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Abstract— State uncertainty is a primary obstacle to effective
long-horizon robot task planning. State uncertainty can be
decomposed into spatial uncertainty—resolved using SLAM—
and uncertainty about the objects in the environment, formal-
ized as the object scouting problem and modeled using the
Locally Observable Markov Decision Process (LOMDP). We
introduce a new planning framework specifically designed for
object scouting with LOMDPs called the Scouting Partial-Order
Planner (SPOP), which exploits the characteristics of partial
order and regression planning to plan around knowledge gaps
the robot may have about the existence, location, and state of
relevant objects in its environment. Our results highlight the
benefits of partial-order planning, demonstrating its suitability
for object scouting due to its ability to identify absent but
task-relevant objects, and show that it outperforms comparable
planners in plan length, computation time, and execution time.

I. INTRODUCTION

Any robot attempting to complete a task in the real world

must successfully navigate through space and interact with

the objects in it. One major complicating factor is the state
uncertainty pervading this problem: the robot cannot simply

know the state of its environment, but must instead estimate

that state using its sensors. These sensors are typically

limited by range and line of sight, thus narrowing effective

perception to what is near the robot and unobstructed from
view. Further, individual sensor readings are themselves

unreliable, generally requiring uncertainty to be modeled

across the entire state, even parts that can be currently

measured. Modeling the uncertainty in large environments is

intractable, so roboticists often turn to modeling assumptions

and abstractions to isolate elements of uncertainty that can be

resolved using specialized methods. For example, uncertainty

in robot navigation is typically formalized as a SLAM

(Simultaneous Localization And Mapping) problem [1], [2].

Solutions to SLAM allow a robot to accurately estimate

its position and resolve spatial uncertainty despite the noise

from individual sensor measurements, enabling efficient nav-

igation within an envelope of known space.

When it comes to manipulation, uncertainty primarily has

to do with objects, and several works have focused on dif-

ferent subproblems stemming from that uncertainty. Object

search [3], [4], [5] focuses on navigation to resolve the

uncertainty about an object’s location. Active perception [6]

approaches assume that an object is within sensor range

and attempt to resolve the low-level uncertainty about object

classification and poses by repeatedly generating informative

sensor poses. However, mobile manipulation requires further

1Department of Computer Science, Brown University, RI, USA
∗Corresponding Author (Email: max merlin@brown.edu)
†Equal Advising

task-relevant reasoning and interactive perception [3]: many

objects may be present in the environment, but a robot should

focus on locating and observing those that would progress

it towards its goal. In the object scouting problem, a robot

must find, localize, and state estimate the objects relevant to
solving its task.

The Locally Observable Markov Decision Process [7]

(LOMDP) is a task-level formulation of object scouting.

Objects in a LOMDP are locally observable: no information

is gained about objects outside of sensor range and line of

sight, but the properties of those within can be effectively

and repeatedly sensed using closed-loop active perception,

allowing us to model them as fully observed. In addition,

manipulating an object requires that it be observed. The

result is a model in which the robot actively constructs

an envelope of known objects within which it can use an

efficient Markov task-level planner. This is analogous to the

way that SLAM constructs an envelope of known space

within which path planning is effective. When a task cannot

be solved with known objects, the robot must decide which

type of object to find (using object search) and then observe

(using active perception) next. Merlin et al. [7] showed that

the simplest LOMDP planner, which randomly selects the

object to search for next and replans when new objects

are observed, can solve much larger tasks than a POMDP

planner. That naive approach, while effective, leaves plenty

of room for improvement.
We introduce SPOP (Scouting Partial-Order Planner), a

planner that exploits the synergy between least-commitment

planning [8] and the LOMDP model to generate partial

plans that become progressively more complete as the robot

observes more objects. In particular, we exploit the freedom

offered by its action ordering system to create an initial

partial plan based only on the currently observed objects,

which will include gaps that must be resolved to obtain a

complete plan. The gaps in these partial plans provide task-

specific information about which missing objects would help

complete the plan. Once the relevant objects are found, a

subplan with the new information fills the gap in the plan,

obviating constant replanning.
Our key contributions are as follows:

• We propose SPOP, which supplies our object search

method with which objects are task relevant.

