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Abstract— This paper provides a brief overview of three
recent contributions to robot learning developed by researchers
at the University of Massachusetts Amherst. The first is the
use of policy search algorithms that exploit new techniques
in nonparameteric heteroscedastic regression to directly model
policy-dependent distribution of cost [12]. Experiments demon-
strate dynamic stabilization of a mobile manipulator through
learning flexible, risk-sensitive policies in very few trials. The
second contribution is a novel method for robot learning
from unstructured demonstrations [19] that permits intelligent
sequencing of primitives to create novel, adaptive behavior. This
is demonstrated on a furniture assembly task using the PR2
mobile manipulator. The third contribution is a robot system
that autonomously acquires skills through interaction with its
environment [6]. Material in this paper has been published
previously in refs. [8, 10, 11, 13, 14, 15, 19, 20] from which
additional details are available.

I. INTRODUCTION

Recent contributions to robot learning developed by re-
searchers at the University of Massachusetts Amherst illus-
trate new methods for learning and exploiting behavioral
modularity. The first is the use of policy search algorithms
that exploit new techniques in nonparameteric heteroscedas-
tic regression to directly model policy-dependent distribution
of cost [12]. The learned cost model is used as a critic for
performing risk-sensitive gradient descent. Experiments are
presented in dynamic stabilization and manipulation with
a mobile manipulator that demonstrate learning of flexible,
risk-sensitive policies in very few trials. The second contri-
bution is a novel method for robot learning from unstructured
demonstrations [19]. This method uses a Beta Process Au-
toregressive Hidden Markov Model to automatically segment
demonstrations into motion categories, which are then further
subdivided into semantically grounded states of a finite-state
automaton to permit intelligent sequencing of primitives to
create novel, adaptive behavior. This is demonstrated on a
furniture assembly task using the PR2 mobile manipulator.
The third contribution is a robot system that autonomously
acquires skills through interaction with its environment [6].
The robot learns to sequence the execution of a set of innate
controllers to solve a task, extracts and retains components
of that solution as portable skills, and then transfers those
skills to reduce the time required to learn to solve a second
task.
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II. BAYESIAN OPTIMIZATION FOR VARIABLE
RISK CONTROL

Experiments on physical robot systems are typically asso-
ciated with significant practical costs, such as experimenter
time, money, and robot wear and tear. However, such experi-
ments are often necessary to refine controllers that have been
hand designed or optimized in simulation. For many nonlin-
ear systems, it can even be infeasible to perform simulations
or construct a reasonable model. Consequently, model-free
policy search methods have become one of the standard
tools for constructing controllers for robot systems. These
algorithms are designed to minimize the expected value
of a noisy cost signal by adjusting policy parameters. By
considering only the expected cost of a policy and ignoring
cost variance, the solutions found by these algorithms are
by definition risk-neutral. However, for systems that operate
in a variety of contexts, it can be advantageous to have a
more flexible attitude toward risk. Bayesian optimization is
a promising approach to this problem.

A. Variational Bayesian Optimization

Bayesian optimization algorithms are a family of global
optimization techniques that are well suited to problems
where noisy samples of an objective function are expensive
to obtain [2]. Recently there has been increased interest in
applying Bayesian optimization algorithms to solve model-
free policy search problems [13, 18, 22]. In contrast to well-
studied policy gradient methods [21], Bayesian optimization
algorithms perform policy search by modeling the distri-
bution of cost in policy parameter space and applying a
selection criterion to globally select the next policy. Selection
criteria are typically designed to balance exploration and ex-
ploitation with the intention of minimizing the total number
of policy evaluations.

Previous implementations of Bayesian optimization for
policy search have assumed that the variance of the cost
is the same for all policies in the search space, which is
not true in general. Kuindersma [12] (see also ref. [15])
introduced a new Bayesian optimization algorithm, the Varia-
tional Bayesian Optimization (VBO) algorithm, that relaxes
this assumption and efficiently captures both the expected
cost and cost variance during the optimization. Specifically,
Kuindersma extended a variational Gaussian Process regres-
sion method for problems with input-dependent noise (or het-
eroscedasticity [17]) to the optimization case by deriving an
expression for expected risk improvement, a generalization of
the commonly used expected improvement (EI) criterion for
selecting the next policy, and incorporating log priors into
the optimization to improve numerical performance. This



Fig. 1. The uBot-5 demonstrating a whole-body pushing behavior.

selection criterion includes a parameter, κ, that controls the
system’s risk sensitivity by weighting the standard deviation
of the cost function in the risk-sensitive objective, with larger
values of κ indicating more sensitivity to risk. Confidence
bounds were also considered to produce runtime changes to
risk sensitivity, yielding a generalized expected risk improve-
ment criterion that balances exploration and exploitation in
risk-sensitive setting.

