
Task Scoping: Generating Task-Specific Simplifications
of Open-Scope Planning Problems

Michael Fishman*, Nishanth Kumar*,1 Cameron Allen,2 Natasha Danas,2 Michael Littman,2
Stefanie Tellex,2 George Konidaris2

1MIT CSAIL, 2Brown University Department of Computer Science
michael@fishman.ai, njk@csail.mit.edu

Abstract

A general-purpose agent must learn an open-scope world
model: one rich enough to tackle any of the wide range of
tasks it may be asked to solve over its operational lifetime.
This stands in contrast with typical planning approaches,
where the scope of a model is limited to a specific family of
tasks that share significant structure. Unfortunately, planning
to solve any specific task within an open-scope model is com-
putationally intractable—even for state-of-the-art methods—
due to the many states and actions that are necessarily present
in the model but irrelevant to that problem. We propose task
scoping: a method that exploits knowledge of the initial state,
goal conditions, and transition system to automatically and
efficiently remove provably irrelevant variables and actions
from grounded planning problems. Our approach leverages
causal link analysis and backwards reachability over state
variables (rather than states) along with operator merging
(when effects on relevant variables are identical). Using task
scoping as a pre-planning step can shrink the search space by
orders of magnitude and dramatically decrease planning time.
We empirically demonstrate that these improvements occur
across a variety of open-scope domains, including Minecraft,
where our approach reduces search time by a factor of 75 for a
state-of-the-art numeric planner, even after including the time
required for task scoping itself.

1 Introduction
Modern AI planning is extremely general-purpose—the
promise of domain-independent planners is that a single
program can be used to solve planning tasks arising from
many specific applications. This promise has largely been
realized: given an appropriately specified model of a plan-
ning problem, modern planners can quickly tackle anything
from game playing (Korf 1985a,b) to transportation logistics
(Refanidis et al. 2001) to chemical synthesis (Matloob and
Soutchanski 2016). But while the achievements of domain-
independent planners are impressive, one pervasive assump-
tion significantly limits their generality: namely, that the do-
main model is always well-matched to the task. Each of the
applications discussed above used a problem encoding that
was carefully designed by human experts. While each do-
main supports multiple problems, these problems all share
significant structure; a planner cannot solve logistics prob-

*These authors contributed equally.

Figure 1: (Left) An open-scope Minecraft environment. All of the
objects are occasionally important; however, for the specific task of
crafting a bed, the planning agent can ignore most of them. (Right)
Task scoping removes irrelevant objects and actions prior to plan-
ning, reducing planning time by an order of magnitude.

lems with a chemical synthesis model. The model has lim-
ited scope; it is only intended to be compatible with a spe-
cific, restricted set of possible tasks.

By contrast, general-purpose agents, particularly those
that learn world models, cannot assume there will be a hu-
man expert on hand to provide them with a carefully spec-
ified model for any problem they might face. Instead, they
must acquire and maintain an open-scope model—one rich
enough to describe any planning task they may encounter
during their deployment. Such an open-scope model will
necessarily contain large amounts of information irrelevant
to any individual task (Konidaris 2019). For instance, an
agent that learns a model for planning in Minecraft (e.g. us-
ing the approach of James, Rosman, and Konidaris (2022))
must be capable of expressing a range of tasks with that
model, such as obtaining resources, building shelter, crafting
weapons, cooking food, and fighting off enemies—to name
a few. However, when confronted with the specific, immedi-
ate task of crafting a bed, information about other tasks like
cooking food is simply irrelevant.

Unfortunately, that generality comes at a cost: when
learned models contain large amounts of irrelevant infor-
mation, the search space grows exponentially and plan-
ning quickly becomes intractable. Recent work (Vallati and
Chrpa 2019; Silver et al. 2021) has shown that many state-
of-the-art planning engines suffer significant reductions in
performance when irrelevant objects, state variables, or op-
erators are included in domain descriptions. For example,
the state-of-the-art numeric planner ENHSP (Scala et al.
2020) fails to find an optimal plan to construct a bed from

the objects in the Minecraft domain of Figure 1. Fast Down-
ward (Helmert 2006) fails to even translate a non-numeric
version of the same problem. With irrelevant objects and ac-
tions removed, both planners can solve the task within a few
minutes.

To help general-purpose agents overcome these chal-
lenges, we introduce task scoping, a method for reasoning
about which information can safely be removed from the
agent’s model. We identify three types of task-scoping sim-
plifications that agents can use, after grounding but prior to
planning, to remove irrelevant actions and variables. First,
agents need only consider actions as relevant if they mod-
ify goal variables or preconditions of other relevant actions.
Second, agents can identify actions that have identical ef-
fects on relevant variables, and merge them. Third, agents
can also ignore variables that already match relevant precon-
ditions and goal clauses, unless a relevant action can modify
them.

We prove that task scoping preserves all optimal plans and
empirically demonstrate that it leads to substantial reduc-
tions in search space size and planning time. Applying task
scoping to the Minecraft problem of Figure 1 allows us to
solve the previously intractable problem in under 3 minutes.
We also observe significant improvements on a variety of
other numeric and classical planning domains. Most impor-
tantly, the entire process is automatic, and compatible with
off-the-shelf planners, enabling agents to derive their own
task-specific simplifications for planning with open-scope
models, all without requiring any additional domain knowl-
edge from human experts.

2 Background
We adopt the planning formalism of Scala et al. (2016), but
with multivariate enum variables replacing binary variables.
We define a planning domain (or model) in terms of the fol-
lowing quantities:

• A finite set of variables V = Ve∪Vn, composed of enums
Ve and numerics Vn. The domain of a variable, D(v), is
finite for enums and the set of reals, R, for numerics.

• A factored state space S, wherein each state s assigns a
value di ∈ D(vi) to every variable vi in V .

• A set of grounded operators (i.e. actions) O where each
operator o consists of a cost c(o) ≥ 0, as well as a pre-
condition pre(o) and an effect eff (o), defined below.

A precondition is a (possibly nested) conjunction of enum
and numeric conditions and their negations.1 An enum con-
dition is an equality relation ve = ce between an enum vari-
able ve and a constant ce in the domain D(ve). When an
enum variable is binary, we will write ve as a shorthand
for ve = TRUE. A numeric condition is a binary relation
{=,≥,>} between two numeric expressions, each of which

1Our implementation is more general and supports any boolean-
valued expression that can be expressed using Z3 (De Moura and
Bjørner 2008), but in principle, there are no restrictions on the ex-
pressions except that we can identify any associated variables and
check effects for equality.

can be either a real-valued constant, a numeric variable, or a
binary function {+, −, ×, ÷} of numeric expressions.

An effect is a list of enum and numeric effects, each to a
distinct variable vi in V . An enum effect is an assignment
ve := ce, where the value ce is a constant in the variable’s
domain D(ve). A numeric effect is an update to a variable
vn, via an operator {:= ,+=,−=} and a corresponding nu-
meric expression ei, as defined above.