• Through a series of experiments, we highlight increased

performance in planning time when compared to our

previous LOMDP planner [7].

• In addition, we demonstrate a significant reduction in

plan length, such that the number of actions is more

comparable to the fully observable baseline.



II. BACKGROUND

State uncertainty is undesirable because it imposes enor-

mous computational costs on task-level planning. Neverthe-

less, it is unavoidable in mobile manipulation tasks, which

can be decomposed into uncertainty to do with navigation—

predominantly concerning space and resolved by SLAM—

and with manipulation—predominantly concerning object

state [9]. Just as SLAM resolves uncertainty about a robot’s

pose, enabling it to navigate through its world using a learned

map, the object scouting problem addresses uncertainty about

object existence, location, and attributes, which is central

to manipulation. In SLAM, the robot typically treats the

map as if it were exact and plans accordingly, updating

it as necessary if errors are encountered. So too in object

scouting, a reasonable strategy is to construct closed-loop

measurement routines that gain sufficient information about

an object within sensor range to subsequently assume that

its state is known for planning; if new objects or attributes

become observed or state estimates change, the robot can

simply replan.

Object scouting fuses two families of methods for object

sensing: object search and interactive object perception.

While object search focuses primarily on locating objects [4]

(which may require some degree of manipulation to observe

and localize objects [10]), object scouting must also reason

about the states of said objects to determine whether they

can be used to satisfy a task. Specifically, the robot must

decide which task-relevant objects it must find, and it must

resolve both their pose and their state. For example, consider

a robot that must fill a coffee machine with water using a

cup. Object search would focus solely on locating any cup

that exists in its environment, regardless of its state. Object

scouting must locate a cup that contains water; if the robot

can only locate an empty cup, it should subsequently plan

to make it full.

A. Locally Observable Markov Decision Processes

Locally Observable Markov Decision Processes (LOMDP)

are a task-level model of object scouting, which assumes

the existence of accurate closed-loop object state estimation

routines that can resolve uncertainty over a given object’s

state. The state of a LOMDP is factored into objects that

may be fully observed or unobserved. This means that the

set of observed objects inherently compose an incomplete

MDP model of the world state, which expands and updates as

the agent explores and discovers new objects. The LOMDP

also introduces a locality function that describes the set

of states that would allow the agent to observe a given

object. The locality function assists in transitioning an object

from unobserved to observed, as passing through an object’s

locality guarantees its being observed.1

Merlin et al. [7] introduced the basic framework for

planning only with what is known (i.e., observed) to the robot

1At the task level, an object remains known after observation. However,
at a lower level, achieving observability may involve repeated views, next-
best-view selection, modeling and updating state uncertainty, etc.

while searching for new, unknown objects to reinitialize plan-

ning with additional information. Since the robot may not

know the exact objects in a domain, it uses Skolem objects:

hypothetical objects of each object class that allow the robot

to reason about where it may find new objects if they existed.

When searching for a new object, the LOMDP provides the

agent with locales from which it can attempt to observe

each Skolem object. Each locale is a target region for the

object search routine that will terminate after observing any

objects present at the locale. As an alternative to the locale

system, objects can be found using any off-the-shelf object

search algorithm. LOMDPs are well suited for other problem

settings in which local observability can be exploited, such

as navigation in partially-mapped environments [11], [12],

[5] and guiding information-seeking actions [13], [14].

III. PLANNING FOR OBJECT SCOUTING

Object scouting using LOMDPs can solve tasks in partially

observable environments while only using Markov planners.

This is similar to exploring unknown environments via

SLAM, where a robot navigates within an explored region

while occasionally finding frontiers that expand its map. A

key requirement for effectively navigating partially known

environments is the ability to select frontiers likely to reveal

parts of the map that help the robot achieve its goal [15].

