
Sensorimotor Abstraction Selection for Efficient,
Autonomous Robot Skill Acquisition

George Konidaris, Andrew Barto
Autonomous Learning Laboratory, Department of Computer Science, University of Massachusetts Amherst

Email: {gdk, barto}@cs.umass.edu

Abstract—To achieve truly autonomous robot skill acquisition,
a robot can use neither a single large general state space (because
learning is not feasible), nor a small problem-specific state space
(because it is not general). We propose that instead a robot should
have a set of sensorimotor abstractions that can be considered
small candidate state spaces, and select one that is appropriate
for learning a skill when it decides to do so. We introduce an
incremental algorithm that selects a state space in which to learn
a skill from among a set of potential spaces given a successful
sample trajectory. The algorithm returns a policy fitting that
trajectory in the new state space so that learning does not have
to begin from scratch. We demonstrate that the algorithm selects
an appropriate space for a sequence of demonstration skills on a
physically realistic simulated mobile robot, and that the resulting
initial policies closely match the sample trajectory.

I. INTRODUCTION

One of the most impressive features of human intelligence is
skill acquisition—the ability to create new skills, refine them
through practice, and apply them in new task contexts. This
ability to retain and refine solutions to important subproblems
and then employ them later lies at the heart of two important
aspects of human intelligence: the ability to perpetually im-
prove at difficult control tasks through practice, and the ability
to solve increasingly difficult problems.

The design and coordination of independent specialized
skill units (often called behaviors) is fundamental to modern
robotics [1]. However, a robot that must act in a complex
environment over an extended period of time should do more
than just use existing skills: it should learn new skills that
increase its capabilities and facilitate later problem solving.
Although robots exist that can learn a skill given a reward
function and hand-engineered state space, none exist today
that display truly autonomous skill acquisition.

Reinforcement learning [2] is a natural fit for the robot skill
acquisition problem, and with the recent development of the
options framework [3] provides a principled approach to hier-
archical learning and planning. However, most useful robots
have multiple sensors and actuators from which very many
features can be extracted. Real-time learning is extremely
difficult in high-dimensional spaces, only becoming feasible
when the learning problem is posed in the right space—one in
which a small number of relevant (often heavily preprocessed)
features are present, and a large number of irrelevant features
are not. Because of this, successful robot learning research
has made use of carefully designed problem-specific state
spaces, which are not appropriate for truly autonomous skill

acquisition. This poses an important question: when a robot
decides to learn a new skill, which state space should it use?

We propose that instead of having either a single very large
but general state space, or a single small but problem-specific
state space, an autonomous robot should be equipped with
a set of useful state spaces (in the form of sensorimotor
abstractions) from which it can select when it decides to
learn a new skill. We introduce an incremental algorithm that
selects an appropriate state space for a skill given a successful
sample trajectory. The algorithm returns a policy fitted to the
sample trajectory in the selected space, avoiding the need
to start learning from scratch. We use a physically realistic
simulated mobile robot to show that the algorithm selects
appropriate state spaces for a sequence of skills along a sample
trajectory, and that the resulting initial policies replicate the
sample trajectory in a form suitable for further learning.

II. BACKGROUND

A. The Options Framework

The options framework adds methods for learning and
planning using temporally extended actions, or options, to the
standard reinforcement learning framework [2]. An option, o,
is a control unit consisting of three components: an option
policy, πo, mapping state-action pairs over which the option
is defined to execution probabilities; an initiation set indicator
function, Io, which is 1 for states where the option can be
executed and 0 elsewhere; and a termination condition, βo,
giving the probability of the option terminating at each state
in which it is defined [3]. The option policy may be defined
in its own state space, So, which is usually a subset of the
space in which the primary problem is posed.

