
A Programmable Architecture for
Robot Motion Planning Acceleration

Sean Murray
Duke University

s.murray@duke.edu

Will Floyd-Jones
Duke University

william.floyd.jones@duke.edu

George Konidaris
Brown University

gdk@cs.brown.edu

Daniel J. Sorin
Duke University

sorin@ee.duke.edu

Abstract—We have designed a programmable architecture to
accelerate collision detection and graph search, two of the princi-
pal components of robotic motion planning. The programmability
enables the architecture to be applied to a wide range of
different robots and motion planning applications. We present
the architecture of our accelerator and describe and evaluate its
microarchitecture implementation.

I. INTRODUCTION

Motion planning is the process of finding a collision-free path
from a robot’s starting position to a goal state. Our contribution
in this work is a programmable architecture that accelerates
several aspects of motion planning in an efficient manner. More
specifically:

• We develop the microarchitecture of a novel collision
detection accelerator that is fully retargetable.

• We present the microarchitecture of a novel accelerator
for path search.

• For both the collision detection and path search accelera-
tors, we implement the microarchitecture in Verilog.

Our motion planning accelerator microarchitecture can
perform collision detection and calculate a path in less than 3
microseconds, with a modest power consumption of 35 watts.
This is several orders of magnitude faster than current state-of-
the-art approaches [7], [18].

II. BACKGROUND

A. Components of Motion Planning

There are four main components involved in creating a
motion plan.

Perception is the use of a combination of sensors and
processing to produce a model of the environment. We
assume sensors that produce an occupancy grid. An occupancy
grid is a data structure representing which regions of space
contain obstacles in a discretized view of the environment.
Each discretized region of space is termed a “voxel”, a 3D
(volumetric) pixel.

Roadmap construction is the creation of a graph of poses
and motions in a robot’s configuration space. Each vertex in
this graph completely defines the state of the robot in a specific
pose, and each edge defines a motion between poses. Common
algorithms create the roadmap by randomly sampling poses
from configuration space.

Collision detection determines if a motion of a robot is in
collision with itself or the environment. Triangle meshes are

commonly used as the models for the robot and environment,
so collision detection involves checking if any triangles of the
robot model intersect with those of the environment model.
This process is quite computationally expensive, and is the
bottleneck in conventional planning algorithms [2].

Path search traverses the roadmap to check if a path from the
starting position to the goal exists and to identify optimal paths.
It is often done with variants of A* or Dijkstra’s algorithm [3].

B. Related Work
Prior work has investigated ways to speed up motion

planning, but none of it meets our goals.
Roadmap Construction. Roadmap construction can be

accelerated by using algorithms that improve convergence
behavior [10], reduce the workload by keeping the roadmap
to a reasonable size [23], or improve nearest neighbor search
[25]. Our approach completely removes the runtime latency of
roadmap construction by performing it once at design time.

Collision Detection. Atay and Bayazit [1] developed hard-
ware to directly accelerate the triangle-triangle intersection tests
of commonly-used collision detection subroutines. The huge
resource demands of the design constrained it to impractically
small problems. Murray et al. created a custom hardware
microarchitecture [14], [15] that performs exhaustive collision
detection ahead of time and uses the data to create a specialized
circuit for each motion of the roadmap. While fast, this design
is not retargetable to different robots and scenarios. Dadu-P [12]
takes a similar approach to Murray et al., but stores edge data
in memory rather than in circuits, enabling reconfigurability.
The reliance on external memory transfer causes a 25X latency
increase in collision detection compared to Murray et al., and
this effort also did not accelerate path search.

Path Search. Bondhugula [5] developed hardware to acceler-
ate a block-variant of the Floyd-Warshall algorithm. Sridharan
[19] designed an accelerator for a parallelized version of
Dijkstra’s algorithm, and Takei [21] extended this for large-
scale graph processing. These accelerators achieve insufficent
performance for our goals, because they rely on slow memory
accesses, and they do not exploit properties of the path search
problem that are specific to robot motion planning.

III. ROADMAP CONSTRUCTION

Our roadmap construction approach is similar to Leven and
Hutchinson [11], and it differs from conventional sampling-
based planners such as PRM or RRT. Conventional planning



Fig. 1. The overall dataflow of our design. Dotted arrows indicate communi-
cation that happens during the programming phase, and solid arrows indicate
runtime communication.

algorithms incrementally build up a roadmap at runtime to
navigate around the obstacles present at that time.

Our approach involves precomputing a more general and
much larger roadmap than a conventional algorithm. Any a
priori knowledge about the scenario can be leveraged by
including fixed objects such as walls or tables. (This is an
optional optimization and the strategy does not depend on
it.) The roadmap is made large and redundant enough to be
robust to obstacles. This allows successive queries to be done
rapidly in dynamic environments without reprogramming the
accelerator. We find good results from beginning with an
extremely large roadmap (hundreds of thousands of edges)
and pruning using heuristics [14], [15].