Similarly, LOMDPs allow an agent to represent its task

plan as a fully observable environment with “frontiers” that

expand the set of known objects. An effective planner should

identify a relevant object to search for that would expand the

known state, thus helping it complete the task. For example,

a planner tasked with making a sandwich should know to

look for bread and not milk. Because planning occurs within

a known envelope that expands over time, solvers must

interleave planning and execution; planning in the expanded

space occurs only after executing the actions that caused the

expansion. We use PDDL to represent the portion of the state

that is fully observed. Therefore, a planner of this type—as

laid out in [7]—comprises an inner planning loop and an

outer planning loop. The inner loop plans over a PDDL file

(representing only the known objects) to generate a plan. The

outer loop executes that plan and generates an updated PDDL

file that represents the state of all known objects, repeating

the inner planning step on the new model until the task has

been achieved.

A. Least-Commitment Planning

Solving the object scouting problem requires a robot to

plan with potentially insufficient information. This could be

done by generating incomplete plans, leaving gaps in the plan

that will be filled once new relevant information is gathered.

This aligns strongly with the idea of least-commitment plan-
ning [8], in which a solver logically decomposes a goal in a

nonlinear fashion to find a plan and resolve action ordering

as planning progresses. A least-commitment planner outputs

a plan represented as a tuple (A,O,L), where A corresponds

to the actions in the plan, O the ordering constraints between

each action a, and L the causal links between actions. An



example ordering constraint O is (a1 < a2, a1 < a3, a2 <
a3), meaning that action a1 must come before a2 and a3, and

action a2 must come before a3. An example link is (a
p1−→
1 a3),

denoting that action a1 fulfills predicate p1 for a3. Plans

may have multiple ways to resolve the ordering constraints.

For example, when making coffee, it might not matter if

water or coffee grounds are put in the coffee machine first,

only that they are both in before the machine is turned on.

Either of those plans is valid and consistent with the output

of the planner. That is why this method is referred to as

least commitment: it does not commit to a single order for

its actions, only a set of ordering constraints.

This method initializes the search from a goal given as

a set of predicates, which are added to the initial agenda

of the plan. One of those predicates is dequeued from the

agenda, and the planner attempts to connect it to an action

that will make that predicate true. First, it attempts to link

the predicate to an action already in the set of planned

actions A, including linking to the start state. If no valid

actions already in the plan can fulfill a predicate, it then

searches all possible actions and adds one that will resolve

the predicate at random. The ordering O and links L are

updated to reflect that this action fulfills a predicate and the

ordering constraints associated with it. If the newly added

action has any preconditions, those are added to the agenda

to be resolved later. Before recursing to resolve the next

predicate in the agenda, a link protection process must be

run on the new ordering and links to ensure that all actions

are causally consistent with each other.

Computation at each node is more expensive than a linear

forward or reverse planner due to its larger search space [16].

However, partial-order planners are well suited to the object

scouting problem, as they naturally handle information gath-

ering processes critical to resolving uncertainty [17] through

their task decomposition. Furthermore, even with a partial

plan, we would know which preconditions need to be fulfilled

and, in turn, the objects required to fulfill them, which can

still inform future planning processes [18], [19].

B. Scouting Partial-Order Planner (SPOP)

SPOP is a novel planning algorithm extending the POP

(Partial-Order Planner) algorithm by Weld [8]. As a plan-

space planner [17], POP plans from the goal, changing the

branching factor of planning from the number of actions

possible in a given state to the number of actions that

can fulfill a predicate. In addition, the nonlinear nature of

POP leaves gaps in plans that are resolved as the algorithm

progresses. These properties are highly desirable for the

object scouting problem. First, the nonlinearity of POP

allows the robot to find and resolve objects multiple times in

a given plan. Second, the object scouting problem is innately

high level: it exists in the context of a robot with high-level

manipulation skills and a model of its environment. When

planning at this level, many predicates are only resolved by

a single action. For example, when making a peanut butter

and jelly sandwich (Figure 1), there may exist a single skill

that will fulfill the predicate (sandwich-made), one that

will fulfill (jelly-spread), one for (PB-spread), etc.

