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Abstract

Mellowmax is an alternative softmax operator that has recently been used in deep
reinforcement learning in the context of action-selection, reducing overestimation
bias, and removing the need for a target network. However, Mellowmax has a
temperature parameter which must be tuned to obtain optimal results. Previous
work has relied on grid-search to find the optimal temperature parameter, which
is computationally expensive, requires a domain simulator, and fixes a single
parameter setting for the entire learning process. We propose a novel online
method that adaptively tunes the Mellowmax temperature parameter using a
meta-gradient reinforcement learning approach. We test the approach in a simple
OpenAI gym domain, Acrobot, and present preliminary results that our adaptive
algorithm performs better than the previous method with a fixed temperature
setting.

1 Introduction

Mellowmax [1] is a recently proposed alternative softmax operator for reinforcement learning with
several interesting properties. Unlike the well-known Boltzmann softmax operator, Mellowmax has
a non-expansion property that ensures convergence to a unique fixed point. It is also a differentiable
and smooth approximation of the max function, and hence facilitates analysis via gradient-based
optimizations. Previous work has demonstrated other useful properties of Mellowmax, such as
connections with entropy-regularization [8, 9] and convergent off-policy learning for non-linear
function approximation [4].

More recent work has shown that Mellowmax can be combined with deep reinforcement learning.
In particular, when combined with Deep Q-Network (DQN) [7] in the context of action-value
summarization, Mellowmax yields comparable performance to the softmax Boltzmann operator in
Atari games [11]. Mellowmax also alleviates the overestimation bias of Q-value estimations, and
reduces the need for a separate target network in DQN [5].

However, one limitation of Mellowmax is that it has a temperature hyperparameter, ω, which
must be tuned to maximize performance on each task. Previous work [5, 11] has either relied
on exhaustive grid-search to find optimal temperature values or reported algorithmic performance
based on a small set of arbitrary temperature values. These approaches can be inefficient, especially
in deep reinforcement learning settings where training takes a long time. Grid searches also have
fundamental drawbacks, such as finding a single fixed temperature parameter setting, which may
not perform as well as dynamically adjusting the parameter.

We propose a novel online method to adaptively tune the temperature parameter ω for deep
reinforcement learning. We use meta-gradient reinforcement learning [13], a gradient-based meta
learning algorithm that optimizes the return function itself by adapting its tunable meta-parameter.
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We show that we can adjust the temperature parameter due to the differentiability of Mellowmax
with respect to ω. We test the performance of this algorithm on Acrobot, a simple OpenAI gym
control domain [3], and present preliminary results that our adaptive algorithm performs better than
a fixed parameter identified by grid search.

2 Background

2.1 The Mellowmax Operator and Deep Reinforcement Learning

The Mellowmax operator [1] is an alternative softmax operator defined as:

mmω(x) =
log( 1

n

∑n
i=1 exp(ωxi))

ω
, (1)

where x is an input vector of n real numbers, and ω is a temperature parameter.1 Mellowmax is a
non-expansion, which ensures convergence to a unique fixed point. Another interpretation of this
operator is as a smoothed version of max function : if ω → ∞, then mmω(x) becomes max(x),
and if ω → 0, then mmω(x) becomes mean(x). Any positive ω value between 0 and ∞ offers a
continuous interpolation between max and mean. Thus, ω controls the degree of smoothness of the
Mellowmax operator.

Furthermore, Mellowmax is differentiable with respect to ω, contrary to the non-differentiable max
function.

∂mmω(x)

∂ω
=

1

ω2
{
ω
∑n
i=1 xi exp(ωxi)∑n
i=1 exp(ωxi)

− log(
1

n

n∑
i=1

exp(ωxi))}. (2)

In reinforcement learning, Mellowmax operator can be used as an action-values summarizer:

mmω(Q) =
log( 1

n

∑n
i=1 exp(ωQ(s, ai)))

ω
, (3)

where Q = [Q(s, a1), Q(s, a2), ..., Q(s, an)] is an input vector of action-values (or Q-values) in
Q-learning. Thus, Mellowmax can replace the max function in the Bellman update equation and be
incorporated into Q-learning as follows:

Qnew(s, a)← Q(s, a) + α[r + γmmω,a′Q(s′, a′)−Q(s, a)]. (4)

Using Equation 4, we can combine Deep Q-Network (DQN) [7] and Mellowmax in the context
of action-values summarizations. Since the Q-function is approximated with neural network, the
Bellman equation of the combination of DQN and Mellowmax (or Mellowmax-DQN) becomes:

θ ← θ + α[r + γmmωQ̂(s′, a′; θ−)−Q(s, a; θ)]∇θQ(s, a; θ), (5)

where θ is the weight vector ofQ network, and θ− is the weight vector of the target network Q̂. This
procedure is detailed in Algorithm 1.