An option is an appropriate model for a robot skill unit
because it captures the essential elements required for control.
The option framework provides methods for learning and
planning using options as temporally extended actions, but it
also provides a framework for learning new options. A system
for learning new skills as options must include methods for
determining when to create an option or expand its initiation
set, how to define its termination condition, and how to learn
its policy. In this paper we assume an existing mechanism for
determining when an option should be created and determining
a reward function, Ro, that specifies the goal of the option.
The option policy can be learned using existing reinforcement
learning methods; for robotics these are most likely to be
policy gradient [4], [5] or actor-critic methods [2], in which



the policy is represented explicitly and an approximate value
function provides a gradient used to improve it.

B. Setting

To study autonomous skill acquisition—in the sense of
the robot deciding what skills to acquire, rather than the
designer—we must frame the skill acquisition problem in
the context of an autonomous robot control architecture. For
this we adapt the setting commonly used in hierarchical
reinforcement learning to the robot case, as follows:

1) The robot has an environmental context. The robot is in
the process of solving some task set in an environment
that is unknown, but that is drawn from a class of
environments whose shared properties are known. For
example, we may know that the robot must operate in
office buildings, but not the layout of any particular
office building it may encounter.

2) The robot has a task context. It is in the process of
solving some task, is equipped with a set of controllers—
e.g., a control basis [6]—sufficient to (possibly ineffi-
ciently or inconsistently) solve it, and uses a learning or
planning algorithm to sequence them to do so.

3) The robot has a control context. While solving the task,
the robot decides that something that it has just done
should be isolated and learned as a new skill.

Skill acquisition serves two purposes: making a subgoal
prominent (by making it reachable using a single decision) in
planning or learning, and making skill execution more efficient
or consistent over time.

This setting has two important implications not commonly
present in the robot learning literature. First, the robot is al-
ready capable of sequencing its existing controllers to achieve
the skill’s goal. In particular, it has a successful trajectory
sample that it can use to decide how to learn that skill, and
which can be used to initialize the skill policy to avoid learning
from scratch [7]. A similar successful trajectory (or set of
trajectories) could also be obtained by demonstration [8] or
teleoperation. Second, the robot may choose the range of the
learned skill. It may even choose to learn multiple skills to
achieve a given subgoal rather than a single monolithic skill,
learning each component skill in an appropriate space, and
retaining them for independent use elsewhere.

This setting is unusual for robot learning research. More
typically, a robot is given a starting point for learning, a
problem-specific state space, a reward function and no other
knowledge. The task of learning is to first discover a solution
(which often takes a great deal of time), and then to refine it.
We argue that very little human learning happens that way:
humans first discover an objective using their existing skill
repertoire and then create a skill to refine the initial solution,
using the ability to achieve it as a starting point for learning.

III. SENSORIMOTOR ABSTRACTION SELECTION

Given a robot, we may in principle attempt to use re-
inforcement learning techniques to learn a skill directly in
its sensor and motor spaces. However, for most interesting

robots learning this way is infeasible since both spaces will
have very high dimension. Fortunately, most of the skills we
would want robots to learn do not (at least initially) require
all of the robot’s sensor features and actuators. Instead, they
can be solved using only a small set of high level features
relevant for the task—for example, balancing skills require
only measures of velocity, acceleration and horizon, rather
than (for example) the entire output of a high-resolution
video camera. Following Huber and Grupen [6], we model
these sensorimotor abstractions as couplings of a set of input
features and a set of control variables.

A. Sensorimotor Abstractions as State Spaces

Sensorimotor abstraction i consists of two components.
A sensor abstraction program, σi, maps robot sensor state
(possibly including state history) to some small set of features,
si. A motor abstraction program, τi, maps the full robot
actuator space to a motor feature space, mi, and executes
commands in motor command space, ai (for example, mi

could be a set of joint angles and torques, and ai could be a
set of motor increment and decrement commands). Note that
σi and τi may involve significant high-level processing—for
example σi may perform high-level visual feature extraction.

When used as a sensorimotor abstraction, σi and τi can be
considered features that define a state-action space (Si, Ai),
where the state space Si includes the values of all of the
variables in si and mi, and Ai is the action space defined using
the variables in ai as features. Given some reward function
we can thus learn a policy π : Si → Ai, using a suitable
reinforcement learning algorithm. This is depicted in Figure 1.

