
Roadmap Subsampling for Changing Environments

Sean Murray1, 3 George D. Konidaris2, 3 Daniel J. Sorin1, 3

Abstract— Precomputed roadmaps can enable effective multi-
query motion planning: a roadmap can be built for a robot as
if no obstacles were present, and then after edges invalidated
by obstacles observed at query time are deleted, path search
through the remaining roadmap returns a collision-free plan.
However, large roadmaps are memory intensive to store, and
can be too slow for practical use. We present an algorithm
for compressing a large roadmap so that the collision detection
phase fits into a computational budget, while retaining a high
probability of finding high-quality paths. Our algorithm adapts
work from graph theory and data mining by treating roadmaps
as unreliable networks, where the probability of edge failure
models the probability of a query-time obstacle causing a
collision. We experimentally evaluate the quality of the resulting
roadmaps in a suite of four motion planning benchmarks.

I. INTRODUCTION

A roadmap [12] is a popular data structure for multi-query
motion planning. The roadmap can be constructed once—
as if the robot was surrounded by completely free space—
and then runtime collision detection temporarily deletes those
edges whose motions would cause collisions with obstacles
currently in the environment [14]. Using a fixed roadmap
in this way differs from planners that rely on the ability
to sample additional nodes ad infinitum at runtime to attain
probabilistic completeness and probabilistic optimality [12],
[10]. A fixed roadmap will never return a path that is in col-
lision, but could report failure even when a path exists. This
can happen for two reasons. First, obstacles present in the
environment may bisect the roadmap such that no collision-
free paths remain from the start to the goal, even though paths
may exist if considering the entire free configuration space.
Second, the roadmap may not contain sufficient coverage
in the areas that the current query demands; even if no
obstacles are present, the roadmap may not have any nodes
that satisfy the query’s goal constraints. A successful fixed
roadmap strategy must thus create roadmaps that find high
quality paths in relevant environments with high probability.

While it is easy to obtain robust performance on roadmaps
of unbounded size (such as those generated with PRM* [10]),
the problem is more challenging when trying to achieve good
performance on a budget. Larger graphs take longer to query,
so smaller graphs are more desirable to reduce planning
latency. Large roadmaps may also be impractical to store
and transmit to mobile robots.

We present a novel approach to creating roadmaps that
meet limited budgets while enabling the robot to effectively
solve future queries. For a given (large) baseline roadmap, we

1Department of Electrical and Computer Engineering, Duke University
2Department of Computer Science, Brown University
3Realtime Robotics

show how to find sub-roadmaps that meet a given roadmap
size budget while preserving three qualities: path quality,
workspace coverage, and connectivity.

II. RELATED WORK IN ROBOTICS

We require roadmaps that are multi-query and not easily
bisected. Thus, tree-based algorithms like RRT and RRT*
[13] are unsuitable, and we focus on multi-query algorithms
like PRM and PRM* [12]. These algorithms often produce
exceedingly large roadmaps [17], because random sampling
adds many nodes and edges in unimportant workspace re-
gions, particularly when asymptotically trying to approach
optimality [18]. We assume a PRM-like algorithm to generate
a very large baseline roadmap followed by a process to
reduce it to fit in a given budget. Two previously studied
approaches for roadmap reduction include graph spanners
and edge contraction.

A graph spanner is a subgraph which contains all the
vertices of the original graph, and that maintains the original
connected components with a subset of the original graph’s
edges [21]. A t-spanner is a special class of spanner with
the property that for all pairs of vertices (u, v), the shortest
path between u and v in the spanner is no more than t-times
the shortest path between u and v in the original graph [2].
Unfortunately the problem of finding the smallest t-spanner
of a graph is NP-hard [6]. Several researchers have applied
graph spanner algorithms to extract subgraphs of a more
reasonable size from very large roadmaps [17], [18], [5], [3],
[16], [4]. While these works have similar goals to our own,
they only address environments in which obstacle locations
are known a priori. Instead, we are focused on the case where
the environment around the robot can change, so we cannot
assume known obstacle locations.