Previous research [11] investigated the performance of DQN with different types of Bellman
operators—the weighted softmax Boltzmann operator and Mellowmax operator—and compared
their performance with DQN. Mellowmax-DQN achieves performance competitive with the DQN
and Softmax-DQN in playing Atari games. This work also proposed an equivalence relationship
between Mellowmax and the weighted softmax Bellman operator in value function estimations in
DQN.

Another line of research [5] focused on the role of Mellowmax in reducing the need for a separate
target network Q̂. The performance of DQN is known to degrade in the absence of the separable
target network, but Mellowmax can obviate the need for a target network by making DQN stable
without it. This algorithm, named DeepMellow [5], can be viewed as a special case of Algorithm 1:
if we set the target network update frequencyC to 1, the separate target network Q̂ is copied to be the
value network Q every step, so the presence of separate target network is eliminated. Additionally,
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Algorithm 1 Mellowmax Deep Q-Network
Fix the temperature parameter ω
Initialize experience replay memory D, set learning rate α
Initialize action-value network Q with random weights θ and target network Q̂ with θ− = θ
Set the target network update frequency C
for episode = 1 to M do

Initialize the starting state s1
for t= 1 to T do

Select a random action at with probability ε. Otherwise, at = arg maxaQ(st, a; θ)
Execute action at, observe reward rt, and obtain the next statest+1

Store transition (st, at, rt, st+1) in D
Sample random batch τ = (sj , aj , rj , sj+1) from D

Compute the objective function J = 1
2 [rj + γmmω

a′
Q̂(sj+1, a

′; θ−)−Q(sj , aj ; θ)]
2

Update parameters: θ ← θ − α∂J(θ)∂θ

Every C steps, copy Q̂ = Q
end for

end for

this work suggested that the overestimation bias in value function estimations caused by the max
operator can be reduced using Mellowmax.

One limitation of using Mellowmax is the presence of an additional temperature parameter ω. This
parameter must be tuned, because the performance of the algorithm largely depends on the choice
of the temperature value. Both of the previous works have performed grid-search to find the optimal
temperature parameter from a set of possible values. However, this approach is problematic for
three reasons: 1) the grid-search finds a single temperature value for the entirety of learning, but
fixing the temperature may not be the best strategy, when the dynamic adjustment of the parameter
is needed, 2) it requires a domain simulator for each parameter search, making it unusable for online
interactions with a real environment and 3) it is computationally expensive, especially when using
deep neural networks that take several hours to train. Therefore, the need for an adaptive, online
method for tuning ω is acute.

2.2 Meta-Gradient Reinforcement Learning

Meta-gradient reinforcement learning [13] aims to maximize the rewards for agent by optimizing
the form of return function. This work proposes that the agent can learn the return itself by treating
it as a function parameterized by tunable meta-parameters.

In deep reinforcement learning, the value function is parameterized by θ, and the main goal of an
agent is to update θ as below:

θ′ ← θ + f(τ, θ, η) = θ − α∂J(τ, θ, η)

∂θ
, (6)

where τ is the batch samples of transition (or trajectories), θ is the parameter vector for value
function, and η is the meta-parameter that should be adapted. The idea of meta-gradient
reinforcement learning is to first update θ by computing the objective J using a batch sample τ ,
resulting in new parameters θ′; then, using an independent batch sample τ ′, updated parameter θ′,
and reference meta parameter η, the agent obtains the derivative of meta-objective J ′ with respect
to η:

∂J ′(τ ′, θ′, η)

∂η
=
∂J ′(τ ′, θ′, η)

∂θ′
dθ′

dη
. (7)

The term on the left side, ∂J
′(τ ′,θ′,η)
∂η , is hard to compute directly, but ∂J

′(τ ′,θ′,η)
∂θ′ and dθ′

dη can be
computed via modern deep learning frameworks with some approximations [13].