Least-commitment planning is uniquely suited to efficiently

handle such instances.

In detail, our algorithm is first given a goal state defined as

a set of predicates, which are added to a queue or agenda of

predicate and action pairs. As in the POP algorithm, a plan is

represented as a tuple (A,O,L) (see Section III-A). At each

step of the algorithm, a tuple (pred,Aneed) is removed from

the agenda, where Aneed is an action that requires that pred
is true (line 2). During each iteration, the algorithm identifies

the actions that can satisfy pred and splits them into three

sets (lines 3–5): possible old, the list of actions already in

the plan A that contain pred as an effect; possible new, the

list of all fully instantiated actions that have pred as an effect

(This excludes any actions which take in any skolem object

as a parameter); and possible skolem, which considers

Skolem actions that contain pred as an effect.

Algorithm 1: Scouting POP

1 Input: plan (A,O,L), agenda agenda;

2 pred, Aneed = pop(agenda);

3 possible old ← get satisfying acts(A);
4 possible new ← get satisfying acts(all actions);
5 possible skolem ← get satisfying acts(skolem actions);

6 while not empty(agenda) do
7 if not empty(possible old) then
8 Aadd = pop(possible old);
9 O ← (Aadd, Aneed);

10 L ← (Aadd, pred, Aneed);

11 else if not empty(possible new) then
12 Aadd = pop(possible new);
13 A ← Aadd;
14 O ← (Aadd, Aneed);
15 L ← (Aadd, pred, Aneed);
16 for precond in get preconditions(Aadd) do
17 agenda ← (precond, Aadd);

18 else if not empty(possible skolem) then
19 Askolem = pop(possible skolem);
20 Aresolve = make resolve action(pred);
21 A ← Aresolve;
22 O ← Aresolve, Aneed);
23 L ← (Aresolve, pred, Aneed);
24 for precond in get preconditions(Askolem) do
25 if Is Skolem(precond) then
26 Afind = make find action(precond);
27 A ← Afind;
28 O ← (Afind, Aresolve);

29 else
30 return None;

31 plan valid = check consistency(ordering, links);
32 if plan valid then
33 return SPOP((A,O,L), agenda);

34 else
35 continue;

36 return (A,O,L), agenda;

If there are any actions in possible old, SPOP removes

an action from the list and attempts to add it to the plan

by updating ordering and link constraints (O and L, re-

spectively) with the new action Aadd (lines 7–10). After



Fig. 1. Generating resolve and find actions from a Skolem action.

attempting to add any action, the algorithm then verifies that

the ordering and link constraints are met using the same

process as in [8] (line 31). If the logical consistency check

is passed, SPOP recurses with the updated plan (A,O,L),
moving to resolve the next item (pred,Aneed) in the agenda.

If there are no actions already in the plan that can resolve

pred or if all existing actions fail, it then attempts to add a

new action from possible new to the plan. (A,O,L) are

again updated. However, when adding a new action, we must

then add all of the preconditions of that action to the agenda

(lines 11–17).

As this planner resolves its agenda of predicates, available

actions may be limited due to a lack of domain knowl-

edge. For example, in Figure 1, we try to add the action

Spread Jelly to the plan to resolve the (jelly-spread)
predicate, but Spread Jelly has three parameters that refer

to Skolem objects: objects that have not been found but could

exist. We call this a Skolem action (Askolem). If a valid

Skolem action exists in possible skolem, the planner does

not add it to the plan since the action is based on hypothetical

objects. Instead, it inserts a resolve action (Aresolve) linked

to pred, denoting that there is a possible future subplan to

resolve once more information is gathered (lines 20–23). It

then checks each parameter of the Skolem action to identify

what objects need to be found. For each parameter that refers

to a Skolem object, the planner creates a find action and

updates A and O (lines 26–28). In Figure 1, Spread Jelly
relies on three Skolem objects: sk-jelly, sk-sknife, and

sk-bread. A find action for each Skolem object is added

to the plan.