Shaharabani et al. [23] observe that if a pair of connected
vertices (u, v) share multiple neighbors in common, several
edges can be removed by contracting the edge between u and
v. As with the work on graph spanners, this work assumes an
unchanging obstacle environment. This technique also relies
on vertices having many shared neighbors in common in
order to achieve high space reductions, which means the
initial roadmap must not only be large but quite dense to
realize significant compression gains.

III. PLANNING ROADMAPS AS UNRELIABLE GRAPHS

Our goal is to start with a very large roadmap—one that
provides good performance but is too large—and then reduce
it to the best performing and most reliable roadmap that fits
inside a given budget.



Abstractly, we have a graph (roadmap) where some of the
edges may not be available during any given query (because
the motion corresponding to an edge would collide with
an obstacle present for that query). In graph theory, this is
known as an unreliable graph. To the best of our knowledge,
we are the first to leverage the similarities between roadmaps
and unreliable graphs.

Our roadmap subsampling problem is closely related to the
graph theory problem known as the Most Reliable Subgraph
Problem (MRSP) [7]. The key to solving MRSP is identify-
ing which connections are most important for the reliability
of the system, and which ones can be discarded with minimal
impact on reliability. System reliability is defined as the
probability that a special set of vertices known as terminal
vertices remain connected.

Formally, given an unreliable baseline graph G = V,E and
a set of terminals T ⊆ V , where each edge in E can fail with
some probability, the goal of MRSP is to find the subgraph
H = V ′, E′ with the properties that V ′ ⊆ V , E′ ⊆ E, and
|E′| <= K, where K is the edge budget. Lastly, it should
maintain that T ⊆ V ′, and it should maximize the probability
that the terminals in T are connected [7]. This last property
can be formalized by stating that for any other subgraph H ′

with at most K edges, Rel(H) ≥ Rel(H ′), where Rel(G)
is the reliability of graph G. This formulation is known as
the k-terminal reliability problem; when |T | = 2 it is the
two-terminal reliability problem, and when |T | = |V | the
all-terminal reliability problem.

There are two general approaches to solving MRSP: start
with the complete baseline graph and prune it down, or
start with a few useful paths from the baseline graph and
incrementally add paths to it. We will use aspects of both
approaches in our solution for roadmap construction.

A. Monte Carlo Pruning Algorithms

For the general case of a baseline graph with arbitrary
topology, Hinstanen [7] provides a greedy polynomial-time
heuristic for the two-terminal case, but with no performance
guarantees. First, the two-terminal reliability of the original
graph G = V,E is estimated (since even determining two-
terminal reliability is NP-hard). For each edge e ∈ E there
is an associated probability pe that the edge has failed or
not. Flipping a coin for each edge to determine its status
comprises one trial. For each trial, the two terminals are
checked for connectedness. Performing a number of trials
gives an approximation of the reliability of the original graph.
This process is then repeated for each edge e on G′ = V,E′

where E′ = E \ e. Any edge e whose removal does not
impact reliability can be removed, since no acyclic path can
be found between the terminals that uses e. After this step,
the edge which affected reliability the least is removed. The
process repeats, calculating the impact of removing each
remaining edge and deleting the one with the least impact.

Although this algorithm is straightforward to implement,
it has several deficiencies. Most importantly, it does not find
the most reliable subgraph, and is not even guaranteed to
find a good approximation of the optimal solution. It also

Fig. 1: Two possible paths that could be added to the
subgraph in the next iteration. Pa has a higher path reliability,
but does not add as much redundancy to the graph as Pb.

requires a very large number of Monte Carlo simulations.
The complexity of the algorithm is O(N |E|2 + K(|E| +
log|E|)) where N is the number of trials needed during each
iteration. For graphs with hundreds of thousands of vertices,
N would need to be quite large.