An operator o is applicable in state s if s implies pre(o).
Executing o incurs cost c(o) and causes the variable updates
described in eff (o), resulting in a new state s′. We reference
the variables appearing in pre(o) and eff (o) using the nota-
tion vars(pre(o)) and vars(eff (o)). If an effect assignment
to a variable v depends on the value of another variable u,
then u is considered a precondition variable of the operator,
even if it does not appear in the precondition.

We define a problem instance (or task) of a given domain
by adding an initial state s0 ∈ S and a goal condition G
consisting of an assignment to some or all of the variables
in V . Together, the domain and problem instance induce a
grounded planning problem, in which each lifted operator
in the domain is instantiated with all possible variable ar-
guments to form a set of grounded operators.2 A plan is
a sequence of successively-applicable grounded operators
[o1,o2,...,on] from initial state s0 to final state sn, such that
sn implies G. An optimal plan is any plan that incurs the
minimum cost. Given a model, a task is solvable if there ex-
ists at least one plan using that model.

This formalism is compatible with both numeric and FDR
planning and supports a variety of problem encodings, in-
cluding PDDL 2.1, level 2 (Fox and Long 2003) and SAS+
(Bäckström 1992).3 Our experiments investigate these two
planning paradigms separately and assume numeric domains
only ever contain binary enums, which is consistent with
Scala et al. (2016). However, in principle our approach is
general enough to handle numerics and multivariate enums
at the same time, since our algorithm never looks at the do-
main of any variable.

Open-Scope Models
A general-purpose planning agent may be asked solve many
tasks during its operational lifetime. If the agent’s model
contains too few variables or operators, some tasks will not
be solvable. To ensure that as many potential tasks as pos-
sible are solvable, the agent’s model must be open-scope: it
must contain more variables and/or operators than are rele-
vant for any one task.

Given a model M and a task t, we say that an operator is
task-relevant (or simply relevant) if it appears in at least one
shortest cost-optimal plan to solve t. We say that M is an
open-scope model with respect to t if it contains operators
that are not relevant (henceforth ‘irrelevant’). The wider the

2In this work, we restrict our focus to scoping grounded plan-
ning problems, and leave potential scoping-related improvements
to the grounding process itself for future work.

3For simplicity, we consider the former without conditional ef-
fects and the latter without axioms, though neither restriction is
required by our approach.

range of tasks an agent may be asked to solve, the higher
the likelihood that most of its operators will be irrelevant
for any one of those tasks. These irrelevant operators are the
ones we would like the agent to ignore with task scoping.

Example Consider the following simplified version of the
Minecraft domain in Figure 1. The agent can collect food,
sticks, and stone, which it needs for eating and making an
axe. The task is to make an axe from scratch. We use numeric
fluents for brevity, but the example does not require them.4

• V =
{
NFOOD, NSTICKS, NSTONE ∈ {0, 1, ..., N};

HUNGRY, HAS AXE ∈ {TRUE, FALSE}
}

• O = {
hunt :

pre : ¬(NFOOD = N) ∧ ¬HUNGRY
eff : (NFOOD +=1) ∧ HUNGRY

gather :
pre : ¬(NFOOD = N) ∧ HUNGRY
eff : (NFOOD +=1)

get stick :
pre : ¬(NSTICKS = N)
eff : (NSTICKS +=1)

get stone :
pre : ¬(NSTONE = N)
eff : (NSTONE +=1)

eat :
pre : ¬(NFOOD = 0) ∧ HUNGRY
eff : (NFOOD −=1 ∧ ¬HUNGRY)

make axe :
pre : ¬(NSTICKS = 0 ∨NSTONE = 0 ∨ HAS AXE)
eff : (NSTICKS −=1 ∧NSTONE −=1 ∧ HAS AXE)

wait :
pre : ¬HUNGRY
eff : HUNGRY}

• s0 = (0,0,0,FALSE,FALSE)

• G = (¬HUNGRY ∧ HAS AXE)

All operators have unit cost. For this task, there are two
optimal plans: [get stick, get stone, make axe],
and [get stone, get stick, make axe]. The opera-
tors hunt, gather, eat, and wait are irrelevant and can
be removed, since none appear in any optimal plan.

3 Task Scoping
The purpose of task scoping is to identify and remove task-
irrelevant variables and operators from the agent’s model.
This process produces a simplification of the original plan-
ning problem aimed at making planning more tractable.
However, not all such simplifications preserve optimal plans.
Definition 1. Given a planning problem P , a task-scoping
simplification P ′ of P is one that contains a subset of the
variables and operators in P such that all shortest cost-
optimal plans in P are still optimal plans of P ′.

In this section, we describe three types of task-scoping
simplifications that remove increasing amounts of irrelevant
information. We derive the simplifications using variations
of Algorithm 1, and prove that each preserves optimal plans.

4Appendix C contains PDDL for this example with N = 1.

Algorithm 1: TASK SCOPING

Input: ⟨V,O,s0,G⟩
Output: ⟨V ′ ⊆ V,K′ ⊆ V,O′ ⊆ O⟩

1: V0 ← {DUMMY GOAL VAR} ▷ relevant vars
2: O0 ← {dummy goal operator(G)} ▷ relevant ops
3: repeat
4: Oi ← Oi−1 ∥ MERGESAMEEFFECTS(Oi−1,Vi−1)
5: Ei ← ∅ ∥ {variables ∈ eff (Oi−1)}
6: Li ← ∅ ∥ s0[V \ Ei]
7: Ci ← {clauses in pre(Oi) not implied by Li}
8: Ki ← {vars in clauses of pre(Oi)} \ vars(Ci)
9: ▷ causally linked variables

10: Vi ← Vi−1 ∪ {v ∈ vars(c) ∀ c ∈ Ci}
11: Oi ← {o ∈ O : eff (o) ∩ Vi ̸= ∅}
12: until Vi = Vi−1

13: V ′ ← Vn \ {DUMMY GOAL VAR}
14: K′ ← Kn \ {DUMMY GOAL VAR}
15: O′ ← On \ {dummy goal operator(G)}
16: return ⟨V ′,K′,O′⟩

Backwards Reachability of Variables
The first and simplest task-scoping simplification encodes
the notion that agents need not consider actions to be rele-
vant unless they modify goal variables or preconditions of
other relevant actions. This version of Algorithm 1 (which
we call Algorithm 1-a) omits any of the colored text appear-
ing after the ‘∥’ symbols. It starts by considering only goal
variables to be relevant, and performs backwards reachabil-
ity analysis over variables, considering operators relevant if
their effects contain any relevant variables, and then con-
sidering the precondition variables of any such operators
to be relevant. The process repeats until no new variables
are deemed relevant. The Fast Downward Planning System
performs an equivalent simplification during its knowledge
compilation process (Helmert 2006).

In the example of Section 2, this process would work
proceed as follows:

HAS AXE → make axe → NSTICKS → get stick
→ NSTONE → get stone

HUNGRY → eat → NFOOD → hunt
→ gather

→ wait

Eventually all variables and operators would be marked
as relevant. Had ¬HUNGRY not appeared in the goal, the
algorithm would not consider the bottom chains relevant,
and those items would be removed. In Section 3 we will
upgrade the algorithm to recognize that ¬HUNGRY is
satisfied by the initial state and not modified by the top
operators; therefore, the bottom chains can still be removed.