C. Plan Execution

The SPOP algorithm returns a plan that may consist of any

combination of fully instantiated actions, find actions, and

resolve actions. When executing the plan, fully instantiated

actions are performed as normal, but find and resolve
actions trigger specialized subroutines. The find action

behaves no differently than described in prior work [7]; it

identifies a locale that could be a potential source of the

required object, plans to reach said locale, and then returns

if the object is found or loops on to the next locale otherwise.

The resolve action is unique to our methodology. SPOP

generates resolve actions when it knows that a certain

predicate must be made true, but lacks the knowledge to

do so. When resolve is triggered, it generates a new

Fig. 2. When executing a resolve action, other causally linked predicates
may be threatened. To prevent this, any threatened links are added to the goal
of the resolve subplan, so that they are true after resolve is completed.

subplan with the current state as its starting state. The goal

of the resolve subplan must include the target predicate

that originally triggered the creation of the resolve action.

However, when creating the resolve action, the planner

would not know all of its effects, only that one of those

effects must be the predicate that caused its creation. When

planning within the resolve block, some actions may have

effects that threaten an existing causal link in the macro-

plan. Since the agent has already executed portions of the

plan, it cannot run the link protection process with those

links, since that requires the ability to rearrange the actions

that have already been taken. Instead, we use a process called

link reinforcement (illustrated in Figure 2). Before executing

a resolve subplan, SPOP checks to see if any causal links

are both supplied by an action before the resolve action

and required by an action after it. Any predicates that meet

these criteria are added to the goal of the resolve subplan so

that they are true when it terminates.

IV. EXPERIMENTS

This section experimentally compares our planning frame-

work with the existing LOMDP planner [7]. This baseline

(hereafter SFD for Scouting Fast-Downward) iteratively gen-

erates PDDL as more information about the scene is collected

and plans with Fast-Downward [20]. We highlight markedly

better performance across several metrics in simulated do-

mains, and showcase task executions using plans obtained

from each method in AI2THOR [21]. We report performance

using average planning time (in seconds) as well as average

plan length in terms of the number of actions.

A. RoboHome Domain

We first test our planner in a simulated household do-

main called RoboHome (inspired by environments such as

AI2THOR [21]). This domain was inspired by the peanut

butter and jelly (PBJ) domain from Merlin et al. [7], in

which there are several locales (i.e., a table, a counter, and

some number of cupboards), task-relevant objects (i.e., knife,

bread, jelly, and peanut butter), and some number of objects

irrelevant to the task. Objects may be found at each locale;

most locales, like cupboards, need to be opened before the

agent can observe what is inside. The robot is equipped



Fig. 3. Conceptual map of the RoboHome Domain (Section IV). Locations
that can be opened or closed (e.g., cabinets or cupboards) are shown in blue,
while other locations not exhibiting this property as shown in red (best
viewed in color). The simulated robot must use open actions on openable
locations to observe objects that may or may not be contained within them.

with skills for picking and placing objects, moving between

locations, and performing various actions that change the

state of each object, such as slicing cheese or spreading jelly

on bread. In addition to making a PBJ sandwich, five more

objectives have been added using new objects: 1) grilled
cheese sandwich, 2) omelet, 3) coffee, 4) setting a dining
table, and 5) find my phone. Each objective requires distinct

object subsets, where each object must be moved to key

locations to allow the robot to execute task-relevant actions.

For instance, the robot must move items to the countertop

for slicing objects with a knife: for toast, it must slice bread,

while for a grilled cheese sandwich, it must slice cheese. We

assume that a single instance of every object type is present,

regardless of the task the robot has to perform.