Fig. 1. A control policy using a sensorimotor coupling.

A robot with a given set of sensorimotor abstractions
{(σ1, τ1), . . . , (σn, τn)} thus has a corresponding set of n
state-action spaces {(S1, A1), . . . , (Sn, An)} from which it
may choose to use to learn a new skill.

This formulation is very general, and covers more than just
sets of sensory features combined with low-level control. For
example, any parameterized policy can be considered a senso-
rimotor coupling. Similarly, each combination of assignments
to a set of deictic pointers forms a sensorimotor coupling.

B. Selecting a Space

We assume that we are given a sample successful skill
trajectory of t steps, represented by a sequence of t state-
action pairs and associated rewards (typically energy cost):



{(s1, a1, r1), (s2, a2, r2), . . . , (st, at, rt)}. Any sample trajec-
tory that achieves the goal of the skill should be sufficient,
although the closer to optimal the better. In addition, we can
run each sensor and motor abstraction program during the
sample trajectory and obtain a sample trajectory for each sen-
sorimotor coupling: {(si1, ai1, r1), (si2, a

i
2, r2), . . . , (sit, a

i
t, rt)},

where (sim, a
i
m, rm) is a state-action-reward tuple obtained

from sensorimotor abstraction i describing the mth state-action
pair in the trajectory.

We seek the sensorimotor abstraction best able to represent
a policy corresponding to the sample trajectory. Since the
appropriate sensorimotor abstraction will likely support a good
policy only locally—it may be insufficient to approximate a
policy for the entire trajectory—we emphasise later samples
(which are closer to the goal). This corresponds to finding
abstraction i that can represent policy πi mapping Si onto Ai

with lowest weighted error.
Since we assume a policy gradient style algorithm, we

must fit both a value function and the trajectory (and thus
policy) directly (a value-function-based algorithm would omit
the policy fit). We cover the value-function fit in detail since
the policy fit case is simply a weighted least squares fit.

Since we are given reward and assuming a linear function
approximation scheme for each sensorimotor abstraction, fit-
ting a value function amounts to performing a linear regression
using return as the dependent variable and the basis functions
from each Si as independent variables. We select the abstrac-
tion with the least mean squared weighted error over return.

Following Boyan [9] we can accomplish this incrementally.
We wish to minimize error term ei:

ei =
t∑

j=1

ρ(t−j)[w · Φi(sj)−Rj ]2, (1)

where Φi denotes the basis functions used by abstraction i,
w denotes the function approximation parameter vector, Rj
denotes return (summed discounted rewards) from step j and
ρ denotes the weighting factor (0 < ρ ≤ 1, settings closer
to 0 assign more recent returns higher weights). Setting the
derivative with respect to w of Equation 1 to zero implies:

t∑
j=1

ρ(t−j)wΦi(sj)(ΦTi (sj)) =
t∑

j=1

ρ(t−j)RjΦi(sj), (2)

which can be written as:

w = A−1b, (3)

where

A =
∑t
j=1 ρ

(t−j)Φi(sj)ΦTi (sj), and
b =

∑t
j=1 ρ

(t−j)RjΦi(sj).
(4)

We must also obtain a measure of ei to use when comparing
sensorimotor abstractions. Equation 1 can be expanded to:

ei =
n∑
j=1

ρ(t−j)[(w · Φi(sj))2 − 2Rjw · Φi(sj) +R2
j ]. (5)

Dropping the R2
j term since it is the same for all sensorimotor

abstractions, we obtain:

êi =
n∑
j=1

ρ(t−j)[(w · Φi(sj))2]− 2
n∑
j=1

ρ(t−j)[Rjw · Φi(sj)],

(6)
which can be written as:

êi = wTAw − 2w · b, (7)

with A and b defined as before. This leads to an incremental
(least-squares weighted TD(1)) algorithm for obtaining the
weights and associated error for a skill value function shown in
Figure 2. The algorithm should be run simultaneously for each
sensorimotor abstraction during the sample trajectory, and the
abstraction with the lowest returned error should be selected
for use in learning the skill.