1It might be more appropriately named an inverse temperature to be consistent with the Boltzmann softmax
operator. We use the term temperature for ω here to be consistent with prior work.
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The meta-parameter η is finally updated with the meta-learning rate β by the following equation:

η′ ← η − β ∂J
′(τ ′, θ′, η)

∂θ′
dθ′

dη
. (8)

In order for this approach to work, the return function must be differentiable with respect to the
meta-parameter η. For example, discount factor γ or bootstrapping parameter λ are good examples
of meta-parameters, since the return function is differentiable with respect to γ and λ. Fortunately,
both Mellowmax and the return function of Mellowmax-DQN are also differentiable with respect to
ω. Therefore, we propose to use meta-gradient reinforcement learning to adapt ω.

3 Meta-Gradient Reinforcement Learning and Mellowmax

3.1 The Meta-Gradient Update for Mellowmax-DQN

In the case of Mellowmax-DQN, we set the loss objective function J as below:

J(τ, θ, ω) =
1

2
[rt + γmmωQ̂(st+1, a; θ−)−Q(st, at; θ)]

2. (9)

Here τ represents the minibatch samples for the update (st, at, rt, st+1) tuples, θ are the Q-function
parameters, α is a learning rate, and ω is the meta-parameter that we want to adapt. At every
iteration, the Q-learning algorithm will update θ in a direction that minimizes J(τ, θ, ω).

Next, we define another meta-objective function J ′, using the same form of loss function as before:

J(τ ′, θ′, ω) =
1

2
[r′t + γmmωQ̂(s′t+1, a

′; θ−)−Q(s′t, a
′
t; θ
′)]2. (10)

Note that when we compute the meta-objective J ′, we use another independent batch sample τ ′
(denoted as (s′t, a

′
t, r
′
t, s
′
t+1) tuples). After each iteration of Equation 9, θ is updated to θ′, and we use

the updated θ′ when we compute the meta-objective J ′. We also use the reference meta-parameter
value ω. Our goal is to adapt the value of ω such that it optimizes the meta-objective function J ′,
using the equation below:

∂J ′(τ ′, θ′, ω)

∂ω
=
∂J ′(τ ′, θ′, ω)

∂θ′
dθ′

dω
. (11)

We approximate dθ′/dω by choosing µ = 0 as done in previous work [13],

dθ′

dω
=
d{θ + f(τ, θ, ω)}

dω
=
dθ

dω
+
∂f(τ, θ, ω)

∂ω
+
∂f(τ, θ, ω)

∂θ

dθ

dω
.

= {I +
∂f(τ, θ, ω)

∂θ
} dθ
dω

+
∂f(τ, θ, ω)

∂ω
= µ

dθ

dω
+
∂f(τ, θ, ω)

∂ω
≈ ∂f(τ, θ, ω)

∂ω
. (12)

This leads us to
∂J ′(τ ′, θ′, ω)

∂ω
=
∂J ′(τ ′, θ′, ω)

∂θ′
∂

∂ω
{−α∂J(τ, θ, ω)

∂θ
}, (13)

and the update equation of temperature parameter becomes:

ω ← ω + ∆ω = ω − β ∂J
′(τ ′, θ′, ω)

∂ω

= ω − β ∂J
′(τ ′, θ′, ω)

∂θ′
∂

∂ω
{−α∂J(τ, θ, ω)

∂θ
}. (14)

3.2 Adaptive Temperature Parameter Tuning of Mellowmax DQN

We now present the adaptive online algorithm that tunes the temperature parameter of Mellowmax
operator in DQN. The procedure is detailed in Algorithm 2.
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Algorithm 2 Adaptive Mellowmax Deep Q-Network with Meta-Gradient
Initialize temperature parameter ω = ω0, and set a reference temperature parameter ω
Initialize experience replay memory D, set learning rate α, set meta-learning rate β
Initialize action-value network Q with random weights θ and target network Q̂ with θ− = θ
for episode = 1 to M do

Initialize the starting state s1
for t= 1 to T do

Select a random action at with probability ε. Otherwise, at = arg maxaQ(st, a; θ)
Execute action at, observe reward rt, and obtain the next state st+1

Store transition (st, at, rt, st+1) in D
Sample random batch τ = (sj , aj , rj , sj+1) from D for value function update
Sample another random batch τ ′ = (sk, ak, rk, sk+1) from D for meta-parameter update
Compute the objective function J = 1