B. Balance Recovery with the uBot-5

The uBot-5 (Fig. 1) is an 11-DoF mobile manipulator de-
veloped at the University of Massachusetts Amherst [3, 16].
The uBot-5 has two 4-DoF arms, a rotating trunk, and two
wheels in a differential drive configuration. The robot stands
approximately 60 cm from the ground and has a total mass
of 19 kg. The robot’s torso is roughly similar to an adult
human in terms of geometry and scale, but instead of legs,
it has two wheels attached at the hip. The robot balances
using a linear-quadratic regulator (LQR) with feedback from
an onboard inertial measurement unit to stabilize around the
vertical fixed point. The LQR controller has proved to be
very robust throughout five years of frequent usage and it
remains fixed in the experiments described here.

In previous experiments [13], the energetic and stabilizing
effects of rapid arm motions on the LQR stabilized system
were evaluated in the context of recovery from impact
perturbations. One observation made was that high energy
impacts caused a subset of possible recovery policies to have
high cost variance: successfully stabilizing in some trials,
while failing to stabilize in others. Kuindersma [12] extended
these experiments by considering larger impact perturbations,
increasing the set of arm initial conditions, and defining
a policy space that permits more flexible, asymmetric arm
motions.

The robot was placed in a balancing configuration with
its upper torso aligned with a 3.3 kg mass suspended from
the ceiling (Fig. 2). The mass was pulled away from the
robot to a fixed angle and released, producing a controlled
impact between the swinging mass and the robot, resulting
in an impact force approximately equal to the robot’s total
mass. The robot was consistently unable to recover from this
perturbation using only the wheel LQR (see the rightmost
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Fig. 2. The uBot-5 situated in the impact pendulum apparatus.

column of Fig. 3). (The robot was attached to the ceiling
with a loose-fitting safety rig designed to prevent it from
falling completely to the ground, while not affecting policy
performance.)

This problem is well suited for model-free policy opti-
mization since there are several physical properties, such as
joint friction, wheel backlash, and tire slippage, that make
the system difficult to model accurately. In addition, although
the underlying state and action spaces are high dimensional
(22 and 8, respectively), low-dimensional policy spaces that
contain high-quality solutions are relatively straightforward
to identify. In particular, the policy controlled each arm
joint according to a parameterized exponential trajectory.
The pitch (dorsal) motions were specified separately for each
arm and the lateral motions were mirrored, which reduced
the number of policy parameters to 3. After each trial,
the arms were retracted to a nominal configuration using a
fixed, low-gain linear position controller. The cost function
was designed to encourage energy efficient solutions that
successfully stabilized the system.

After 15 random initial trials, VBO was applied with EI
selection for 15 episodes and randomized confidence bound
(CB) selection for 15 episodes resulting in a total of 45 policy
evaluations (approximately 2.5 minutes of total experience).
After training, four policies were evaluated with different
risk sensitivities selected by minimizing the CB criterion
with κ = 2, κ = 0, κ = −1.5, and κ = −2. Each
selected policy was evaluated 10 times, and the results are
shown in Fig. 3. The sample statistics confirm the algorithmic
predictions about the relative riskiness of each policy. In
this case, the risk-averse and risk-neutral policies were very
similar (no statistically significant difference between the
mean or variance), while the two risk-seeking policies had
higher variance (for κ = −2, the differences in both the
sample mean and variance were statistically significant).