B. Incremental Construction Algorithms

Another class of algorithms iteratively grows a subgraph
by adding useful components from the baseline graph, in-
stead of iteratively pruning. The “Best Paths Incremental”
(BPI) algorithm tries to find the most probable/reliable paths
between two terminals [8]. These paths are sorted in terms
of reliability, and combined in decreasing order to build
up a subgraph. Once the number of edges in the subgraph
exceeds the desired edge budget, Monte-Carlo pruning can
be used for several iterations to satisfy the roadmap size
budget [8]. BPI can be relatively efficient because finding
the most reliable paths between terminals is far easier
than finding a most reliable subgraph. The probability pe
associated with each edge is simply transformed into weight
we = − log(pe). From here, there are many algorithms that
can produce the k-shortest paths with a polynomial time
complexity [22]. The BPI algorithm has a complexity of
O(K(k2|V |2 + k|V ||E|) log(k|V |)), where k is the number
of best paths needed to create a subgraph of desired size K.

Hintsanen et al. [9] propose a solution to the k-terminal
version of MRSP using a framework like BPI as the in-
spiration. They note that BPI’s main drawback is that each
incremental path is greedily added based solely on its indi-
vidual reliability, and not the effect adding the edge would
have on the whole subgraph’s reliability. An example of this
distinction is shown in Figure 1. This figure shows that even
though candidate path Pa has a reliability of 0.95 (calculated
by
∏
e∈Pa

p(e)), which is higher than the 0.90 reliability of Pb,

Pb has a much higher effect on subgraph reliability since it
adds more independent links.

The authors approximate the problem by dividing their so-
lution into path sampling and subgraph construction phases
[9]. Given a current set of paths C (which form a subgraph),
the challenge in path sampling is finding the candidate path
P that maximizes Rel(C ∪ P ). They iterate over all the
paths currently in the subgraph, producing “realizations” of



its edges until the path fails. A realization is produced by
flipping a coin for each edge and determining if it is available
for the current query. The assumption of independence be-
tween edges is necessary for algorithmic efficiency but does
not truly hold in motion planning roadmaps. Once all paths
have failed, the best path from among the un-failed edges of
the original graph is added. Subgraph construction involves
selecting from among the sampled paths in C a subset
of paths C ′ that meet the edge budget, while maximizing
reliability [9]. Testing all possible path combinations is
infeasible, so the authors use heuristics.

The main difference between the solutions for the two
terminal and k-terminal problems is that instead of the
first phase sampling candidate paths, it samples candidate
spanning trees that connect all terminals [11]. To do this,
first (k2− k)/2 candidate trees are initialized, each with the
most reliable pairwise path between two of the query nodes.

IV. APPLYING UNRELIABLE GRAPH THEORY TO
MOTION PLANNING ROADMAPS

We divide roadmap generation into two phases.
1) Generating the baseline roadmap: We need an initial

roadmap G large enough to serve as an ideal bench-
mark. The size depends on the application; challenging
scenarios require more edges.

2) Finding the best sub-roadmap: The baseline roadmap
G is likely too large for a practical roadmap budget.
We seek to generate a roadmap from G that meets an
edge budget K. Given G and K, the algorithm outputs
a graph G′ = V ′, E′ where |E′| ≤ K.

A. Baseline Graph Generation

We experimented with two strategies to generate large
baseline roadmaps. Both first model the static portion of the
environment, so that computation is not wasted considering
workspace regions that are always occupied.

The first strategy is to simply run a conventional sampling-
based planner such as PRM or PRM* until the graph reaches
a specified size. While this provides uniform coverage in
configuration space, it may not equate to uniform coverage in
the 3D workspace. Even worse, it cannot leverage semantic
knowledge about the desired task, resulting in (a) many poses
and motions in areas that are irrelevant and (b) insufficiently
dense coverage in critical areas.

The second strategy is to create a roadmap (or augment
a roadmap created using the first strategy) using knowledge
of the robot’s task. For example, if a robot is being installed
to spot weld a part, and the part has known variability in
its presenting location, then you can select an assortment of
tool poses covering the expected range of part locations. The
number of random samples required to achieve equivalent
density in the same area would be enormous.

We compared the two strategies experimentally by gener-
ating two baseline graphs. One was generated by running
the PRM algorithm until the roadmap contained 100,000
edges. The other first generated 250 nodes corresponding to
grasp poses chosen above a table for a pick-and-place task,

after which PRM was run until this graph also had 100,000
edges. From both baseline roadmaps we generated smaller
roadmaps using the Monte Carlo pruning approach. Specifi-
cally, we generated 10,000 pick-and-place environments. For
each of these environments, the roadmap was queried to find
the shortest collision-free path to the goal. We pruned the
roadmap by deleting edges that were never used or used
infrequently. This process was done iteratively, profiling and
pruning to create subgraphs of a range of sizes.