Merging Same-Effect Operators
The second task-scoping simplification reflects the idea that
actions with identical effects on relevant variables are inter-
changeable and can therefore be merged. Algorithm 1-b ex-
tends the previous version by adding the MERGESAMEEF-

Algorithm 2: MERGESAMEEFFECTS

Input: Oi, Vi

Output: Oi

1: Oequiv ← Partition Oi based on effects on Vi and cost.
2: Oi ← merge operators in equivalence classes: {

pre : take disjunction of preconditions & simplify
eff : copy effects on Vi (identical)
c : copy cost of component operators (identical)}

3: return Oi

FECTS function on line 4, which is detailed in Algorithm 2.
The merging procedure partitions the relevant operators

Oi into equivalence classes that have identical costs and ef-
fects on relevant variables Vi. Each resulting merged oper-
ator removes any effects on non-relevant variables, and its
precondition is the disjunction of the original operators (sim-
plified to remove any unnecessary clauses using Z3). As a
result, line 7 of Algorithm 1 now produces potentially fewer
precondition clauses Ci from which to add relevant variables
in line 8. Note that the merged operators never appear inO′,
only the non-merged originals.

For example, suppose NFOOD is the only relevant vari-
able (perhaps the task is now to gather food). The opera-
tors hunt and gather both modify NFOOD, so both are
marked as relevant. Algorithm 1-b then calls MERGESAME-
EFFECTS and determines that both operators have the same
effect on NFOOD, the only relevant variable, and can there-
fore be merged. After simplifying preconditions, the merge
results in the following operator (name added for clarity):
get food :

pre : ¬(NFOOD = N)
eff : (NFOOD +=1)

In this example, HUNGRY was not relevant to begin with and
does not appear in the merged operator’s precondition, so it
would remain irrelevant. As a result, the eat and wait op-
erators, which modify HUNGRY, never become relevant ei-
ther, and the algorithm will return O′ = {hunt, gather}.

Causally Linked Irrelevance
The third task-scoping simplification we introduce captures
the idea that agents can ignore variables that already match
relevant preconditions and goal clauses, unless a relevant
action modifies them. This corresponds to the concept of
causal links (McAllester and Rosenblitt 1991). A clause is
causally linked when (1) it is implied by some state (here
we only consider causal links from s0), (2) it appears in the
precondition of a subsequent operator, and (3) it is not mod-
ified by any operators in between. In the Minecraft exam-
ple of Section 2, this corresponded to the variable HUNGRY.
Since the initial state and goal both contained the clause
¬HUNGRY and no relevant operator modified it, HUNGRY
was causally linked and could safely be removed.

The full Algorithm 1 builds on the previous version by
additionally identifying clauses Li (in lines 5-6) that are
causally linked with the initial state s0 and contain no over-
lap with any variables mentioned in the effects of relevant

operators.5 Note that Algorithm 1 is guaranteed to terminate,
since V is finite and Vi−1 ⊆ Vi ⊆ V for every iteration.

Main Theorem
We show in this section that Algorithm 1 produces a sim-
plification of the original planning problem that contains all
optimal plans. The proof works by removing unnecessary
operators from each plan, and makes use of a Merge Sub-
stitution lemma, which ensures that the resulting action se-
quences are still valid plans.

For any quantity Xi in the algorithm, we will use the sub-
script Xn to indicate the value Xi has in the final iteration
of the algorithm. For example, Kn is the final set of causally
linked variables. Additionally, for a set of state variables
Z ⊆ V , we use the notation s[Z] to denote the partial state
of s with respect to only the variables in Z.

Lemma 1 (Merge Substitution). Let o be any operator in
On, s any state that implies pre(o), and s′ ̸= s another state.
If the partial state of s′ with respect to relevant and causally
linked variables is the same as in state s (i.e. s′[Vn ∪Kn] =
s[Vn ∪ Kn]), then there exists another operator o′, also in
On (and possibly equal to o), such that: s′ implies pre(o′);
o and o′ have the same effect on Vn; neither o nor o′ has any
effect on Kn; and o and o′ have the same cost.

Proof. Run MERGESAMEEFFECTS(On,Vn) to compute
On, and find the (potentially merged) operator o correspond-
ing to o. Such an operator exists, because MERGESAMEEF-
FECTS partitions On.

First we will show that s′ implies pre(o). By construction,
pre(o) contains only variables in (Vn∪Kn), and the clauses
containing variables in Kn are causally linked. This means
that if s implies pre(o), and s′[Vn∪Kn] = s[Vn∪Kn], then
s′ also implies pre(o). Since pre(o) is just the disjunction
of the preconditions of its component operators, it must be
the case that s′ implies the precondition of at least one such
component operator o′ ∈ On.

Since o′ and o correspond to the same abstract operator
o, they must have the same effect on Vn and the same cost.
Since both operators are in On, neither can affect Kn.

Theorem 1. Every shortest cost-optimal plan for a given
task uses a subset of the operators returned by Algorithm 1.

Proof. We will show that for any plan π containing opera-
tors not in On, there exists another plan π′ that is shorter,
has lesser or equal cost, and only uses operators in On.

We will go through the operators of π, from the beginning
to the end, and for each operator o, add a corresponding op-
erator to π′ as follows:

1. If o affects at least one variable in Vn and can be taken
from the current state of the modified plan, keep it; o is
in On, since it modifies a variable in Vn.

5Additional optimizations are possible, such as by considering
subsequent states or ignoring variables in Ci when their values do
not affect the truth value of the causally linked clauses.

2. If o affects at least one variable in Vn and cannot be taken
from the current state of the modified plan, replace it with
an operator o′ that has the same effects on Vn and can be
taken from the current state. Such an operator is guaran-
teed to exist by Lemma 1.

3. If o does not affect Vn (and therefore is not in On), add a
no-op operator to π′ with the same cost as o.

Note that in case 3, the no-op operators need not exist in
the domain. We could simply ignore o entirely in this case,
but this would make the correspondences between the oper-
ators and states of π and π′ slightly less clear, since the plans
would have different lengths. We will delete the no-ops from
π′ after comparing the plans.

Now we provide an inductive proof over the steps in the
plan to show that the following inductive assumption holds.

Inductive assumption: At each step, π and π′ have the
same partial state on Vn, and π′’s partial state on Kn (the
set of causally linked variables) is equal to the initial partial
state on Kn. That is, si[Vn] = s′i[Vn] and s′i[Kn] = s0[Kn].

Inductive base: Empty plans share initial state.
Inductive step: Each of the three cases outlined above

preserves the inductive assumption.

• Case 1: the original operator o is applicable and does not
change the plan. The resulting partial state s′i+1[Vn] =
si+1[Vn]. Since o is in On, it does not modify Kn.

• Case 2: this operator replacement is possible due to
Lemma 1 and the inductive assumption. By Lemma 1,
o and o′ have the same effect on Vn, no effect on Kn,
and equal cost. Furthermore, o′ is in On.

• Case 3: o does not modify Vn, so s′i+1[Vn] = si+1[Vn].
The no-op does not affect Kn, and has equal cost to o.