The map of the (purely symbolic) RoboHome domain

models is shown in Figure 3. At the start of each trial, objects

are randomly distributed across locations. This is guided by

a prior distribution, where each object can appear in 3 to

6 possible locations, one of which is most likely ( 65% of

the time). The only notable exception is the cellphone, which

has a uniform probability of appearing in any location. These

prior distributions are used as heuristics for planner settings

that use priors, indicated by -PR after the algorithm name.

Methods: In our experiments with the RoboHome domain,

we compare SPOP against SFD, with and without priors.

We also compare against a fully observed oracle. The five

algorithms are: 1) MDP: a planner with a fully observable

MDP; 2) SFD: our baseline planner solving the task under

local observability as in [7]; 3) SFD-PR: Same as SFD,

but with object locale priors find action; 4) SPOP: SPOP

solving the task under local observability; and 5) SPOP-PR:
same as SPOP, but with object locale priors. Both LOMDP

planners have access to the same find action. When given

priors, the find action has information on the most likely

locations of a given object. Otherwise, it searches at random

from among the 3-6 possible locations for that object.

Results: For every objective, both versions of SPOP

consistently outperform the baseline methods in average

computation time and average plan length (Figure 4). This

highlights the importance of identifying which objects to
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Fig. 4. Graphs showing average plan lengths and plan computation times
for each domain objective using both SFD (Scouting Fast-Downward) and
SPOP with and without priors over object location. SPOP-PR generally
outperforms other locally observable planners, with the exception of the
find my phone task, where priors are uniformly distributed.

locate for a given task. SFD often picks a task-irrelevant

object to locate and searches unhelpful locations. In addition,

searching for the wrong object drastically increases the

plan length and, more importantly, the number of times

the planner is run, leading to longer plan times. From the

perspective of real robot execution, the additional actions

due to incorrect find actions is undesirable, demanding both

time and energy to unnecessarily navigate and explore its

environment. In contrast, SPOP identifies useful objects to

search for, resulting in fewer actions needed to solve a given

task. This also results in fewer find actions, state updates,

and planning calls, beating SFD in runtime despite the higher

computational cost of the internal POP planning loop.

Although providing priors over object locations reliably

improves SPOP (SPOP-PR), it does not consistently improve

SFD (SFD-PR). We hypothesize that the lack of priors

over object locations does not affect the chances of SFD

accidentally finding a useful object when searching for an

incorrect one. The average plan length of SPOP-PR is only

slightly above the fully observable oracle (MDP), further

highlighting the benefits of identifying the right objects to

seek. The notable exception is find my phone, which requires

the agent to find and retrieve a cellphone that is equally likely

to be at any location. This means that when SFD picks a

task-irrelevant object to find, it is just as likely to find the

cellphone by accident as when SPOP correctly tries to find

the phone. This results in SPOP and SFD having similar plan

lengths, though SPOP remains firmly ahead in runtime.



TABLE I

RESULTS OVER 100 TRIALS ON THE PBJ DOMAIN WITH VARYING NUMBER OF OBJECTS AND CUPBOARDS

# Extra
Objects Planner 10 Cupboards 30 Cupboards 50 Cupboards

Avg. Time (s) Avg. Plan Length Avg. Time (s) Avg. Plan Length Avg. Time (s) Avg. Plan Length

0

MDP (Oracle) 0.11± 0.010 17.49± 1.330 0.12± 0.006 18.42± 0.890 0.16± 0.006 18.63± 0.787

SFD 1.17± 0.167 28.07± 2.914 2.90± 0.551 58.38± 10.405 5.74± 0.975 91.38± 14.961
SFD-PR 1.06± 0.253 25.00± 4.573 2.46± 0.861 48.68± 16.199 4.55± 2.072 70.98± 30.784
SPOP 0.65± 0.138 30.02± 3.137 1.57± 0.213 63.11± 9.483 3.36± 0.575 93.72± 18.381

SPOP-PR 0.59± 0.123 22.30± 3.611 0.97± 0.256 27.66± 12.420 1.46± 0.502 28.03± 16.794

5

MDP (Oracle) 0.12± 0.011 18.48± 1.878 0.14± 0.004 18.91± 1.055 0.19± 0.007 18.84± 0.813