function Sensorimotor Abstraction Fit (i, ρ) :

1) Initialization:
Set A0,b0, z0, c0 and d0 to 0

2) Iteratively handle incoming samples:
for each incoming sample (st, at):

At = ρAt−1 + Φi(st)Φ
T
i (st)

bt = ρbt−1 + ρrtzt−1 + rtΦi(st)
zt = ρzt−1 + Φi(st)

ct = ρct−1 + atΦi(st)
dt = ρdt−1 + a2

t

3) Compute weights and error: (after n samples)
w = An

−1bn

ê = wTAnw − 2w · bn

wπ = An
−1cn

eπ = wπ
TAnwπ − 2wπ · cn + dn

4) Return w, ê, wπ and eπ .

Fig. 2. An incremental algorithm for obtaining the value function weights
(w), policy parameters (wπ) and associated errors for a skill, given a
sensorimotor abstraction and a successful sample trajectory.

Although the algorithm returns error measures for both a
policy and a value function, our experience indicates that the
value function error measure is a better metric for state space
selection. This is because the sample policy may be easy
to reproduce (e.g., a constant velocity for a given period of
time) without reference to environmental features, whereas a
value function contains more useful information (usually at
least a value gradient) that the sensorimotor abstraction must
represent.

More than one sample trajectory may be available, or
required to produce robust selection. Given m samples, the
algorithm can be modified to run steps 1 and 2 (initialization
and incoming sample processing) separately for each sample
trajectory, and then sum the resulting variables. Steps 3 and
4 (computing and returning the parameter vector and error
measure) using the summed variables then performs a fit over
all m trajectories simultaneously.



The algorithm uses O(k2
i ) memory, O(k2

i ) time at each step
and O(k3

i ) time at selection for every sensorimotor abstraction
i using a function approximator with ki features. Once an
abstraction has been selected, its weight vector wπ represents
a policy obtained by fitting the sample trajectory, and is thus
hopefully a good initial policy from which to begin learning.

If the algorithm is too expensive for real-time execution, a
function approximator of the same type but with fewer basis
functions could be used for space selection (which reduces ki)
and then upgraded for learning, which reduces the per-sample
complexity but may still result in a usable initial policy.

IV. EXPERIMENTAL PLATFORM

A. Simulator

Fig. 3. Spangle, the physically realistic simulated robot used as an
experimental platform for state space selection. Spangle’s goal is to approach
the door it is facing, open it by first turning its handle and then pushing it
open, and then roll through it to exit the room.

Spangle, the simulated robot platform used in this section
(developed using Gazebo [10]), is shown in Figure 3. Spangle
moves using four wheels that can drive the robot’s base for-
ward or backward, or rotate in either direction. Manipulation
is achieved with an arm with 3 rotational degrees of freedom,
a wrist with 1 rotational degree of freedom and a gripper.
Spangle has a pair of cameras, a ring of 24 sonars, and gripper
touch and beam sensors for sensing its environment. Touch
sensors along its arm, wrist and gripper fingers are used for
collision detection.

Spangle’s task is to approach the door shown in Figure 3,
grasp its handle, turn it π

4 radians (whereupon it stays turned
and unlocks the door), push the door open and roll through it
to exit the room. A sample trajectory was hand-coded using
a sequence of PID controllers for the arm and timed velocity
settings for navigation.

B. Sensorimotor Couplings

Table I shows the sensor and motor abstraction programs
available to Spangle. For simplicity and ease of exposition
these have been kept to a small and relatively simple set.

These were combined into 20 sensorimotor abstractions,
with some combinations ruled out as unlikely to ever be
useful, and in some cases multiple sensor spaces combined
with a single motor space. Each abstraction was assigned
approximately 200 Radial Basis Functions, with each variable

Motor Program Controlled Variables
Arm Three arm revolute joint motors, revolute

wrist joint and gripper.
GraspedArm Three arm revolute joint motors, with the

wrist and gripper running a policy that main-
tains an existing grasp as the arm moves.