The above inductive argument shows that π′ is also a valid
plan, and has the same cost and length as π. We now delete
the no-ops from π′, and afterwards, π′ is shorter than π, has
lesser or equal cost, and uses only operators from On.

For any plan π with an operator not in On, there exists a
shorter plan of equal or lesser cost, containing only operators
in On. Therefore, all shortest cost-optimal plans use only
operators from On.

Discussion
It should be clear that Algorithm 1 does not involve search-
ing through specific states. Rather, it reasons over the vari-
ables and operators of the planning problem. Space pre-
cludes a thorough complexity analysis, but Algorithm 1’s
worst-case complexity is dominated by |V| × |O|. Since
|V| × |O| is generally much smaller than the problem’s full
state–action space (which may even be infinite), deriving a
task-scoping simplification is thus often significantly more
efficient than planning over the original problem.6

The simplifications in the previous sections are not in-
tended to be an exhaustive list of task-scoping simplifica-
tions. More aggressive simplifications are clearly possible,
particularly when considering causal links.

6This complexity expression neglects the cost of simplifying
preconditions in Algorithm 1, which is reasonable in practice be-
cause most preconditions are relatively simple.

Figure 2: Results for the Multi-Switch Continuous Playroom do-
main. Total planning time with task scoping is essentially constant
compared to the baseline, even as the size of the domain grows ex-
ponentially. (Total planning time includes scoping time; error bars
show standard deviation across 10 independent trials.)

4 Experimental Evaluation
Algorithm 1 is agnostic to which particular representation
is used to express the planning problem. To demonstrate
its performance and utility empirically, we customized it
to work with both numeric PDDL 2.1 level 2 (Fox and
Long 2003), and SAS+ (Bäckström 1992; Helmert 2006).
The output of the algorithm consists of relevant variables
V ′, causally linked variables K′, and relevant operators O′.
For SAS+, we simply remove operators outside of O′ and
causally linked goal conditions. For PDDL, we remove lifted
operators from the domain file whenever they correspond to
no grounded operators in O′, and we remove objects from
the problem file whenever they correspond to no variables
in V ′ ∪K′.7 Since this is a more conservative simplification,
it is still a valid task-scoping simplification.

All experiments were conducted on a cluster of 2.90GHz
Intel Xeon Platinum 8268 CPUs, using 2 virtual cores and
16GB of RAM per trial, and measurements are averaged
across 10 independent trials.

Numeric Domains with ENHSP
We first investigate our approach’s performance and util-
ity in numeric domains. In all the following experiments,
we run ENHSP (Scala et al. 2020) in optimal mode
(WAStar+hrmax) with and without task scoping as a pre-
processing step. We measure wall-clock time and nodes gen-
erated during search to produce a plan.

Multi-Switch Continuous Playroom. In order to study
how our approach scales with the size of the input prob-
lem in a simplified setting, we implemented the continuous
playroom domain from Chentanez, Barto, and Singh (2005)

7We keep objects corresponding to variables in K′ because
these objects may be used to ground operators in O′.

Problem Operators State Variables Evaluations Scoping Planning Total Time (s)
Unscoped Scoped Unscoped Scoped Unscoped Scoped Scoped Unscoped Scoped

Playroom 1 18 14 22 12 13.0M 11.3M 0.3± 0.1 397± 20 703± 13 397± 20
Playroom 3 38 14 48 12 14.9M 11.3M 0.5± 0.0 400± 15 1440± 63 401± 15
Playroom 5 74 14 82 12 15.2M 11.3M 0.9± 0.0 400± 13 1981± 25 401± 13
Playroom 7 126 14 124 12 15.2M 11.3M 1.5± 0.1 391± 6 2686± 114 393± 6
Playroom 9 194 14 174 12 15.2M 11.3M 2.3± 0.1 403± 14 3510± 121 406± 14

Composite (depot) 1809 1062 592 154 (> 19.0M) 488K 26.6± 0.3 84.9± 0.9 (> 5.8K) 111.5± 1.1
Composite (driverlog) 1809 336 592 263 (> 18.6M) 66K 22.6± 0.1 4.7± 0.3 (> 4.3K) 27.3± 0.4
Composite (satellite) 1809 94 592 157 (> 22.1M) 92K 23.4± 0.2 3.8± 0.4 (> 5.3K) 27.2± 0.4
Composite (zenotravel) 1809 37 592 36 1.7M 598 11.7± 0.1 1.1± 0.1 363± 2 12.7± 0.1

Minecraft (planks) 106 22 268 58 353 338 4.8± 0.1 1.3± 0.2 1.7± 0.2 6.1± 0.3
Minecraft (wool) 106 18 268 58 1.6M 6612 4.1± 0.1 1.7± 0.2 432.5± 21.5 5.8± 0.2
Minecraft (bed) 106 25 268 64 (> 14.2M) 1.1M 5.0± 0.1 173.1± 8.0 (> 4.3K) 178.1± 8.0

Table 1: Numeric planning results. Task scoping removes irrelevant operators and state variables, which leads to significant reductions in
evaluations and planning time. Boldface denotes better performance. Standard deviation is across 10 trials. (> N) denotes out-of-memory.

in PDDL 2.1. In this domain, the agent can move in cardi-
nal directions within a grid. Its goal is to pick up a ball and
throw it at a bell, but this requires first pressing a number of
green buttons, which in turn requires turning on a number
of lights. Both the lights and buttons are strewn throughout
the grid. In our experiments, we create progressively larger
problems with more buttons and lights, yet ensure that all
green buttons are turned on in the initial state. This renders
the lights causally-linked with the initial state, so all corre-
sponding actions that affect them are irrelevant.

The results, shown in Figure 2, demonstrate that task
scoping is able to keep planning time relatively constant
compared to the baseline, even as the size of the prob-
lem grows exponentially. Table 1 provides more detail, and
shows that even after accounting for the time required to per-
form task scoping, the scoped planner still finds plans more
quickly than the unscoped baseline.

Composite IPC Domains Task scoping is intended to
make open-scope planning tractable, but most existing
benchmarks are not open-scope: they have been carefully
hand-designed to exclude any task-irrelevant information.
While a full investigation of how to learn such an open-
scope model is beyond the scope of this paper, it is straight-
forward to construct an open-scope domain from existing
benchmarks: simply combine multiple domains together and
attempt to solve a problem from any one of them.

We construct such a model by combining the domain and
problem files of the Depots, DriverLog, Satellite,
and ZenoTravel domains from IPC 2002 (Long and Fox
2003) into a single composite domain file and 4 different
composite problem files. The problem files differ only in
their goal condition: each file contains a goal related to a
specific sub-domain, and the variables and actions related to
the other 3 domains are task-irrelevant.

The results in Table 1 indicate that task scoping can dra-
matically reduce the number of operators, which makes opti-
mal open-scope planning tractable in all four tasks, whereas
ENHSP typically runs out of memory without scoping.