2 [rj + γmmω
a′

Q̂(sj+1, a
′; θ−)−Q(sj , aj ; θ)]

2

Update parameters: θ′ ← θ − α∂J(θ)∂θ
Compute the meta-objective
J ′(τ ′, θ′, ω) = 1

2 [rk + γm
a′
mωQ̂(sk+1, a

′; θ−)−Q(sk, ak; θ′)]2

Update meta-parameter ω′ ← ω − β ∂J
′(τ ′,θ′,ω)
∂ω

Every C steps, copy Q̂ = Q
end for

end for

Implementation Since we are adapting the meta-parameter temperature ω, the return function
becomes non-stationary and often results in instability during training. As in previous work [13], we
borrow the idea of universal value function approximation [10] to alleviate the potential instability
that can be caused by non-stationary return function. We use a one-dimensional embedding vector
E, whose size is ne (where ne < |S|). We output eω = E(ω), and concatenate this vector to the
state vector s. The input of Q-function now becomes [s, eω], and we update the embedding vector
E every iteration along with θ.

We must also specify the loss function and trainable variables for the meta-update process, as we
update θ for neural network Q. We set the loss function as

K =
∂J ′(τ ′, θ′, ω)

∂θ′︸ ︷︷ ︸
A

{−α∂J(τ, θ, ω)

∂θ
}︸ ︷︷ ︸

B

, (15)

then the gradient of K with respect to ω becomes:

∂K

∂ω
= A

∂B

∂ω
+B

∂A

∂ω
= A

∂B

∂ω
, (16)

since A is independent of ω, and ∂A
∂ω is zero. Thus, we get

∂K

∂ω
= A

∂B

∂ω
=
∂J ′(τ ′, θ′, ω)

∂θ′
∂

∂ω
{−α∂J(τ, θ, ω)

∂θ
}, (17)

and

ω′ ← ω − β ∂K
∂ω

= ω − β ∂J
′(τ ′, θ′, ω)

∂θ′
∂

∂ω
{−α∂J(τ, θ, ω)

∂θ
}, (18)

which is now the same form as Equation 14.

4 Preliminary Empirical Results

We now present preliminary empirical results on Acrobot, a simple openAI gym control domain.
We tested performance in two different versions of Mellowmax-DQN: a) the ordinary version where
the max function is replaced by Mellowmax as mentioned above, and b) DeepMellow [5], where the
target network update frequency C is set to 1.
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Experimental Details We used three layers of dense neural networks to approximate the value
functions Q and the target network Q̂. Each neural network is composed of 500 neurons of 3 hidden
layers, and after each hidden layer, ReLU activation function is applied. The learning rate (α) for
Q-function update is 10−4 and the meta-learning rate (β) for temperature update is 10−5. The
batch-size for Q-function update is 64, while the batch-size for meta-update is 8. We used ADAM
[6] for both network-optimizer and meta-optimizer. Meta-update occurs along with every agent
update, and the target network frequency C is set to 100 for the test (a), and 1 for the test (b), as
mentioned above. For each graph plot, we averaged 20 independent runs with random seeds. The
length of one-dimensional embedding vector E (embedding size) is 3, and the trace decay (µ) is 0.

Figure 1: [Left] Mellowmax-DQN with meta-gradient that adaptively tunes temperature parameter
(green), compared with Mellowmax-DQN with fixed temperature values (yellow, cyan) and DQN
(black). [Right] The evolution curves (green) of temperature ω parameter values during training (20
independent runs) using meta-gradients. The red curve represents the average over 20 random seeds,
and red shaded region covers standard deviation.

Results First, we observed the performance of adaptive Mellowmax-DQN with meta-gradients,
setting the initial and reference temperature value as ω = 1. We compared it against the performance
of Mellowmax-DQN with fixed temperature ω = 1, 2 and DQN. (We did grid-search on the choice of
temperature, trying ω ∈ {0.25, 0.5, 0.75, 1, 2, 3, 5, 10} and we use the best two values: ω ∈ {1, 2}
for comparison.) The target network update frequency C was set to 100. Figure 1 (left) shows
the rewards of each algorithm over 800 episodes. Adaptive Mellowmax-DQN, which starts with
ω = 1 as initial value and tunes its parameter along the training, yields higher cumulative rewards
than the Mellowmax-DQN with fixed temperature settings (ω = 1, 2). It also showed comparable
performance with DQN. In order to compare the scores of each algorithm, we computed the sum
of areas under each curve (y-axis lower bound is -500). Setting the areas under the average curve
of DQN graph as 100, the Mellowmax-DQN with fixed parameter ω = 1, 2 achieves 95.2% and
93.7%, respectively. The adaptive Mellowmax-DQN achieves 98.7%, almost as good as DQN.

