It should be
emphasized that the any coordinate frame inference method
could be used in place of ours, and that there are many other

skill invariants that could be exploited. The purpose of this
method is primarily to demonstrate the utility of being able
to segment and recognize repeated skills.

D. Task Replay

To perform a task in a novel configuration, we first
determine the poses and identities of objects in the scene,
using either stereo data (simulated experiment) or visual
fiducials (real robot). The position of each object is then
examined to find the demonstration that begins with the
objects in a configuration that is closest to the current one
in a Euclidean sense. We only consider demonstrations that
have an identified coordinate frame for every segment, so
that the task will generalize properly. A DMP is then created
and trained using the LfD algorithm from section II-B for
each segment in the demonstration. However, rather than
using the final point of a segment as the goal of a DMP,
each goal is adjusted based on the coordinate frame that the
segment takes place in. If the segment is associated with
the torso frame, it requires no adjustment. Otherwise, if
it is associated with an object frame, the goal is adjusted
by the difference between the object’s current position and
its position in the demonstration. Finally, the DMPs are
executed in the sequence specified by the demonstration. A
plan is generated by each of the DMPs until the predicted
state is within a small threshold of the goal. Each plan is
a Cartesian trajectory (plus a synchronized gripper state)
that is converted into smooth joint commands using inverse
kinematics and spline interpolation. A graphical overview of
our method is shown in Figure 1.

V. EXPERIMENTS

A. Experiment 1: Pick and Place (Simulated)

The first experiment demonstrates the ability of our frame-
work to learn and generalize a complex task by segmenting
multiple task demonstrations, identifying repeated skills,
and discovering appropriate segment reference frames. Each
instance of the task begins with two blocks on the table—a
smaller red block and a larger green block. The robot always
starts in a “home” configuration, with its arms at its sides
so that its field of view is unobstructed. We provide 5 task
demonstrations for 5 different configurations of the blocks,



Fig. 3. Top: BP-AR-HMM segmentations of the 5 demonstration trajectories for the pick and place task. Time (in tenths of a second) is shown on the
x-axis. Skill labels at each time step are indicated by unique colors. Bottom: Segmentation points overlaid on the demonstrated 8D movement data.

(a) Starting pose (b) Reaches toward red
block (red block frame)

(c) Picks up red block
(red block frame)

(d) Returns to home
position (torso frame)

(e) Places red block
on green block

(green block frame)

(f) Returns to home
position (torso frame)

Fig. 4. Successful task replay on a novel test configuration for the pick and place task, demonstrating generalization. From left to right: the starting pose
and the final point of each executed DMP. Automatically detected coordinate frames used for each segment are listed in parentheses.

as shown in the first row of Figure 2 (configurations 1 and 5
are identical, but the demonstration is performed at a higher
speed in the latter configuration). In each demonstration,
the robot first picks up the red block, returns to the home
position, places the red block on the green block, and returns
to the home position once more.3

Figure 3 shows the results of segmentation. The top row
shows one colored bar per skill, while the bottom row
displays the skill divisions overlaid on a plot of each of the
8 dimensions of the demonstration data. The BP-AR-HMM
consistently recognizes repeated skills across demonstrations,
even though they occur at differing speeds and with differ-
ent goals. The segmentations are highly similar, with the
exception of the second demonstration, which identifies one
additional skill that the others do not have. It is worth noting
that despite the extra skill being inserted in the segmentation,
the rest of the segmentation is essentially the same as the
others. This is a direct benefit of the BP-AR-HMM allowing
each trajectory to have its own switching dynamics, while
sharing global features.

Next, we examine task generalization to 5 novel test
configurations, shown in the bottom row of Figure 2, to
determine whether our segmentation produced semantically
meaningful results. Our method was able to successfully
identify a coordinate frame for every segment except the
extra segment in demonstration two (which is impossible

3Due to the planning delay in the hand written controllers there are some
pauses between segments which we remove to avoid giving the segmentation
algorithm an unfair advantage.

to infer, since there is only one example of it). Using this
information, the robot performed task replay as described in
section IV-D. In all 5 novel configurations, the robot was
able to successfully generalize and place the red block on
the green block.4

Figure 4 shows the starting state of the robot and the
resulting state after each DMP is executed in a novel test
configuration. Here, it becomes clear that the results of
both the segmentation and coordinate frame detection are
semantically intelligible. The first skill is a reaching skill to
right above the red block. The second skill moves down,
grasps the red block, and moves back upward. The third
skill goes back to the home position. The fourth skill reaches
toward the green block, moves downward, releases the red
block and moves back upward. Finally, the fifth skill goes
back to the home position. Notice that the second and
fourth segments are identified by the BP-AR-HMM as being
the same skill, despite having different relevant coordinate
frames. However, in both skills, the arm moves down toward
an object, changes the gripper pose, and moves back upward;
the reach from the home position toward the green block gets
rolled into this skill, rather than getting its own, seemingly
because it is a smoother, more integrated motion than the
reach and grasp associated with the red block.