For κ = −2, the selected policy produced an upward
laterally-directed arm motion that failed approximately 50%
of the time. A slightly less risk-seeking selection (κ =
−1.5) yielded a policy with conservative low-energy arm
movements that was more sensitive to initial conditions than



(a) Low-risk policy, κ = 2.0

(b) High-risk policy, κ = −2.0

Fig. 4. Time series (time between frames is 0.24 seconds) showing (a) a trial executing the low-risk policy and (b) two trials executing the high-risk policy.
Both policies were selected using confidence bound criteria on the learned cost distribution. The low-risk policy produced an asymmetric dorsally-directed
arm motion with reliable recovery performance. The high-risk policy produced an upward laterally-directed arm motion that failed approximately 50% of
the time.
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Fig. 3. Data collected over 10 trials using policies identified as risk-
averse, risk-neutral, and risk-seeking after performing VBO. The policies
were selected using confidence bound criteria with κ = 2, κ = 0, κ =
−1.5, and κ = −2, from left to right. The sample means and two times
sample standard deviations are shown. The shaded region contains all trials
that resulted in failure to stabilize. Ten trials with a fixed-arm policy are
plotted on the far right to serve as a baseline.

the lower risk policies. This exertion of minimal effort can be
viewed as a kind of gamble on initial conditions. Fig. 4 shows
example runs of the risk-averse and risk-seeking policies.

Varying risk sensitivity based on runtime context is a
potentially powerful way to generate flexible control in robot
systems. Kuindersma [12] considered this problem in the
context of model-free policy search, where risk-sensitive
parameterized policies can be selected based on a learned
cost distribution. The experimental results suggest that VBO
is an efficient and plausible method for achieving variable
risk control.

III. LEARNING FROM UNSTRUCTURED
DEMONSTRATIONS

Robot learning from demonstration (LfD) [1] has become
a popular way to program robots. LfD allows users to teach a
robot by example, often eliminating the need for specialized
knowledge of the robotic system and taking much less time
than it would take an expert to design a controller by hand.
While much LfD research has focused on tasks that can
be represented by monolithic policies, some recent work
has focused on automatically segmenting demonstrations
into simpler primitives that can be sequenced to perform
complex, multi-step tasks [5, 11, 20]. Such segmentations
can be performed by humans, but this may require special-
ized knowledge, such as the robot’s internal representations
and kinematic properties. Furthermore, manually managing,
memorizing, and reusing a library of primitives becomes
intractable for a human user as the library grows in size.
Thus, it is advantageous for primitives to be automatically
segmented and managed.

Niekum et al. [19, 20] developed a novel method to
sequence automatically discovered primitives that makes
minimal assumptions about the structure of the task and
can sequence primitives in previously unseen ways to create
new, adaptive behaviors. Specifically, a Beta Process Au-
toregressive Hidden Markov Model (BP-AR-HMM) [4] is
used to segment continuous demonstration data into motion
categories with associated coordinate frames. Tests are then
performed on the motion categories to further subdivide
them into semantically grounded movement primitives that
are used to create a finite-state representation of the task.
In this representation, each state has an associated set of
exemplars of the relevant movement primitive, plus a trained
classifier used to determine state transitions. The resulting



finite-state automaton (FSA) can then be used to replay a
complex, multi-step task. Further, the method allows the user
to provide new demonstrations that can fill in the gaps in
the robot’s knowledge through interactive corrections at the
time of failure. Together, this allows for iterative, incremental
learning and improvement of a complex task from unseg-
mented demonstrations. Niekum et al. [19] illustrated the
utility of this system on a complex furniture assembly task
using a PR2 mobile manipulator.

A. Demonstration, Segmentation, and FSA Construction

Task examples are provided to the robot via kinesthetic
demonstrations, in which the teacher physically moves the
robot to perform the task. After a set of demonstrations
has been collected in various configurations, the robot pose
information is segmented and labeled by the BP-AR-HMM.
The segmentation process provides a set of segment lists and
corresponding label vectors. Each integer label corresponds
to a unique motion category discovered by the BP-AR-HMM
segmentation. The clustering method described in Niekum et
al. [20] is used to automatically discover coordinate frame
assignment lists.

An FSA that represents the task can begin to be con-
structed by creating nodes that correspond to the labels.
Each node is assigned the set of all exemplars that have the
same label, and the labels of the previous and next segments
are also recorded. A transition matrix is then constructed,
where each entry is set to 1 if there exists a corresponding
directed transition and 0 otherwise. When the structure of
the FSA is finalized, a classifier is trained for each node
that has multiple descendants. This is used as a transition
classifier to determine which node to transition to next, once
execution of a primitive at that node has taken place. Given a
novel situation, the FSA can be used to replay the task. The
current observation is classified to determine which node to
transition to next.