The resulting roadmaps were tested by querying each
with 1,000 additional random scenarios. Results shown by
Murray et al. [20] demonstrate that both strategies can
extract effective subgraphs (greater than 90% query success
rate) that have fewer than 1% of the original number of
edges. However, for a given edge budget, the second strategy
consistently achieves higher success rates, and we use it
hereafter.

B. Extracting Reliable Subgraphs

Our strategy draws heavily on Hintsanen et al.’s work on
the k-terminal subgraph problem [11], and we make several
modifications to their algorithm in adapting it to the motion
planning domain.

1) Estimating Edge Reliability: Let the baseline graph be
G = V,E. Each edge e ∈ E in the graph has an associated
probability 0 ≤ pe ≤ 1.1 We use a generator of sample
environments, W , to estimate pe for each edge by sampling
obstacle sets (with 10, 000 samples). We collision check each
e ∈ E and compute the fraction of collisions. If W is an
unbiased generator of obstacles, then this is an unbiased
estimator of pe.

2) Defining Source/Sink Terminal Nodes: One fundamen-
tal aspect where the motion planning problem differs from
prior work on MRSP is in the definition of terminal nodes.
Prior work considers only a single class of terminals, but
motion planning often has terminals that are sources or sinks.

Having multiple terminal types makes the problem much
more tractable. When considering only a single set R of
terminal nodes, R ⊂ V, k = |R|, the number of pairwise
reliabilities the algorithm must maximize is

(
k
2

)
. In motion

planning, we may have a single source terminal but require
500 sink terminals to handle variation in goal location. With
only a single class of terminals, this would require over
100,000 pairwise combinations. However, we do not need to
maximize reliability between sink terminals, and only need
to maintain source→ sink reliability. This can be achieved
with only 500 pairwise combinations. We assume two sets
of terminal nodes S and D, with the following invariants:

· S ⊂ V and D ⊂ V
· S ∩D = ∅ and S ∪D = R
· When all edges in G are present, then for each pairwise

combination u, v, where u ∈ S and v ∈ D, a path exists
from u to v through G

1In Hintsanen’s work, these probabilities represent uncertainties that
different genes are connected. Here, they are each edge’s likelihood of not
being in collision for a given query.



3) Sampling Candidate Trees: A major difference be-
tween our application and Hintsanen is we must consider
path quality in addition to reliability. Each edge now has an
associated weight or cost reflecting how long it takes the
robot to traverse that edge. We accommodate this additional
optimization dimension by modifying the algorithm to search
for shortest paths using different cost functions at different
phases of the algorithm. While Hintsanen considered only
Rel(e) = −log(pe), we introduce Dist(e) which is the cost
to traverse the edge.

As seen in Algorithm 1 lines 1 to 3, initialization occurs
in the same way as Hintsanen [11], except that instead
of starting a new tree for every terminal pair, we include
only pairs from source terminals to sink terminals. For each
pair, the most reliable path is used to initialize a tree.
We then enter the main loop of the tree sampling phase,
which terminates once we have built a specified number of
“complete” trees. A tree is complete if it contains all the
source and sink terminals.

In each iteration of the sampling phase, we first produce
a realization of the uncertain baseline graph, and label each
edge as available or failed for this iteration (line 6). After
producing a realization, we search for an “intact” tree to
extend (line 8). A tree is intact if all its edges lie in the
available set (Ea) in this realization. Extending only intact
trees biases the algorithm to produce robust trees.

The process of extending a tree is in Algorithm 2. If
there are source terminals absent in the tree, then a random
source terminal out of the missing set is chosen, along
with a random destination terminal out of the set already
present in the tree; if all source terminals are already in the
tree, then one is randomly chosen along with one of the
absent destination terminals (lines 1 to 5). When extending
trees, we select best paths among the available set of edges
using their distance-based cost function, instead of reliability.
Even though we do not consider reliability, the resultant
subgraphs still have high reliability. (Due to the stochasticity
of the algorithm, only edges with high reliability are often
in the available set.) Before searching for a best path, we
temporarily set the cost of each edge that is already in the
tree being extended to zero. This biases the algorithm to
extend the tree using paths that add fewer edges.