Navigation Speed and rate of turn.

Sensor Space Description
SonarObject Angles to the center, left, right and distance to

the center of an object detected by sonar.
SonarHole Angles to the center, left, right and distance to

the center of a hole detected by sonar.
Blob Height, width and (x, y) coordinates of an object

identified by color image segmentation. Bind-
ings are labelled Handle, Wrist and Door (for
expository purposes only; these are not given to
the robot).

BlobDistance Height, width and (x, y) coordinates for one
object (again identified by color image segmen-
tation), and height, width and (x, y) distance (to
the first object) for another.

Arm Joint positions for the arm and wrist.
GraspedArm Joint positions for the arm.

TABLE I
SPANGLE’S MOTOR PROGRAMS AND SENSOR SPACES.

tiled separately. The fixed size function approximation is
loosely based on estimated real time update constraints, so
that larger spaces allow fewer function approximation terms
per variable, resulting in an implicit form of regularization.

V. RESULTS

We split the sample trajectory into six component skills,
and consider the results of applying state space selection to
each component skill in turn. For simplicity, we assume a cost
function of −1 per timestep and a subgoal completion reward
of 1000 for reaching the end of a subskill, and set ρ = 0.95.

A. Selected Spaces

In the first segment, Spangle approaches the door, position-
ing itself to turn the handle. To visualize the change in error
as the trajectory is executed, Figure 4 shows two different
views of the trajectory, where the state space selection error
is computed at every timestep (instead of solely at the end).
Figure 4a shows the error for three representative state spaces.
The abstraction that uses the visual features of the robot’s
wrist has a consistently high error, indicating that it is not
a useful state space for this trajectory. The abstraction that
uses the visual features of the Handle starts out with a high
error (because the handle is too far away to be visible in the
beginning of the trajectory) but drops quickly as the robot
nears the door, indicating that it is only useful near the end
of the trajectory. Finally, the state space that uses the visual
features of the door has a consistently very low error.

Figure 4b shows the five lowest error state spaces in the last
50 samples of the trajectory. The state space with the lowest
error uses the visual features of both the door and the handle.
This is because once the robot nears the door, its image fills



0 20 40 60 80 100 120 140 160 180 200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time

E
rr

o
r

 

 

WristBlob−Navigation

DoorBlob−Navigation

HandleBlob−Navigation

160 165 170 175 180 185 190 195 200 205
0

5

10

15

20

25

30

35

Time

E
rr

o
r

 

 

DoorBlob−Navigation

DoorHandleBlob−Navigation

WristDoorBlob−Navigation

WristHandleBlob−Navigation

HandleBlob−Navigation

(a) (b)

Fig. 4. Error trend graphs for representative state spaces for (a) the segment
of the trajectory where Spangle approaches the door, and (b) the last 50
samples of that segment.

the robot’s visual field and thus its centroid and dimensions do
not change. Thus, it is best to use the door’s visual features
to approach the door, and then the handle’s visual features
when very near to the door. Note that the “WristDoorBlob”
abstraction has higher error than the “DoorBlob” abstrac-
tion even though “WristDoorBlob” includes every variable
in “DoorBlob”. This shows that implicit regularization does
indeed penalize larger state spaces.

The second segment, where Spangle reaches out and grasps
the handle of the door, is best accomplished using the visual
features of the handle and joint positions of the wrist, although
early in the trajectory the visual features of the handle and
wrist are better; this error trend is shown in Figure 5a. This
suggests that the visual features of the wrist are sufficient until
the wrist is very near the handle, but the actual grasp requires
more precise joint positions. Figure 5b shows that the same is
true for turning the handle.

220 240 260 280 300 320
0

2

4

6

8

10

12

14

16

18

Time

E
rr

o
r

 

 

ArmVarHandleBlob−Arm

WristHandleBlob−Arm

345 350 355 360 365 370 375 380 385 390 395

0

1

2

3

4

5

6

7

Time

E
rr

o
r

 

 

GraspedArmVarDoorHandleBlob−GraspedArm

WristHandleBlob−GraspedArm

GraspedArmVarHandleBlob−GraspedArm

(a) (b)

Fig. 5. Error trend graphs for representative state spaces for (a) the segment
of the trajectory where Spangle grasps the handle of the door, and (b) the
segment where Spangle turns the handle.