Minecraft To examine the utility of task scoping on a
novel open-scope domain of interest, we created a planning
domain containing simplified dynamics and several tasks
from Minecraft and pictured in Figure 1. The domain fea-
tures interactive items at various locations in the map, which
the agent can destroy, place elsewhere, or use to craft differ-
ent items. Thus, the domain is truly open-scope: it supports
a large variety of potential tasks such that most objects and
actions are irrelevant to most tasks. Within this domain, we
wrote PDDL 2.1 files to express 3 specific tasks: (1) craft
wooden planks, (2) dye 3 wool blocks blue, and (3) craft
and place a blue bed at a specific location (which requires
completing both prior tasks as subgoals). The results show
that task scoping is able to recognize and remove a large
number of irrelevant operators depending on the task cho-
sen within this domain, as shown in Table 1. This dramati-
cally speeds up planning time for the wool-dyeing and bed-
making tasks.8

Classical Planning with Fast Downward
Having investigated our approach’s utility and performance
in a variety of numeric domains, we now turn to proposi-
tional domains. We are interested in examining whether our
approach is able to discover task-irrelevant information be-
yond what the translator component of the well-known Fast-
Downward planning system (Helmert 2006), and whether
removing such irrelevance can substantially improve plan-
ning time. To this end, we selected 4 benchmark domains
(Logistics, DriverLog, Satellite, Zenotravel) from the opti-
mal track of several previous iterations of the International
Planning Competition (IPC) (Long and Fox 2003; Vallati
et al. 2015; Gerevini et al. 2009; Long et al. 2000). Since
these domains do not contain any task-irrelevance on their
own (Hoffmann, Sabharwal, and Domshlak 2006), we mod-
ified 3 problem files from each domain with initial states and

8We also created a propositional version of this domain. Fast
Downward was not even able to complete translation on it; how-
ever, after removing irrelevant objects for each problem by hand,
planning took just a few seconds.

Problem Operators Expansions Evaluations Translate Scoping Planning Time (s) Total Time (s)
Unscoped Scoped Unscoped Scoped Unscoped Scoped Unscoped Scoped Unscoped Scoped

Driverlog 15 2592 2112 1392 1379 23K 21K 0.5± 0.0 3.6± 0.2 4.4± 0.1 3.1± 0.1 4.9± 0.2 7.2± 0.2
Driverlog 16 4890 3540 3618 3087 87K 60K 0.7± 0.0 8.3± 0.3 19.8± 0.8 8.1± 0.2 20.5± 0.8 17.1± 0.5
Driverlog 17 6170 3770 1058 985 29K 21K 0.8± 0.0 9.6± 0.3 22.0± 0.9 7.9± 0.2 22.8± 1.0 18.3± 0.5
Logistics 15 650 250 6395 6395 153K 118K 0.3± 0.1 0.7± 0.1 11.6± 0.2 3.3± 0.1 11.9± 0.2 4.2± 0.1
Logistics 20 650 250 15K 14K 381K 260K 0.3± 0.0 0.7± 0.0 26.9± 0.3 5.9± 0.1 27.2± 0.3 6.9± 0.2
Logistics 25 650 290 68K 67K 1.7M 1.3M 0.3± 0.0 0.8± 0.0 127.7± 1.4 34.8± 0.4 128.0± 1.4 35.8± 0.4
Satellite 05 609 339 1034 1034 63K 35K 0.3± 0.1 0.6± 0.1 2.0± 0.0 0.6± 0.0 2.3± 0.1 1.5± 0.0
Satellite 06 582 362 5766 4886 312K 166K 0.3± 0.1 0.5± 0.1 6.3± 0.1 1.7± 0.0 6.6± 0.1 2.5± 0.0
Satellite 07 983 587 125K 96K 10.5M 4.9M 0.4± 0.1 0.9± 0.1 333.1± 1.8 50.9± 0.3 333.4± 1.8 52.2± 0.3
Zenotravel 10 1155 1095 24K 24K 676K 655K 0.3± 0.0 2.4± 0.1 37.7± 0.7 33.2± 0.4 38.1± 0.7 35.9± 0.5
Zenotravel 12 3375 3159 4766 4735 222K 211K 0.6± 0.0 7.4± 0.1 45.5± 0.1 39.2± 0.3 46.0± 0.2 47.2± 0.3
Zenotravel 14 6700 6200 6539 6539 599K 588K 1.0± 0.0 14.2± 0.2 232.4± 18.5 193.2± 8.7 233.4± 18.5 208.3± 8.6

Table 2: Classical planning results. Task scoping removes irrelevant operators from every domain, which leads to significant reductions in
node expansions, evaluations, and planning time. Boldface denotes better performance. Standard deviation is across 10 trials.

goals set to introduce irrelevance while keeping the domain
files fixed. We grounded each problem to SAS+ using FD’s
translator, ran task scoping on the resulting SAS+ file, then
ran the FD planner with the LM-cut heuristic (Helmert and
Domshlak 2009) on this problem. We report number of op-
erators, planning time, and nodes expanded and evaluated
during search both with and without task scoping.

The results (see Table 2) reveal that task scoping can ab-
stract some of these problems beyond what FD’s translator
can accomplish alone and lead to a net speedup. Algorithm 1
reduces the number of operators significantly for all 4 do-
mains. This difference was mostly because FD’s translator
was unable to remove any causally-linked irrelevant vari-
ables or operators, though it was able to remove the simpler
types of irrelevance discussed in Section 3.

5 Related Work
The Fast Downward Planning System (Helmert 2006) per-
forms Algorithm 1-a from Section 3 as part of its knowledge
compilation process. This is backwards reachability analy-
sis on what the authors call the achievability causal graph.
The MERGESAMEEFFECTS extension can be interpreted
as computing abstract operators with fewer preconditions,
making the causal graph sparser. The causal links exten-
sion (lines 5–7 of Algorithm 1) also makes the causal graph
sparser by ignoring satisfied clauses of preconditions. The
sparser causal graph means that the backwards reachability
analysis terminates sooner, with fewer variables marked as
potentially relevant.

Another popular method for reducing the size of the
search space is the discovery of forward and backward in-
variants (a.k.a mutex constraints) (Bonet and Geffner 2001;
Edelkamp and Helmert 1999; Chen, Xing, and Zhang 2007;
Alcázar and Torralba 2015). Removing such invariants re-
moves unreachable states or dead-end states, and their as-
sociated operators, from the planning problem and has
been shown to dramatically improve search (Helmert 2006).
However, removing invariants essentially amounts to remov-
ing states and operators that cannot be part of any plan. By
contrast, our approach removes states that are very much
reachable from both the initial and goal states; removing
them does not preserve all plans, but rather all optimal plans.

Some recent work removes operators and correspond-
ing states (Fišer, Torralba, and Shleyfman 2019; Horčı́k
and Fišer 2021) that may be part of plans, but can still be
safely ignored to preserve at least one optimal plan. This
research is based on the central idea that some operators,
or transitions (Haslum, Helmert, and Jonsson 2013; Tor-
ralba and Kissmann 2015), in plans may be strictly domi-
nated by others, and thus can be safely removed. Our work
can be seen as focusing on efficiently removing a sub-
set of such dominated operators and states. Importantly,
these existing approaches depend on problems having a fi-
nite state space—they often rely on “factorizing” a problem
into smaller problems (Horčı́k and Fišer 2021; Torralba and
Hoffmann 2015) and performing potentially expensive op-
erations like symmetry-checking or constraint-satisfaction
over these smaller problems. By contrast, our approach can
handle infinite state spaces (as long as the number of vari-
ables and operators is finite), and Algorithm 1’s complexity
does not scale with the size of the state space, but rather with
the number of (grounded) variables and operators.