One major modification we make is introducing epochs
to the sampling phase. Because the average reliability of
our edges is significantly higher than those investigated by
Hintsanen, only a subset of edges were being added to many
candidate trees. There were slightly more costly alternatives
that would have added useful redundancy. We counter this
effect by allowing edges from the baseline graph to be
used in extensions once per epoch. Once used, they are
temporarily removed from the baseline graph (line 14). If
an extension fails to find a path through the reduced graph
in a given realization, then the epoch is reset, and all original
edges are restored to the baseline graph (line 11). This
change to the algorithm increases the number of unique edges
in complete trees by 18%.

If no trees are intact, Hintsanen initializes a new tree with

a path that is intact in the current realization. However, since
we have many more terminals than Hintsanen, our trees are
much larger (in the thousands of edges), and so there is much
less chance that a tree is intact in a given realization. We
also begin the algorithm with many more trees, so there is
less need to start new trees. Thus, when we have no intact
trees, instead of creating new trees, we “repair” the oldest
incomplete tree. If the oldest incomplete tree still has paths
between all its source and destination terminals, we consider
it already repaired and extend it. Otherwise, we find paths
through the available edges from the source to sink terminals,
add the corresponding edges to the tree, and extend it. Note
that after being “repaired”, the growing subgraphs are no
longer trees, since additional paths between disconnected
terminals have been added. For consistency with the original
body of work by Hintsanen, we continue to refer to the
algorithm steps as ExtendTree, SelectTrees, etc.

After extending a tree, we check if it contains all the
terminals from the original baseline graph. If so, the tree
is considered complete and moved to the CompleteTrees
set. Once this set reaches the size specified as input, the
incomplete trees are discarded, and the complete trees are
used in the next phase of the algorithm. We swept the
parameter space and found no additional benefit in sampling
more than |S| ∗ |D| complete trees.

4) Selecting Trees to Construct a Subgraph: The next step
is to select a subset of the trees sampled. This phase of
the algorithm takes as input an edge budget along with the
collection of complete trees sampled, and outputs a subgraph.
Hintsanen et al. [11] focus only on maximizing reliability,
so we present a modified algorithm that we find maintains
reliability while also selecting trees with high-quality paths.

We initialize the subgraph with the tree that contains the
fewest number of unique edges. Because each candidate tree
is complete, the subgraph begins already having (unreliable)
connections to every terminal. During each iteration of the
selection phase, we produce a realization of the edges from
the baseline graph. We then search through the remaining
candidate trees to find the one that maximizes an incremental
quality metric. During this search, we also remove any can-
didate tree that has no unique edges compared to the growing
subgraph (lines 5 to 7). The quality metric is calculated by
iterating over each pair of source and destination terminals.
The cost of the best path between them in this realization
is calculated both through the current tree as well as the
subgraph. If the current tree offers a cost improvement in
the cost of the current path, the amount of the improvement
is added to a running sum. The total improvement in all the
paths is divided by the number of unique additional edges
this tree would bring to the subgraph if they were merged.

After finding the tree that maximizes this quality metric,
we remove it from the set of complete trees, and add it
to the subgraph. The algorithm terminates when either the
edge budget has been exceeded, or the set of complete trees
has been exhausted. If the latter occurs, the sampling phase
can be re-run with tuned inputs intended to provide a larger
number of candidate trees and unique edges.



Algorithm 1 SampleTrees
Let E(G) provide edges of G, and V(G) vertices of G,
whether G is a path, tree, or graph.
Let Ea, Ef ← RealizeEdges(E) indicate producing a pos-
sible world by drawing from a uniform distribution for each
edge, placing failed links in Ef and available links in Ea.
Let P ← PathSearch(E, u, v, func()) indicate searching
for shortest u→ v path through edges E using cost function
as metric for search, placing resultant path in P .
Let E ← ResetEpoch() indicate restoring all original edges
from baseline graph to E.
Input: Baseline graph G = (V,E), Source terminals S,

Sink terminals D, Cost function Rel() that considers
reliability of each edge, Cost function Dist() that con-
siders cost to traverse each edge, Number of complete
trees to sample N .