In the fourth segment Spangle releases the handle and posi-
tions its arm to push the door open. This is best accomplished
using the arm position variables and the visual features of the
handle. Thereafter, pushing the door open is best accomplished
using the visual features of the door and the handle, similarly
to the initial approach of the door.

Finally, once the door is open, the best state space to use
for rolling through it uses the features of a hole detected using
sonar. The error trend graph in Figure 6 shows that although

the visual features of the door are preferred initially, once the
robot is inside the doorway their error increases while the error
associated with using sonar does not. This demonstrates the
utility of multiple potential state spaces, since it shows that the
appropriate state space for going through a door is different
from the one most appropriate for approaching it.

620 640 660 680 700 720 740 760 780 800 820
−20

0

20

40

60

80

100

120

140

Time

E
rr

o
r

 

 

SonarHole−Navigation

DoorBlob−Navigation

Fig. 6. Error trend graphs for representative state spaces for the segment of
the trajectory where Spangle rolls through the open door.

B. Initial Policy Fits
Figures 7 and 8 show example sample and policy fit outputs

for the sample trajectory as Spangle approaches the door and
grasps the handle. Each individual graph shows the changes
in torque applied to an individual motor control variable. The
policy fits are a close match to the sample trajectory, and when
run in the simulator provide qualitatively similar behavior.
They are thus suitable initial policies for a reinforcement
learning algorithm, especially one that moves from a training
policy to a refined solution (e.g., Rosenstein and Barto [7]).

20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

Time

T
o
rq

u
e

20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

Time

T
o
rq

u
e

Fig. 7. Sample (thick line) and policy fit outputs while approaching the door.

220 240 260 280 300 320 340
−0.1

0

0.1

220 240 260 280 300 320 340
−0.1

0

0.1

220 240 260 280 300 320 340
−0.1

0

0.1

T
o
rq

u
e

220 240 260 280 300 320 340
−1

0

1

220 240 260 280 300 320 340

0

0.5

1

Time

Fig. 8. Sample (thick line) and policy fit outputs while grasping the handle.

C. Summary
These results demonstrate that even an everyday task such

as passing through a door can benefit from the use of several
different sensorimotor abstractions. The state space selection
algorithm selects an appropriate state space for each subtask
given a single sample trajectory, and fits a good initial policy
suitable for policy refinement using reinforcement learning.



VI. RELATED WORK

Existing reinforcement learning research on state space
reduction takes one of two broad approaches. In state abstrac-
tion (surveyed by Li, Walsh and Littman [11]), a large state
space is compressed by performing variable removal or state
aggregation while approximately preserving some desirable
property. However, without further information about the state
space we cannot examine the effects of abstraction on the
properties we are interested in—values or policies—without
an existing value function. For most useful robots, a value
function in such a space is infeasibly difficult to learn and
may not even be feasible to represent.

The major alternative approach is to initially assume that
no states or state variables are relevant, and then introduce
perceptual distinctions [12] by including them when it be-
comes evident that they are necessary for learning the skill.
This requires a significant amount of data and computation
to determine which variable to introduce, and then introduces
them one at a time, which may require too much experience
to be useful for real time learning.

Rather than starting with all features and removing some,
or starting with none and adding one at a time, we start with
a fixed number of feature sets and select one prior to learning.

The work most closely related to ours is van Seijen et
al. [13], where an agent with multiple representations is
augmented with actions to switch between them. This fits
neatly into the reinforcement learning framework, but does not
appear likely to scale up to large numbers of representations
since each new representation adds a new action to every state.