Yet another line of work involves using abstractions to de-
rive heuristics to guide search within the concrete problem
(Culberson and Schaeffer 1998; Nebel, Dimopoulos, and
Koehler 1997; Katz and Domshlak 2010). Some of these ap-
proaches can use richer families of abstractions than Algo-
rithm 1 (for example, Cartesian abstractions). However, such
approaches do not directly remove irrelevance from plan-
ning tasks, since the resulting abstractions do not necessar-
ily preserve any valid plans. Some of this research (Rovner,
Sievers, and Helmert 2019; Seipp and Helmert 2018) per-
forms an iterative abstraction refinement similar to our ap-
proach, but interleaves planning and abstraction refinement
whereas Algorithm 1 does not need to perform planning to
refine its simplification.

6 Conclusion
Task scoping enables existing domain-independent planners
to generalize to a much broader class of open-scope plan-
ning problems. By carefully removing irrelevant variables
and actions from consideration, our algorithm allows plan-
ners to overcome the exponential cost of planning with large
amounts of irrelevant information. This reduction in prob-

lem complexity leads to substantial improvements in plan-
ning time, even after accounting for the time spent deriving
such simplifications. Moreover, planners that use these sim-
plifications do not suffer any penalty in terms of plan qual-
ity, as all optimal plans are guaranteed to be preserved under
our algorithm. This work builds on the already impressive
legacy of domain-independent planners as general-purpose
problem solvers, and represents an important step on the
path to realizing truly general decision-making agents.

References
Alcázar, V.; and Torralba, A. 2015. A Reminder about the Im-
portance of Computing and Exploiting Invariants in Planning. In
ICAPS, 2–6. ISBN 9781577357315.
Bäckström, C. 1992. Equivalence and Tractability Results for
SAS+ Planning. In Proceedings of the 3rd International Confer-
ence on Principles of Knowledge Representation and Reasoning.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic search. Ar-
tificial Intelligence, 129(1): 5–33.
Chen, Y.; Xing, Z.; and Zhang, W. 2007. Long-Distance Mutual
Exclusion for Propositional Planning. In IJCAI, 1840–1845.
Chentanez, N.; Barto, A. G.; and Singh, S. P. 2005. Intrinsically
motivated reinforcement learning. In NIPS, 1281–1288.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases. Com-
putational Intelligence, 14(3): 318–334.
De Moura, L.; and Bjørner, N. 2008. Z3: An Efficient SMT Solver.
In Proceedings of the Theory and Practice of Software, 14th Inter-
national Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’08/ETAPS’08, 337–340. Berlin,
Heidelberg: Springer-Verlag. ISBN 3-540-78799-2, 978-3-540-
78799-0.
Edelkamp, S.; and Helmert, M. 1999. Exhibiting Knowledge in
Planning Problems to Minimize State Encoding Length. In ECP,
135–147.
Fišer, D.; Torralba, Á.; and Shleyfman, A. 2019. Operator Mutexes
and Symmetries for Simplifying Planning Tasks. In AAAI, 7586–
7593.
Fox, M.; and Long, D. 2003. PDDL2. 1: An extension to PDDL
for expressing temporal planning domains. Journal of artificial
intelligence research, 20: 61–124.
Gerevini, A. E.; Haslum, P.; Long, D.; Saetti, A.; and Dimopoulos,
Y. 2009. Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the planners.
Artificial Intelligence, 173(5-6): 619–668.
Haslum, P.; Helmert, M.; and Jonsson, A. 2013. Safe, Strong, and
Tractable Relevance Analysis for Planning. In ICAPS, 317–321.
Helmert, M. 2006. The Fast Downward Planning System. J. Artif.
Int. Res., 26(1): 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical Paths
and Abstractions: What’s the Difference Anyway? In ICAPS, 162–
169.
Hoffmann, J.; Sabharwal, A.; and Domshlak, C. 2006. Friends or
Foes? An AI Planning Perspective on Abstraction and Search. In
ICAPS, 294–303.
Horčı́k, R.; and Fišer, D. 2021. Endomorphisms of Classical Plan-
ning Tasks. In AAAI, 11835–11843.
James, S.; Rosman, B.; and Konidaris, G. 2022. Autonomous
Learning of Object-Centric Abstractions for High-Level Planning.
In International Conference on Learning Representations.

Katz, M.; and Domshlak, C. 2010. Implicit Abstraction Heuristics.
J. Artif. Intell. Res., 39: 51–126.
Konidaris, G. 2019. On the necessity of abstraction. Current Opin-
ion in Behavioral Sciences, 29: 1 – 7. SI: 29: Artificial Intelligence
(2019).
Korf, R. E. 1985a. Depth-first iterative-deepening: An optimal ad-
missible tree search. Artificial Intelligence, 27(1): 97–109.
Korf, R. E. 1985b. Macro-operators: A weak method for learning.
Artificial Intelligence, 26(1): 35–77.
Long, D.; and Fox, M. 2003. The 3rd international planning com-
petition: Results and analysis. J. Artif. Intell. Res., 20: 1–59.
Long, D.; Kautz, H.; Selman, B.; Bonet, B.; Geffner, H.; Koehler,
J.; Brenner, M.; Hoffmann, J.; Rittinger, F.; Anderson, C. R.; et al.
2000. The AIPS-98 planning competition. AI magazine, 21(2):
13–13.
Matloob, R.; and Soutchanski, M. 2016. Exploring Organic Syn-
thesis with State-of-the-Art Planning Techniques. In Proceedings
of Scheduling and Planning Applications woRKshop (SPARK).
McAllester, D. A.; and Rosenblitt, D. 1991. Systematic Nonlinear
Planning. In AAAI Conference on Artificial Intelligence.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring Irrele-
vant Facts and Operators in Plan Generation. In ECP, 338–350.
Refanidis, I.; Bassiliades, N.; Vlahavas, I.; and Greece, T. 2001. Ai
Planning For Transportation Logistics. Proceedings 17th Interna-
tional Logistics Conference.
Rovner, A.; Sievers, S.; and Helmert, M. 2019. Counterexample-
Guided Abstraction Refinement for Pattern Selection in Optimal
Classical Planning. In ICAPS, 362–367.
Scala, E.; Haslum, P.; Thiebaux, S.; and Ramirez, M. 2016.
Interval-Based Relaxation for General Numeric Planning. In ECAI,
655–663.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2020. Sub-
goaling Techniques for Satisficing and Optimal Numeric Planning.
J. Artif. Intell. Res., 68: 691–752.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided Carte-
sian Abstraction Refinement for Classical Planning. J. Artif. Int.
Res., 62(1): 535–577.
Silver, T.; Chitnis, R.; Curtis, A.; Tenenbaum, J.; Lozano-Perez, T.;
and Kaelbling, L. P. 2021. Planning with Learned Object Impor-
tance in Large Problem Instances using Graph Neural Networks.
In AAAI, 11962–11971.
Torralba, A.; and Hoffmann, J. 2015. Simulation-based admissible
dominance pruning. In IJCAI, 1689–1695.
Torralba, Á.; and Kissmann, P. 2015. Focusing on What Really
Matters: Irrelevance Pruning in Merge-and-Shrink. In SOCS, 122–
130.
Vallati, M.; and Chrpa, L. 2019. On the Robustness of Domain-
Independent Planning Engines: The Impact of Poorly-Engineered
Knowledge. In K-CAP, 197–204.
Vallati, M.; Chrpa, L.; Grześ, M.; McCluskey, T. L.; Roberts, M.;
Sanner, S.; et al. 2015. The 2014 international planning competi-
tion: Progress and trends. AI Magazine, 36(3): 90–98.