Initialize: Trees← ∅, CompleteTrees← ∅
1: for each pair of terminals < u, v > where u ∈ S, v ∈ D

do
2: P ← PathSearch(E, u, v,Rel())
3: Add P as a new candidate tree to Trees
4: end for
5: while |CompleteTrees| < N and |Trees| > 0 do
6: Ea, Ef ← RealizeEdges(E)
7: for each T ∈ Trees do
8: if E(T ) ⊂ Ea then
9: ExtendTree(T, S,D,E,Ea)

10: if S ⊂ V(T ) and D ⊂ V(T ) then
11: remove T from Trees and place in

CompleteTrees
12: end if
13: continue at line 5
14: end if
15: end for
16: RepairTree(Trees[0], S,D,E,Ea)
17: ExtendTree(Trees[0], S,D,E,Ea)
18: if S ⊂ V (Trees[0]) and D ⊂ V (Trees[0]) then
19: remove Trees[0] from Trees and place in

CompleteTrees
20: end if
21: end while
22: return CompleteTrees

V. BENCHMARKS AND EXPERIMENTAL EVALUATION

One of the challenges in evaluating planning algorithms
is a well-known lack of standard benchmarks [15], [1].
We have developed four distinct scenarios for evaluating
planning algorithms. Each one uses a different robot to
accomplish a different task. We parameterize each scenario
and provide a random environment generator so that users
can produce unique training and test sets for each scenario.
These environment generators have been bundled as a ROS
package for distribution to the robotics community2.

2http://irl.cs.brown.edu/mplan benchmarks

Algorithm 2 ExtendTree

Input: T, S,D,E,Ea

1: S′ ← S \ V(T )
2: if |S′| > 0 then
3: Randomly select u ∈ S′ and v ∈ D ∩ V(T )
4: else
5: Randomly select u ∈ S and v ∈ D \ V(T )
6: end if
7: Set Dist(e) to 0 for all e ∈ E(T )
8: P ← PathSearch(Ea, u, v,Dist())
9: Restore original Dist(e) for all e ∈ E(T )

10: if P == ∅ then
11: E ← ResetEpoch()
12: else
13: Add the nodes and edges in path P to T
14: E ← E \ E(P )
15: end if

Algorithm 3 RepairTree

Input: T, S,D,E,Ea

1: for each pair of terminals < u, v > where u ∈ S ∩
V(T ), v ∈ D ∩ V(T ) do

2: if PathSearch(Ea ∩ E(T ), u, v, Dist()) == ∅ then
3: P ← PathSearch(Ea, u, v,Dist())
4: if P == ∅ then
5: E ← ResetEpoch()
6: continue at line 1
7: end if
8: Add the nodes and edges in path P to T
9: E ← E \ E(P )

10: Ea ← Ea \ E(P )
11: end if
12: end for

· Machine tending: A UR5 robot reaches into a machine
and places stock at a randomly chosen location. Success
is defined as bringing the work part to within 1 cm and
5 degrees of the indicated location and orientation.

· Dish grasping: A Jaco robot reaches into a dishwasher
to grasp a plate. The robot is randomly placed along
any of the three sides of the dishwasher, and one plate
is randomly chosen as the goal plate. Success is defined
as the palm of the robot facing any part of the rim of
the goal plate, with the palm 0.5-4 cm from the rim.

· Shelf placement: A Fetch robot places a grasped can on
a cluttered shelf. Success is defined as bringing the can
to within 2 cm of the goal, oriented vertically.

· Plug insertion: A UR3 robot inserts a grasped plug into a
power strip that is randomly populated with other plugs.
Success is defined as bringing the grasped plug to 1-3
cm above the goal outlet.