At any time during execution, the user can push a button
on the joystick to stop the robot so that an interactive cor-
rection can be made. The robot immediately stops execution
of the current movement and switches modes to accept a
kinesthetic demonstration from the user. From the beginning
of execution, the robot has been recording pose data in case
of an interactive correction, and it continues to record as the
user provides a demonstration of the remainder of the task.
After any number of replays and interactive corrections have
taken place, the corrections are integrated with the existing
data for improved performance.

B. Experiment: demonstrations, corrections, and replay

Niekum et al. [19] evaluated the system on a furniture
assembly task, using a PR2 mobile manipulator to partially
assemble a small off-the-shelf table. The table consists of a
tabletop with four pre-drilled holes and four legs that each
have a screw protruding from one end. Eight kinesthetic
demonstrations of the assembly task were provided, in which
the tabletop and one leg were placed in front of the robot
in various positions. In each demonstration, the robot was

made to pick up the leg, insert the screw-end into the hole
in the tabletop, switch arms to grasp the top of the leg, hold
the tabletop in place, and screw in the leg until it is tight.
An example of this progression is shown in Fig. 5.

The demonstrations were then segmented and and an
FSA was built. At this stage, task replay was sometimes
successful, but several types of errors occurred intermittently.
Two particular types of errors that occurred were (a) when
the table leg was at certain angles, the robot was prone to
missing the grasp, and (b) when the leg was too far from
the robot, it could not reach far enough to grasp the leg
at the desired point near the center of mass. In both cases
interactive corrections were provided to recover from these
contingencies. In the first case, a re-grasp was demonstrated,
and then the task was continued as usual. In the second
case, the robot was shown how to grasp the leg at a closer
point, pull it towards itself, and then re-grasp it at the desired
location.

After the interactive corrections were collected, the old
data were re-segmented with the two new corrections and
used to re-build the FSA. Using this new FSA, the robot was
able to recover from two types of errors in novel situations.
Finally, Fig. 6 shows a full successful execution of the task
without human intervention, demonstrating that these error
recovery capabilities did not interfere with smooth execution
in cases where no contingencies were encountered.

Flexible discovery and sequencing of primitives is essen-
tial for tractable learning of complex robotic tasks from
demonstration. Sequencing primitives with an FSA allows
exemplars of movement primitives to be grouped together in
a semantically meaningful way that attempts to maximize
data reuse, while minimizing the number of options that
the agent must choose amongst at each step. This approach
makes the sequencing classification task easier, while also
providing a mechanism for semantically grounding each
primitive based on state visitation history and observed
characteristics like coordinate frame, length, and successor
state. In the furniture assembly task using a PR2 mobile
manipulator, it was shown that the robot could learn the basic
structure of the task from a small number of demonstrations,
which were supplemented with interactive corrections as the
robot encountered contingencies that would have lead to
failure. The corrections were then used to refine the structure
of the FSA, leading to new recovery behaviors when these
contingencies were encountered again, without disrupting
performance in the nominal case.

IV. AUTONOMOUS SKILL ACQUISITION

A core research goal in robot learning is the development
of skill discovery methods whereby agents can acquire
their own high-level skills through interaction with the en-
vironment in the context of solving problems and in the
absence of explicit instruction or demonstration. Konidaris
et al. [9] described an algorithm called CST that was able to
acquire skills from demonstration trajectories on a mobile
robot. A precursor of the method of Niekum et al. [19]
described above, CST segments trajectories into chains of



Fig. 5. A kinesthetic demonstration of the table assembly task.

Fig. 6. A full successful execution of the task without any human intervention.

skills, allocating each its own abstraction (out of a library
of available abstractions), and merges chains from multiple
trajectories into a skill tree. Konidaris [6] (see also ref. [10])
used CST as a component of a robot system that learned
to sequence the execution of a set of innate controllers to
solve a task and then used the resulting solution trajectories
as input to CST, thereby autonomously acquiring new skills
through interaction with its environment. This work further
demonstrated that the robot was able to reduce the time
required to solve a second task by transferring the acquired
skills.