Given the commonality of pick and place tasks in robotics,

4The green block in novel configuration 4 was partially out of the robot’s
visual range, causing part of it to be cut off. Thus, it placed the red block
too close to the edge of the green block, causing it to tumble off. However,
given the available information, it acted correctly.



success in this domain may seem trivial. However, it is
important to keep in mind that the robot is given only
demonstrations in joint space and absolutely no other a priori
knowledge about the nature of the task. It does not know that
it is being shown a pick and place task (or doing grasping at
all). It is unaware of the number of subtasks that comprise
the task and whether the subtasks will be object-related,
gestural, or have other sorts of objectives. Beginning with
only motion data and a simple assumption about the types
of coordinate frames that are relevant to inspect, the robot
is able to automatically segment and generalize a task with
multiple parts, each having its own relevant coordinate frame.

B. Experiment 2: Using a Skill Library (Simulated)

The first experiment demonstrated that our method can
learn and generalize a complex task when given a sufficient
number of demonstrations. However, this type of learning
will not scale up to more complex tasks easily unless the
robot can incrementally build a library of skills over time that
allows it to quickly recognize previously seen skill / coordi-
nate frame combinations and reuse complex skill controllers
that have been improved through practice. To demonstrate
our system’s capability to recognize skills in this manner, we
simulate a previously existing library of skills by providing
the robot with a pre-segmented demonstration of the previous
experiment. We then give it a single demonstration of the task
to see if it can segment it using the “library” of skills.

The BP-AR-HMM correctly recognized each of the skills
in the task as being a skill from the pre-existing library.
Thus, assuming the robot already had learned about these
skills from previous experiences, it would allow a user
to provide only a single demonstration of this task and
have the robot correctly segment and generalize the task
to new configurations. This serves as a proof-of-concept
that our proposed framework has the right basic properties
to serve as a building block for future models that will
scale up LfD to more complex tasks than have previously
been possible. It also emphasizes that our method can learn
tasks from unstructured demonstrations, as the majority of
demonstrations were not even of the task in question, but of
a sub-component, unbeknownst to the robot.

C. Experiment 3: The Whiteboard Survey (Physical PR2)

Finally, we demonstrate that our method is scalable to a
real robot system, using a physical PR2. Figure 5(a) shows
one configuration of a task in which the PR2 must fill out
a survey on a whiteboard by picking up a red marker and
drawing an ’X’ in the checkbox corresponding to “robot”
while ignoring the checkboxes for “male” and “female”.
Each checkbox has its own unique fiducial placed one inch
to the left of it, while the container that holds the marker
has a fiducial directly on its front. The positions of the
checkboxes and the marker container on the whiteboard,
as well as the position of the whiteboard itself, change
between task configurations. Two kinesthetic demonstrations
in each of three task configurations were provided, along
with one additional demonstration in which the marker is

picked up and then lifted above the robot’s head. An example
demonstration is shown in Figure 5(b).

Figure 6 shows that the BP-AR-HMM generally parses
the demonstrations into three main segments, correspond-
ing to reaching for the marker, grasping and lifting the
marker, and drawing an ’X’ in the checkbox. However, the
reaching and drawing segments are considered to be the
same skill. This appears to happen because both motions
are statistically similar, not in terms of absolute position,
but in the way that the positions evolve over time as a
VAR system. Our coordinate frame detection successfully
disambiguates these skills and splits them into two separate
skill/coordinate frame combinations. Demonstrations 1, 2,
and 5 contain a small additional skill near the beginning
that corresponds to a significant twitch in the shoulder
joint before any other movement starts, which appears to
correspond to the teacher’s first contact with the arm, prior
to the demonstration. Finally, although the last demonstration
is of a different task, the reaching and grasping/lifting skills
are still successfully recognized, while the final motion of
lifting the marker over the robot’s head is given a unique
skill of its own. Despite having only a single example of
the over-head skill, the BP-AR-HMM robustly identified it
as being unique in 50 out of 50 trial segmentations, while
also recognizing other skills from the main task. After the
learning phase, the robot was able to successfully replay the
task in three novel configurations, an example of which is
shown in Figure 7.

VI. RELATED WORK

A variety of approaches have been proposed for LfD, in-
cluding supervised learning [8], [9], [10], [11], reinforcement
learning [12], [13], [14], and behavior based approaches [15].
However, this work has generally been limited to single tasks
with a well-defined beginning and end. In a recent example,
Pastor et al. [16] use DMPs to acquire single motor skills
from structured demonstrations of a complex billiards shot.
In their framework, multiple imperfect demonstrations of a
skill are used to learn an initial DMP controller, which is
then improved using RL.