We created a baseline roadmap for each benchmark,
generated 10,000 environments to produce data for running
the algorithm, and a separate 1,000 environments for testing.
We defined a subset of the nodes in each baseline roadmap



Algorithm 4 SelectTrees
Let P,C ← PathSearch(E, u, v, func()) indicate searching
for shortest u→ v path through edges E using specified cost
function as metric for search, and placing resultant path in P ,
the cost of shortest path in C

Input: CompleteTrees, E, S, D, Dist(), Edge
Budget K

Initialize: SubGraph with the tree in CompleteTrees with
fewest edges

1: while |E(Subgraph)| < K and |CompleteTrees| > 0
do

2: Ea, Ef ← RealizeEdges(E)
3: BestScore← 0, BestTree← ∅
4: for each T ∈ CompleteTrees do
5: if E(T ) ⊂ E(Subgraph) then
6: Remove T from CompleteTrees
7: continue on line 4
8: end if
9: sum← 0

10: for each pair of terminals < u, v > where u ∈
S, v ∈ D do

11: P,C ← PathSearch(E(T ) ∩ Ea, u, v,Dist())
12: P ′, C ′ ← PathSearch(E(SubGraph) ∩

Ea, u, v,Dist())
13: if (C ′ − C) > 0 then
14: sum← sum+ (C ′ − C)
15: end if
16: end for
17: score← sum/|E(T ) \ E(Subgraph)|
18: if score > BestScore then
19: BestScore← score
20: BestTree← T
21: end if
22: end for
23: remove BestTree from CompleteTrees and add its

edges and nodes to SubGraph
24: end while
25: return SubGraph

to act as source and sink terminals. We performed collision
detection on the 10,000 training environments to calculate a
reliability for each edge. The results are in Figure 2.

The plate-grab benchmark has a baseline roadmap of 2
million edges, 5,000 terminals, and a 78% success rate, and
it is well-suited for our algorithm. The open space above the
dishwasher means that there is an area that can be pruned
without damaging path feasibility. We only see dramatic
increases in failure rates when the edge budget decreases
to the point where the “approach edges” that enable direct
connections to terminal nodes begin to be excluded from the
subgraph. This increases the likelihood that terminal nodes
will be bisected by the other clutter in the dishwasher and
decreases success rate. Effects on path quality remain modest
until reducing roadmap size below 40,000.

The shelf-place benchmark was quite challenging, because

Fig. 2: Path Length (left) and Failure Rate (right)

often the goal location was behind or very close to other
objects on the shelves. The baseline roadmap of 5 million
edges (11,000 terminals) had only a 64% success rate. This
benchmark also suffered the most from increases in path
failure rate. Trying to have a single roadmap cover the entire
shelf assembly may be infeasible. Hardware accelerators may
benefit from the ability to be reprogrammed with different
roadmaps; using this feature, we could divide the shelf
assembly into 10-15 regions, and program an accelerator for
the specific region relevant for the query [19].

The power-strip benchmark was relatively easy. The base-
line roadmap of 2,000,000 edges (3,000 terminals) was suc-
cessful for just over 95% of the test set, and even sampling
a subgraph of just 20,000 edges from the baseline had less
than a 6% effect on failure rate (an increase to 5.3% from
5%), and an average path length increase of less than 5%.

The outlier benchmark was machine-tend. The UR5 is not
robust to inserting obstacles in between it and the opening
to the machine. For this reason, the machine-tend scenario
is the only one without dynamic obstacles, having only the
goal location vary between queries, and thus the effective
reliability of all edges in the baseline graph (100,000 edges
and 400 terminals) is 1. The subgraph problem then reduces
to simply finding subgraphs with the fewest number of edges
that contain the highest quality paths between terminals. Path
quality is unchanged until we decrease the edge budget below
the number of unique edges in the union of the shortest paths
between each pair of source/sink terminals.

VI. CONCLUSIONS

We have presented a new algorithm for creating fixed
roadmaps for multiple motion planning queries. The algo-
rithm starts with a large baseline roadmap and subsamples it
to meet a given budget while finding high quality paths with
high probability. Experimental results on a newly developed
benchmark suite show that the roadmaps can achieve results
similar to the baseline at greatly reduced size.