A Results using Fast Downward’s Merge and
Shrink Heuristic

The full configuration we used for the merge and shrink
heuristic in Table 3 is:

astar(merge and shrink(shrink strategy=
shrink bisimulation(greedy=false),
merge strategy=merge sccs
(order of sccs=topological,merge selector=
score based filtering
(scoring functions[goal relevance,dfp,
total order])),label reduction=
exact(before shrinking=true,
before merging=false),max states=50k,
threshold before merge=1))

B Detailed Experimental Domain
Descriptions

Below, we provide detailed descriptions of our different ex-
perimental environments. The PDDL files that were actually
used to run these domains in our experiments are included
with the provided code submission.

Numeric Planning Domains
Multi-Switch Continuous Playroom In this domain, an
agent controls 3 effectors (an eye, a hand, and a marker) to
interact with 6 kinds of objects (a light switch, a red button,
a green button, a ball, a bell, and a monkey). The agent exists
in a grid where it can take an action to move its effectors in
the cardinal directions. To interact with the light switch or
buttons, the agent’s eye and hand effectors must be at the
same grid cell as the relevant object. The light switch can
be turned on and off to toggle the playroom’s lights, and,
when the lights are on, the green button can be pushed to
turn on music, while the red button can be pushed to turn off
music. Once the music is on, regardless of the state of the
lights, the agent can move its eye and hand effectors to the
ball and its marker effector to the bell to throw the ball at the
bell and frighten the monkey. For this particular goal, if the
green buttons are already pressed in the initial state, then all
green buttons, as well as all light switches, are rendered task
irrelevant.

In our experiments, we created tasks within progressively
larger versions of the domain by progressively increasing
the number of pressed green buttons and light-switches. The
optimal plan for each of these tasks is for the agent to nav-
igate its eye and hand effectors to the ball, and navigate the
marker to the bell and then throw the ball at the bell to make
the monkey scream.

Composite IPC Domain This domain was constructed by
simply combining the numeric Satellites, Driverlog, Depots,
and Zenotravel domains from the 2002 IPC. The combina-
tion was done straightforwardly: the corresponding sections
of the different domain files (i.e. types, predicates,
functions, operators) were simply appended to form
one combined section in the new composite domain file. To
create the composite problem files, we chose one problem

file from each domain and combined the objects and initial
states. However, we did not combine the goals (i.e., we cre-
ated four separate files that had the same composite objects
and initial state, but had the goal of the corresponding orig-
inal problem file from each of the four respective domains).
Below, we provide a description of the dynamics of the indi-
vidual domains. The dynamics of the composite domain are
simply the union of those of all the individual domains.

Satellites In this domain, the agent controls a host of satel-
lites, each equipped with various instruments. The various
instruments can be switched on or off independently. They
can also be calibrated by pointing them at specific calibra-
tion targets. The instruments can also take images of specific
phenomena if they are calibrated. Finally, the satellite itself
can be angled to point at specific phenomena. Repositioning
satellites requires power, and taking readings uses up storage
space, both of which are finite. Problems involve procuring
images of specific phenomena with specific instruments and
pointing specific satellites in particular directions.

Driverlog In the DriverLog domain, the agent must orga-
nize drivers and trucks to transport packages to specific lo-
cations. Trucks can be loaded and unloaded with packages,
drivers can disembark and board other trucks, and trucks can
drive only between locations that are connected. Addition-
ally, driving or walking between locations incurs different
amounts of time. Problems involve moving certain drivers,
trucks and packages to specific locations with no constraints
on time.

Depots In the Depots domain, the agent must controls var-
ious vehicles and cranes that must coordinate together to
transport large containers from one location to another. Con-
tainers have weights and vehicles have defined load limits
that cannot be exceeded. Problems involve ensuring particu-
lar containers are left in specific locations.

Zenotravel In the ZenoTravel domain, the agent must
route people and airplanes to specific cities. People can
board or disembark from airplanes, and planes can fly
between connected cities. When flying, planes can either
choose to travel at a normal speed or ‘zoom’, which con-
sumes more fuel. However, zooming can only be done when
the number of passengers on the plane is smaller than a pre-
scribed amount. Moreover, planes can be refueled up to a
defined capacity. Aircrafts can also be refueled at any loca-
tion. Most problems require the agent to get various people
and planes to specific cities.

Minecraft In this domain, the agent controls Minecraft’s
central playable character and can move infinitely in either
the x or y directions (though all the interactable objects nec-
essary to complete any of the agent’s tasks are located in a
fairly small grid in front of the agent as pictured in Figure
1). The agent possesses a diamond axe and three ”blocks”
of wool in the initial state, and is standing in front of a grid
of plants (white flowers, oak saplings and blue flowers). The
agent can ”pluck” any plant by hitting it repeatedly and then
replant it at any location. There is also a set of items, namely
four diamonds and seven sticks, beside the grid of plants.

Problem Operators Expansions Evaluations Translate Scoping Planning Time (s) Total Time (s)
Unscoped Scoped Unscoped Scoped Unscoped Scoped Unscoped Scoped Unscoped Scoped

Driverlog 15 2,592 2,112 527,636 460,244 8,796,110 7,289,831 0.5± 0.0 3.6± 0.2 12.4± 0.5 9.4± 0.4 12.9± 0.5 13.5± 0.5
Driverlog 16 4,890 3,540 38,681 29,618 925,264 577,118 0.7± 0.0 8.4± 0.4 7.6± 0.2 4.5± 0.2 8.3± 0.3 13.6± 0.6
Driverlog 17 6,170 3,770 7,768,684 4,607,258 198,623,900 88,705,990 0.8± 0.0 9.5± 0.3 154.0± 4.8 50.2± 1.5 154.9± 4.9 60.6± 1.8
Logistics 15 650 250 5,951,997 672,736 140,607,200 11,646,320 0.3± 0.0 0.7± 0.0 73.7± 2.9 11.1± 0.8 74.0± 2.9 12.1± 0.8
Logistics 20 650 250 289,584 86,663 6,941,424 1,524,997 0.3± 0.0 0.7± 0.0 7.8± 0.4 8.6± 0.5 8.1± 0.4 9.5± 0.6
Logistics 25 650 290 11,437,240 1,944,960 265,871,100 35,198,000 0.3± 0.0 0.8± 0.0 148.0± 5.2 21.5± 1.1 148.3± 5.3 22.5± 1.1
Satellite 05 609 339 114 114 7,001 3,950 0.3± 0.1 0.6± 0.1 3.9± 0.2 4.5± 0.2 4.2± 0.2 5.5± 0.3
Satellite 06 582 362 21 21 1,084 684 0.3± 0.1 0.5± 0.1 1.0± 0.1 1.4± 0.1 1.4± 0.1 2.2± 0.1
Satellite 07 983 587 > 21,423,400 13,438,440 > 362,395,000 679,734,000 0.4± 0.1 0.9± 0.1 > 813.3± 4.2 203.2± 5.6 > 838.1± 18.3 204.5± 5.7
Zenotravel 10 1,155 1,095 1,466,718 1,031,280 37,782,140 25,677,010 0.3± 0.0 2.4± 0.0 22.1± 0.4 16.6± 0.3 22.5± 0.4 19.3± 0.4
Zenotravel 12 3,375 3,159 5,306,442 3,348,866 231,592,500 140,117,800 0.6± 0.0 7.3± 0.1 125.4± 4.9 72.3± 3.6 125.9± 5.0 80.2± 3.7
Zenotravel 14 6,700 6,200 > 6,462,279 > 5,392,118 > 168,064,648 > 130,752,144 1.0± 0.0 14.3± 0.3 > 644.6± 11.5 > 661.4± 17.0 > 644.6± 11.5 > 676.2± 17.1