SFD 1.36± 0.278 28.43± 3.613 3.54± 0.645 61.12± 9.538 6.81± 1.271 92.83± 15.733
SFD-PR 1.36± 0.348 27.04± 4.566 3.24± 0.931 54.12± 14.033 6.12± 2.021 80.67± 24.619
SPOP 0.81± 0.141 30.39± 2.954 2.01± 0.246 63.29± 9.378 4.38± 0.721 93.74± 15.719

SPOP-PR 0.68± 0.145 23.10± 3.842 1.19± 0.338 29.52± 13.072 1.78± 0.736 29.36± 17.667

10

MDP (Oracle) 0.12± 0.009 19.11± 2.044 0.15± 0.007 19.08± 1.098 0.21± 0.007 19.18± 0.757

SFD 1.48± 0.289 29.42± 3.346 3.98± 0.818 60.29± 9.623 7.58± 1.776 91.04± 18.369
SFD-PR 1.49± 0.327 28.10± 3.826 3.75± 0.978 55.42± 12.359 7.39± 2.143 85.21± 22.552
SPOP 0.93± 0.197 31.12± 3.796 2.44± 0.363 62.28± 9.395 5.56± 1.117 93.93± 18.780

SPOP-PR 0.78± 0.156 24.10± 3.961 1.36± 0.446 29.36± 12.879 2.33± 1.310 34.67± 23.973

20

MDP (Oracle) 0.14± 0.012 21.67± 2.555 0.19± 0.009 19.95± 1.592 0.27± 0.010 19.40± 1.092

SFD 1.73± 0.323 32.19± 3.987 4.84± 1.091 60.69± 10.567 9.50± 2.069 92.76± 15.763
SFD-PR 1.74± 0.399 31.07± 4.098 4.92± 1.0325 59.99± 9.957 9.52± 2.454 88.89± 18.601
SPOP 1.35± 0.231 33.83± 3.715 3.28± 0.637 61.39± 10.147 8.09± 1.609 94.33± 16.840

SPOP-PR 1.00± 0.211 26.52± 4.126 1.59± 0.500 27.22± 9.532 2.94± 1.664 33.25± 20.270

50

MDP (Oracle) 0.24± 0.019 26.69± 3.946 0.34± 0.011 22.07± 2.438 0.48± 0.028 20.67± 1.730

SFD 2.52± 0.466 37.20± 4.930 8.04± 1.819 64.56± 9.511 15.67± 3.598 94.82± 15.658
SFD-PR 2.49± 0.546 36.58± 4.951 7.42± 2.149 60.00± 12.262 16.04± 4.253 93.58± 17.614
SPOP 2.87± 0.551 38.62± 4.555 7.24± 1.354 65.35± 9.848 16.18± 3.926 92.89± 18.568

SPOP-PR 2.00± 0.508 31.01± 4.702 3.05± 1.503 30.79± 12.971 4.96± 3.358 31.72± 18.577

100

MDP (Oracle) 0.51± 0.028 35.91± 7.624 0.71± 0.027 24.67± 2.958 0.99± 0.043 22.67± 2.128

SFD 4.70± 0.877 46.84± 8.005 14.94± 3.543 65.92± 9.727 29.72± 8.615 94.20± 18.168
SFD-PR 4.43± 1.082 45.84± 8.319 15.17± 3.691 65.78± 10.593 30.34± 7.764 94.46± 16.698

SPOP 8.50± 1.930 48.67± 7.699 16.30± 3.021 68.03± 9.643 33.85± 6.939 96.84± 15.948
SPOP-PR 5.72± 1.944 40.50± 8.506 6.43± 3.365 33.59± 12.226 10.35± 8.331 35.70± 22.209