A. CST

CST segments each trajectory into a chain of skills—
allocating each skill its own abstraction—and merges chains
from multiple trajectories into a single skill tree; this is
accomplished incrementally and online. CST uses a library of
abstractions, and segments each trajectory by automatically
detecting when either the most relevant abstraction changes,
or when a segment becomes too complex to represent using
a single linear value function approximator.

Each skill’s initiation set (the set of states in which each
skill can be initiated) is obtained using a classifier: states
in its segment are positive examples and all other states are
negative examples. Each skill termination condition is the
initiation set of the skill that follows it (or the target of the
trajectory, in the case of the final skill), resulting in a chain
of options that can be executed sequentially to take the robot
from its starting position to the goal.

CST is suitable for skill acquisition in mobile robots
because it is online, and given an abstraction library it
segments demonstration trajectories into sequences of skills
that are each represented using a small state space. This use
of skill-specific abstractions is a key advantage of the ap-
proach because it allows problems that are high-dimensional
when considered monolithically to be adaptively broken
into subtasks that may themselves be low-dimensional [8].
Additionally, a change in abstraction is a useful measure of
subtask boundaries, and the use of agent-centric abstractions

facilitates skill transfer [7].

B. The Red Room Tasks

With the uBot-5 shown in Fig. 1 equipped with two
cameras mounted on a pan/tilt unit, Konidaris [6] used a pair
of tasks to demonstrate the feasibility of autonomous robot
skill acquisition and the effect of acquired skills. In the first,
the robot learned to sequence the execution of a set of innate
controllers to solve a mobile manipulation task and then
extracted skills from the resulting solution. Performances of
the robot with and without the acquired skills in a second,
similar, task were compared.

The first task consisted of a small room containing a button
and a handle. When the handle was pulled after the button
had been pressed a door in the side of the room opened,
allowing the uBot access to a compartment containing a
switch. The goal of the task was to press the switch. Fig. 7
shows a drawing and photographs of the first task.

Button

Handle

Switch
Door

245 cm
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Start

Fig. 7. The first task in the Red Room Domain.

The second Red Room task was similar to the first: the
robot was placed in a room with a group of manipulable
objects and a door. In this case, the robot had to first push the
switch, and then push the button to open the door. Opening



the door hid a button in the second part of the room. The
robot had to navigate to the second part of the room and
pull a lever to close the door again. This revealed the second
button, which it had to press to complete the task. Since
this room contained the same object types as the first task,
the robot was able to apply its acquired skills to manipulate
them.

To solve each task, the uBot learned a model of the task
as a Markov decision process (MDP). This allowed the uBot
to plan online using dynamic programming, resulting in a
policy that sequenced its innate controllers. It had to learn
both how to interact with each object and in which order
interaction should take place. The robot was able to acquire
the optimal controller sequence in 5 episodes, reducing the
time taken to solve the task from approximately 13 minutes
to around 3. The resulting optimal sequence of controllers
were then used to generate 5 demonstration trajectories
for use in CST. CST extracted skills that corresponded to
manipulating objects in the environment, and navigating
towards them.
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Fig. 8. The time required for the uBot-5 to first complete the second task,
given innate controllers or acquired skills.

Figure 8 shows the time required for the uBot’s first
episode in the second task, given either its original innate
controllers or, additionally, the manipulation skills acquired
in the first Red Room task. The presence of acquired skills
nearly halved the mean time to completion (from 786.39
seconds to 409.32 seconds).

V. CONCLUSION

In addition to their separate innovations, these illustrations
show how behavioral modularity can be exploited to facilitate
robot learning. Risk sensitive Bayesian optimization (Sec. II)
permits rapid refinement of an identified behavior; automatic
segmentation from demonstrations (Sec. III) is a practical
way to identify behavioral modules that can be flexibly
exploited; and the Red Room tasks (Sec. IV) illustrate how
modules can be autonomously identified and refined to per-
mit effective transfer across related tasks. Fully integrating
these methods is a subject of ongoing research.

Videos of these demonstrations are available at
http://people.csail.mit.edu/scottk/,
http://people.cs.umass.edu/˜sniekum/, and
http://people.csail.mit.edu/gdk/arsa.html.
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