ACKNOWLEDGEMENTS

The authors would like to thank Rebecca McCabe for her
assistance creating example robot scenarios. This research
was supported in part by DARPA under agreement num-
ber D15AP00104. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The content



is solely the responsibility of the authors and does not nec-
essarily represent the official views of DARPA. Disclosure:
George Konidaris is the Chief Roboticist, and Dan Sorin the
Chief Architect of Realtime Robotics, a robotics company
that produces a specialized motion planning processor.

REFERENCES

[1] G. Antonelli, “Robotic research: Are we applying the scientific
method?” Frontiers in Robotics and AI, vol. 2, p. 13, 2015.

[2] E. Cohen, “Fast algorithms for constructing t-spanners and paths with
stretch t,” SIAM Journal on Computing, vol. 28, no. 1, pp. 210–236,
1998.

[3] A. Dobson and K. E. Bekris, “Improving sparse roadmap spanners,”
in 2013 IEEE International Conference on Robotics and Automation.

[4] ——, “Sparse roadmap spanners for asymptotically near-optimal
motion planning,” The International Journal of Robotics Research,
vol. 33, no. 1, pp. 18–47, 2014.

[5] A. Dobson, A. Krontiris, and K. E. Bekris, “Sparse roadmap spanners,”
in Algorithmic Foundations of Robotics, 2013, pp. 279–296.

[6] M. Elkin and D. Peleg, “Strong inapproximability of the basic k-
spanner problem,” in International Colloquium on Automata, Lan-
guages and Programming, 2000, pp. 636–648.

[7] P. Hintsanen, “The most reliable subgraph problem,” in European
Conference on Principles of Data Mining and Knowledge Discovery.
Springer, 2007, pp. 471–478.

[8] P. Hintsanen and H. Toivonen, “Finding reliable subgraphs from large
probabilistic graphs,” Data Mining and Knowledge Discovery, vol. 17,
no. 1, pp. 3–23, 2008.

[9] P. Hintsanen, H. Toivonen, and P. Sevon, “Fast discovery of reliable
subnetworks,” in Advances in Social Networks Analysis and Mining,
2010. IEEE, 2010, pp. 104–111.

[10] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[11] M. Kasari, H. Toivonen, and P. Hintsanen, “Fast discovery of reli-
able k-terminal subgraphs,” in Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 2010, pp. 168–177.

[12] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[13] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Technical Report, Tech. Rep., 1998.

[14] P. Leven and S. Hutchinson, “A framework for real-time path planning
in changing environments,” The International Journal of Robotics
Research, vol. 21, no. 12, pp. 999–1030, 2002.

[15] R. Madhavan, E. W. Tunstel, and E. R. Messina, Performance evalu-
ation and benchmarking of intelligent systems. Springer, 2009.

[16] J. D. Marble and K. E. Bekris, “Towards small asymptotically
near-optimal roadmaps,” in 2012 IEEE International Conference on
Robotics and Automation, pp. 2557–2562.

[17] ——, “Computing spanners of asymptotically optimal probabilistic
roadmaps,” in Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2011, pp. 4292–4298.

[18] ——, “Asymptotically near-optimal is good enough for motion plan-
ning,” in 2011 International Symposium on Robotics Research, pp.
419–436.

[19] S. Murray, W. Floyd-Jones, G. Konidaris, and D. J. Sorin, “A pro-
grammable architecture for robot motion planning acceleration,” in
2019 IEEE International Conference on Application-Specific Systems,
Architectures and Processors.

[20] S. Murray, W. Floyd-Jones, Y. Qi, D. Sorin, and G. Konidaris, “Robot
motion planning on a chip,” in Robotics: Science and Systems, 2016.

[21] D. Peleg and A. A. Schäffer, “Graph spanners,” Journal of graph
theory, vol. 13, pp. 99–116, 1989.

[22] L. Roditty, “On the k-simple shortest paths problem in weighted
directed graphs,” in Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2007.

[23] O. Salzman, D. Shaharabani, P. K. Agarwal, and D. Halperin, “Spar-
sification of motion-planning roadmaps by edge contraction,” The
International Journal of Robotics Research, vol. 33, pp. 1711–1725,
2014.