B. PBJ Domain

Since RoboHome had a fixed size, we re-implemented

the PBJ domain [7] such that SPOP and SFD (with and

without priors) can be evaluated as we scale domains up in

size (i.e., number of locations and objects). In this setting,

a robot is in a kitchen with some number of cupboards,

each containing some number of objects organized as a

stack, where reaching a certain object requires removing all

objects in front of it. The robot must locate and retrieve

bread, a knife, jelly, and peanut butter, move them to a table,

spread each ingredient onto two separate halves of bread,

and then form the sandwich. In addition to the four task-

relevant objects, we also include distraction objects irrelevant

to the task. As with RoboHome, each object is given locale

priors: objects could be found in any location, but each has a

randomly assigned most likely location (60%), a less likely

location (35%), and the remaining 5% of the distribution

uniformly spread over the remaining locations.

Results: Table I shows that SPOP-PR performs best in

almost all settings. The only exception is the domain with

10 cupboards and 100 objects, where both SFD and SFD-PR

outperform SPOP and SPOP-PR by a small margin in terms

of average computation time. This is because when there are

many objects packed in the same cupboard, SFD is more

likely to find the correct object despite choosing to search

for an incorrect one. However, as the number of cupboards

and objects increases, SFD quickly fails to scale while SPOP

continues to solve tasks within a handful of seconds (Table I).

As we involve more objects and locations, SFD-PR is more

likely to choose to find an incorrect object, and it is less

likely to find a correct object than SPOP-PR.

C. AI2THOR Domain

Finally, we use the AI2THOR [21] simulation environment

to visually compare the better versions of the SPOP and SFD

algorithms (i.e., SPOP-PR and SFD-PR). We designed the

following tasks for AI2THOR: 1) making toast; 2) making
an omelet; 3) making coffee; and 4) making breakfast, which

is a combination of all three (3) tasks. Images from the

perspective of the virtual agent are in Figure 5. We report

two metrics in Table II: average plan execution time (in

seconds) and average plan length. In general, we observed

that SPOP-PR computes shorter plans, which resulted in



1. Move to Fridge 2. Open Fridge 3. Move to Cabinet

4. Open Cabinet 5. Move Egg to Cooking Pan 6. Crack Egg in Cooking Pan

Fig. 5. A series of snapshots from AI2THOR [21], each taken after the
agent has executed several actions to crack an egg. The agent first moves
to the fridge and opens it, finding no egg. It then moves to the next locale,
a cabinet, which does have the egg inside. Now that the egg is found, it
brings the egg to the pan and cracks the egg.

TABLE II

RESULTS OVER 50 TRIALS ON THE AI2THOR [21] DOMAIN

Objective Planner Avg. Time (s) Avg. Plan Length

Coffee SPOP-PR 40.66± 13.121 11.98± 2.43
SFD-PR 66.974± 36.469 19.30± 9.22

Toast SPOP-PR 68.750± 11.822 16.70± 1.30
SFD-PR 106.013± 35.837 26.12± 8.17

Omelet SPOP-PR 104.040± 17.788 27.88± 1.24
SFD-PR 105.953± 28.577 30.98± 6.62

Breakfast SPOP-PR 176.4096± 18.9404 41.86± 2.08
SFD-PR 175.349± 33.088 49.56± 6.24

shorter average execution times. However, we observed that

the only exception was in the breakfast task; this is because

the agent is increasingly likely to explore all locales, as more

objects are needed to complete all three objectives in one go.

V. CONCLUSIONS

Our work proposes a new planning algorithm, the Scouting

Partial-Order Planner (SPOP), designed to solve the object

scouting problem as first introduced by Merlin et al. [7]. We

demonstrate that this algorithm, which builds upon least-

commitment planning, is particularly well suited to this

problem formulation. SPOP synergizes uniquely with the

object scouting problem by enabling the creation of partial

plans that delay planning over information gaps, as well

as providing useful subgoal heuristics for what relevant

information must be found in order to fill those gaps.

Our experiments show that SPOP is quick at finding low-

cost solutions across several domains and objectives, and

SPOP scales significantly better with larger domains than

the previous methods as a result of exploiting the nature of

partial-order planning.
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