VII. DISCUSSION AND FUTURE WORK

Sensorimotor abstraction selection shifts the state design
problem from one of designing a problem-specific state space
to one of designing a set of state spaces sufficient to deal with
any skill that a robot might decide to learn. This results in
some significant benefits. We can use knowledge of the class of
tasks the robot faces to design and constrain those abstractions.
We can also include a large number of abstractions, since
selecting one is very much faster than learning a skill, and
if necessary the selection algorithm can be parallelized since
each abstraction can be processed completely independently.

However, space selection presents two disadvantages. First,
each state space is likely to support only local (low-range)
skills. For example, the skills used to approach a door, insert
a key, turn the key, grasp the handle, turn the handle, open the
door, and walk through it can all only be learned efficiently
using small but distinct state spaces. However, in the context of
an autonomous robot, learning a small set of component skills
that must be executed in sequence may be more useful than
a single monolithic skill, since each component skill can be
retained for later use. This requires a method for determining
the goal and range of each skill. In future work we aim to show
that learning modular component skills using skill chaining—
creating a sequence of skills where goal of each skill is to
allow the skill following it to be executed—is more efficient
than learning a single monolithic skill.

The second disadvantage is that the skills an autonomous
robot will be able to learn will be restricted by the set
of abstractions given to it. Although this is a significant
drawback it is still an improvement over entirely task-specific
learning. In future work, we intend to add a process that learns
sensorimotor abstractions over the lifetime of the robot.

VIII. CONCLUSION

We have shown that the sensorimotor abstraction selection
algorithm presented here selects appropriate state spaces for a
sequence of skills along a given sample trajectory.

Choosing an appropriate representation is critical to the
successful application of reinforcement learning to real world
problems, but to achieve true autonomy that choice must be
made by the robot, not its designer. Selecting from a set
candidate state spaces rather than relying on a single designed
state space shifts the design element out of the robot’s control
loop, thus removing an obstacle to autonomous learning.

ACKNOWLEDGMENTS

We would like to thank Sarah Osentoski, Steve Hart, Ashvin
Shah, Sridhar Mahadevan, Roderic Grupen and our reviewers
for their useful comments, and Valerie Caro for indispensible
technical support.

REFERENCES

[1] R. Arkin, Behavior-Based Robotics. Cambridge, Massachusetts: MIT
Press, 1998.

[2] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[3] R. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning,” Artificial
Intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[4] R. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems 12, 1999, pp. 1057–
1063.

[5] J. Baxter and P. L. Bartlett, “Direct gradient-based reinforcement learn-
ing,” in Proceedings of the International Symposium on Circuits and
Systems, 2000, pp. III–271–274.

[6] M. Huber and R. Grupen, “Learning to coordinate controllers - rein-
forcement learning on a control basis,” in Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence, 1997, pp. 1366–
1371.

[7] M. Rosenstein and A. Barto, “Supervised actor-critic reinforcement
learning,” in Learning and Approximate Dynamic Programming: Scaling
up the Real World, J. Si, A. Barto, A. Powell, and D. Wunsch, Eds. New
York: John Wiley & Sons, Inc., 2004, pp. 359–380.

[8] S. Schaal, “Learning from demonstration,” in Advances in Neural
Information Processing Systems 9, 1997.

[9] J. Boyan, “Least squares temporal difference learning,” in Proceedings
of the 16th International Conference on Machine Learning, 1999, pp.
49–56.

[10] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in Proceedings of the International
Conference on Intelligent Robots and Systems, 2004, pp. 2149–2154.

[11] L. Li, T. Walsh, and M. Littman, “Towards a unified theory of state
abstraction for MDPs,” in Proceedings of the Ninth International Sym-
posium on Artificial Intelligence and Mathematics, 2006.

[12] A. McCallum, “Learning to use selective attention and short-term mem-
ory in sequential tasks,” in From Animals to Animats 4: Proceedings of
the Fourth International Conference on Simulation of Adaptive Behavior,
1996.

[13] H. van Seijen, B. Bakker, and L. Kester, “Reinforcement learning with
multiple, qualitatively different state representations,” in Proceedings of
NIPS 2007 Workshop on Hierarchical Organization of Behavior, 2007.