While many approaches enable the learning of a sin-
gle policy from data, some approaches perform automatic
segmentation of the demonstrations into skills. Jenkins and
Matarić introduced Spatio-Temporal Isomap in order to
find the underlying low-dimensional manifolds within a
set of demonstrated data [17], [18]. This work extends
the dimensionality reduction technique Isomap to include
temporal information and allows the discovery of repeated
motion primitives. However, segmentation is performed with
a heuristic and the motion primitives cannot be improved
through techniques like RL. Dixon and Khosla [19] demon-
strate that generalizable motions can be parameterized as
linear dynamical systems. This algorithm also uses heuristic
segmentation and cannot recognize repeated instances of
skills. Gienger et al. [20] segment skills based on co-
movement between the demonstrator’s hand and objects
in the world and automatically find appropriate task-space



(a) Task example (b) A kinesthetic demonstration

Fig. 5. The whiteboard survey task.

Fig. 6. Top: BP-AR-HMM segmentations of the 7 demonstration trajectories for the whiteboard survey task. Time (in tenths of a second) is shown on
the x-axis. Skill labels at each time step are indicated by unique colors. Bottom: Segmentation points overlaid on the demonstrated 8D movement data.

abstractions for each skill. Their method can generalize skills
by identifying task frames of reference, but cannot describe
skills like gestures or actions in which the relevant object
does not move with the hand.

More recent work has examined using principled statistical
techniques to segment example trajectories into multiple
skills. Grollman and Jenkins [21] introduce the Realtime
Overlapping Gaussian Expert Regression (ROGER) model
to estimate the number of subtasks and their policies in
a way that avoids perceptual aliasing, in which perceptual
information alone is not sufficient to choose the correct next
action. Butterfield et al. [22] extend Hierarchical Dirichlet
Processes Hidden Markov Models (HDP-HMM) to handle
perceptual aliasing and automatically discover an appropriate
number of skills. Although we use a Bayesian mechanism
to parse demonstration trajectories, rather than inferring
policies, we discover repeated dynamical systems which are
considerably simpler to model than policies.

CST [23] uses an online changepoint detection method to
segment example trajectories and then merges the resulting
chains of skills into a skill tree. This approach simultaneously
segments the trajectories and discovers abstractions, but can-
not recognize repeated skills to assist with the segmentation
process. Kulic et al. [24] demonstrate an online method
that can recognize repeated motion primitives to improve
segmentation as additional data is collected, by assume that
data points from the same primitive are generated by the
same underlying distribution. Ciappa and Peters [25] model
repeated skills as being generated by one of a set of possible
hidden trajectories, which is rescaled and noisy. To guide

segmentation, they define an upper bound on the number of
possible skills and explicitly constrain segment lengths.

VII. DISCUSSION

We presented a novel method for segmenting demonstra-
tions, recognizing repeated skills, and generalizing complex
tasks from unstructured demonstrations. Though previous
research has addressed many of these issues individually,
our method aims to address them all in a single integrated
and principled framework. By using the BP-AR-HMM and
DMPs, we are able to experimentally learn and generalize
a multiple step task on the PR2 mobile manipulator and to
demonstrate the potential of our framework to learn a large
library of skills over time.

Our framework demonstrates several of the critical com-
ponents of an LfD system that can incrementally expand a
robot’s competency and scale to more complex tasks over
time. However, this work is only a first step toward such
a system, and leaves a great number of directions open for
future research. A more nuanced method must be developed
for managing the growing library of skills over time, so
that inference in our model does not become prohibitively
expensive as the size of the library grows. While our model
allows for DMP policy improvement through RL, we did
not address such improvement experimentally in this paper.
Future work may use techniques such as inverse RL [13] to
derive an appropriate reward function for each skill so that
policy improvement can be effectively applied.

There are also many more opportunities to take advantage
of abstractions and invariants in the data; searching for skill
coordinate frames is a very simple example of a much richer



(a) Starting pose (b) Reaches for marker
(marker frame)

(c) Grasps marker and lifts toward
checkbox (robot checkbox frame)

(d) Draws ’X’
(robot checkbox frame)

Fig. 7. Successful task replay on a novel test configuration for the whiteboard survey task, demonstrating generalization. From left to right: the starting
pose and the final point of each executed DMP. Automatically detected coordinate frames used for each segment are listed in parentheses.

class of generalization techniques. It is also desirable to take
a more principled approach to coordinate frame detection by
integrating it directly into the Bayesian segmentation model,
so that reference frames are inferred jointly along with the
skills. Finally, more intelligent methods can be applied to
make better use of the demonstration data that we have
available. In this work, DMPs are constructed from single
segments that came from the task configuration most similar
to the current one that the robot faces. However, there exist
more sophisticated methods involving dynamic time warping
[20] and Bayesian techniques [26] to perform LfD with many
demonstration segments. Using such techniques, it may be
possible to create more robust skill models that can be used
in an ever-increasing number of complex situations, allowing
end-users to program robots with ease.
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