Table 3: Results for our Fast Downward experiments using the Merge and Shrink heuristic. Entries beginning with > indicate
that Fast Downward did not find a plan, due to an out-of-memory error. Note that Satellite 07 could only be completed when
scoped, and that Logistics 25 was over 6 times as fast when using scoping.

The agent can ”pick” any of these items by moving to the
same location as them, and also place them at any other lo-
cation. Finally, there are two wooden blocks placed ahead
of the grid of plants. Unlike the plants or items, these blocks
are solid objects (like the wool blocks the agent already pos-
sesses) and will obstruct the agent’s path. However, the agent
can destroy these blocks with its axe, which them to be au-
tomatically picked up by the agent. As with any item, the
agent can then place them anywhere, whereupon they will
become solid objects again.

The items within the domain can be used to ”craft” var-
ious other items. If the agent possesses three blue flowers
(obtained by plucking), it can invoke an action to craft a blue
dye. This dye can be applied to any of the wool blocks to turn
them blue. The agent can also craft a diamond axe from three
diamonds and two sticks. For every wooden block the agent
possesses, it can choose to craft four wooden plank blocks.
Finally, the agent can craft a blue bed from three blue-dyed
woolen blocks and 3 planks. Note that all these crafted items
(except for the diamond axe) are items and can be picked and
placed at any location. The bed and wooden planks are solid
object blocks that obstruct the agent’s movement and must
be destroyed with the axe to be picked up and moved.

Within this domain, we defined three different tasks: (1)
dye three wool blocks blue, (2) mine wood using a dia-
mond axe and use this to craft wooden planks, and (3) craft
a blue bed and place it at a specific location. To complete
(1), the agent must pluck the three blue flowers from the
center of the grid of plants, craft blue dye, then apply the
dye to the wool blocks. To complete (2), the agent must use
its axe to break one of the two wooden blocks in the do-
main, then invoke an action to craft planks. To accomplish
(3), the agent must accomplish (1) and (2), then use three
dyed wool blocks and three wooden planks to craft a bed.
For task (1), the diamond axe sticks and other flowers are ir-
relevant by backwards reachability (Section 3). For task (2),
the diamond axe is causally-linked (Section 3), the flowers,
sticks and diamonds are irrelevant by backwards reachabil-
ity. For task (3), the wool blocks and the diamond axe are
causally-linked, and all plants other than the blue flowers, as
well as the diamonds and sticks are irrelevant by backwards
reachability.

IPC Domains
Here, we describe the dynamics of each of the planning do-
mains used for Section 5 of the main paper. Note that we did
not modify the dynamics of the domain whatsoever for our
experiments - we only modified specific problem instances
to introduce task irrelevance as described below:

Logistics In this well-known planning domain, the agent
is tasked with delivering various packages to specific des-
tination locations. To move the packages, the agent can
choose to load them into a plane and fly them between loca-
tions or load them into a truck and drive them. Trucks can
drive between any locations, but airplanes can only fly be-
tween locations with airports. This problem is rather similar
to the Depots domain described above in Section B.

We introduced irrelevance into problems by modifying
the goal so that most packages were already at their goal
locations in the initial state.

DriverLog This domain is exactly the same as that de-
scribed in Section B, except that there are no time costs in-
curred while driving or walking between locations.

We introduced irrelevance into problems by modifying
the goal so that most conditions were already satisfied in
the initial state.

Satellite This domain is exactly the same as that described
in Section B, except that satellites do not have power or data
storage limits.

We introduced irrelevance into these problems by modi-
fying the goal so that several of its conditions were already
satisfied or almost satisfied (e.g. specific instruments were
already calibrated and pointing at goal phenomena) in the
initial state. We also added additional instruments and satel-
lites but not specifying any goal conditions involving these,
rendering these irrelevant as well.

ZenoTravel This domain is exactly the same as that de-
scribed in Section B, except there is no limit on the number
of passengers that the plane can zoom with, or on the amount
of fuel a plane can hold.

We introduced irrelevance into problems by modifying
the goal so that many people and planes were already at their
goal locations in the initial state.

C Full PDDL for example domain
Domain File
(define (domain toy-example)

(:requirements :strips)

(:predicates
(has-food ?ag)
(has-sticks ?ag)
(has-stone ?ag)
(hungry ?ag)
(has-axe ?ag)

)

(:action hunt
:parameters (?ag)
:precondition (and

(not (has-food ?ag))
(not (hungry ?ag))

)
:effect (and (has-food ?ag))

)

(:action gather
:parameters (?ag)
:precondition (and

(not (has-food ?ag))
(hungry ?ag)

)
:effect (and (has-food ?ag))

)

(:action get_stick
:parameters (?ag)
:precondition (and

(not (has-sticks ?ag)))
:effect (and (has-sticks ?ag))

)

(:action get_stone
:parameters (?ag)
:precondition (and

(not (has-stone ?ag)))
:effect (and (has-stone ?ag))

)

(:action eat
:parameters (?ag)
:precondition (and

(has-food ?ag)
(hungry ?ag))

:effect (and
(not (has-food ?ag))
(not (hungry ?ag))

)
)

(:action make_axe
:parameters (?ag)

:precondition (and
(has-sticks ?ag)
(has-stone ?ag)
(not (has-axe ?ag))

)
:effect (and

(not (has-sticks ?ag))
(not (has-stone ?ag))
(has-axe ?ag)

)
)

(:action wait
:parameters (?ag)
:precondition (and

(not (hungry ?ag)))
:effect (and (hungry ?ag))

)
)

Problem File
(define (problem example-1)

(:domain toy-example)

(:objects steve)

(:init
(not (has-food steve))
(not (has-sticks steve))
(not (has-stone steve))
(not (hungry steve))
(not (has-axe steve))

)

(:goal (and
(not (hungry steve))
(has-axe steve)

)
)

)