Figure 1 (right) shows the evolution curves of the temperature parameter ω of 20 independent runs
(green) and their average (red). The initial temperature parameter is ω = 1, and the agent learns to
adapt the temperature parameter to optimize its results. Although there are several outliers, the final
end result of adapted ω were between 0.90 and 0.95 (after 800 episodes).

The next case shows more promising results of our approach: we observed the performance of this
algorithm when the target network update frequency C is set to 1. Previous work [5] showed that
Mellowmax, rather than the max operator, makes DQN perform better in the absence of a separate
target network (or equivalently, when target network update frequency C=1). In addition to the
previous work, we present the performance of Mellowmax-DQN with adaptively tuned temperature
parameter by comparing it against DQN (C=1) and Mellowmax-DQN with fixed temperature values.
We did grid-search on the choice of ω, testing ω ∈ {0.25, 0.5, 0.75, 1, 2, 5, 8, 10, 20} and used best
values ω = 0.75, 1, 2, 5 for comparison. The initial, reference value for temperature parameter is
ω = 1 as in the previous case.
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Figure 2: [Left] Mellowmax-DQN and DQN in the absence of a separate target network. Adaptive
Mellowmax-DQN with meta-gradients (blue) achieves best performance when compared against
Mellowmax-DQN with fixed temperature values (yellow, purple, green, cyan) and DQN (black).
[Right] The evolution curves (blue) of ω during training (20 independent runs) using meta-gradients.
The red curve is the average over 20 random seeds, and the shaded region covers standard deviation.

Figure 2 (left) shows that Mellowmax-DQN with adaptively tuned temperature ω performs better
than all of the previous results. In the absence of a separate target network, Mellowmax-DQN
with fixed ω performs better than DQN (ω = 0.75 performs better than ω = 1, 2, which perform
better than ω = 5), and yet Mellowmax-DQN with meta-gradients performs even better than fixed
ω = 0.75, while adapting the temperature parameter ω. We plotted the evolution curves of ω of
each trial as well as their averaged curve in Figure 2 (right). Starting with initial value ω = 1, the
agent learns to optimize its temperature parameter ω, generally showing a slow descending trend,
and maximizes its cumulative reward.

5 Discussion and Future Work

We proposed an approach to adaptively tune the temperature parameter ω of Mellowmax operator
in deep reinforcement learning. Although Mellowmax can replace the max function in the Bellman
update equation of DQN and serve as an alternative tool for value function estimations, choosing
the additional temperature parameter ω required an expensive grid-search. Our algorithm uses
the meta-gradient reinforcement learning, which learns to optimize the return function by tuning
additional meta-parameters. Since the Mellowmax operator is differentiable with respect to its
temperature hyperparameter ω, we can set it as a tunable meta-parameter and run the adaptive
algorithm with additional meta-gradients.

We presented the empirical results of this approach in a simple control domain, Acrobot. We showed
that the Mellowmax-DQN with adaptively tuned ω parameter performs better than the previous
version of algorithm with fixed ω, and reduces the need for an exhaustive search for ω.

The experiments presented in this paper are preliminary. Since we have confirmed the potential of
this approach on a simple control domain, we plan to test its performance on larger-scale domains.
The next step is to test this algorithm on middle-scale control domains (e.g. Lunar Lander) and
large-scale domains like Atari games [2] with continuous state and discrete action spaces.

Another line of possible future research direction is to investigate the adaptive overestimation
bias reduction in deep Q-learning. It has been theoretically shown that Mellowmax can reduce
the overestimation bias in value estimations [5]. The key element of reducing overestimation
bias through Mellowmax is the choice of good temperature parameter ω. If we could make
this algorithm work on large-scale Atari domains, we could compare its performance with
well-known Double-DQN [12] algorithm, which addresses the overestimation bias problem in deep
reinforcement learning.
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