IV. COLLISION DETECTION

Our collision detection workflow involves two stages. First,
before runtime, we precompute collision detection results for
the roadmap in a discretized view of the environment. Second,
at runtime, the collision detection accelerator streams in the
obstacle voxels present and flags edges that are in collision.

A. Precomputation of Collision Data

To minimize work at runtime, we perform a large amount of
precomputation. We discretize the environment into voxels. We
then exhaustively precompute all possible collisions between
the swept volume of every motion in the roadmap and the voxels
in the discretized space. This is time-consuming, but does not
take place at runtime and is thus not on the critical path. After
this process, each motion has a corresponding set of voxels
with which it collides. During the accelerator’s programming
phase, this precomputed data is sent to the accelerator to be
used at runtime.

B. Runtime Collision Detection

Given the precomputed data, the runtime task is to determine
which roadmap motions collide with the current environment,
provided by the perception system as an occupancy grid. Any
motion that collides causes that motion’s edge in the roadmap
to be temporarily removed until the environment changes.

Previous work [14], [15] built hardware that performed
collision detection by creating circuits of combinatorial logic
that directly correspond to the swept volume of each motion in
the roadmap. This circuit-based approach is high performance,
but also highly inflexible. To achieve programmability, we

Fig. 2. Each Bellman Ford Compute Circuit (BFCC) has a table of the physical
addresses of its logical neighbors, and a table of their edge weights.

implement a sea of compute-elements containing registers that
are filled with swept-volume data for the robot and roadmap
of interest. After configuration, at runtime the voxels from the
sensed occupancy grid are sent to the accelerator to be checked
against the swept volumes. The results of collision detection
are then to the path search architecture. The overall dataflow
for the accelerator can be seen in Figure 1.

V. PATH SEARCH

The main challenge in designing a programmable microar-
chitecture for accelerating graph processing is to be able
to handle any expected graph topology yet have reasonable
resource requirements. Our key insight is that since our strategy
involves a roadmap statically constructed ahead of time, we
can guarantee certain properties such as its maximum degree,
maximum edge weight, and maximum path cost. Bounding
these quantities enables us to design much more compact and
efficient storage structures and datapaths than if we allowed
for arbitrary graphs.

The approach we take is a dataflow microarchitecture
designed to perform the Bellman-Ford algorithm. The microar-
chitecture consists of a sea of circuits we refer to as Bellman-
Ford Compute Circuits (BFCCs) connected via a low-cost
interconnection network used to handle different topologies.

A. Bellman-Ford Compute Circuits

Every (logical) vertex in the graph is statically assigned to a
physical BFCC on the chip. The physical addresses of each of
the vertex’s logical neighbors are stored in a table. The edge
weights to each of these neighbors are stored in another table.

Each BFCC has a register to hold its current best-cost to the
destination. These registers are all initialized to a maximum
value which represents infinity. To start the search, the BFCC to
which the destination node was mapped is updated to a cost of
zero. The destination vertex then iterates over its neighbor table,
and sends to each neighbor a message with its cost (zero) added
to that neighbor’s edge weight. When the neighbor receives this
message, it compares this new cost with its current cost. If the
new cost is less than its current cost, then several things happen.
First, the vertex updates its best-cost register as well as its next-
hop pointer. Second, it begins iterating over its own neighbor
table to find the physical addresses of its neighbors, and sends
each of them a message with its cost added to that neighbor’s
edge weight. Figure 2 shows the basic microarchitectural layout
of the Bellman Ford Compute Circuit.



Aside from cost update messages, the BFCCs handle two
other types of messages. If the BFCC receives a next-hop query,
it responds with the address of the neighbor from which it
received its best-cost. This allows the path itself to be extracted.
The BFCC can also receive a best-cost query, to which it
responds with the current value of its best-cost register.

We designed the BFCC to be small enough that the
microarchitecture can scale to large graph sizes. Because we
precompute the roadmap, we can guarantee that each vertex
will have at most four neighbors without affecting the quality
of the roadmap. This limitation can be overcome if necessary
by logically splitting a vertex with too many neighbors into
multiple vertices connected with an edge weight of zero. Similar
decisions must be made with maximum path and edge cost in
order to fix the size of the registers storing these data. Graph
edge costs can be scaled to respect these constraints. If an
edge is truly needed with a cost greater than the register size
allows, it can be represented as two (or more) edges in serial
with costs such that the sum is the desired value.

B. Interconnection Network

To execute the Bellman-Ford algorithm, the vertices in
each BFCC need to communicate with their logical neighbors.
However, because the microarchitecture must be programmable,
this communication must happen over a network so that the
sea of physical BFCCs can emulate the behavior of the desired
graph topology. The network enables the vertices on each
BFCC to abstract away communication issues and behave as
if they are actually connected to their logical neighbors, even
though they may not be physically adjacent.

We based our network on the low-cost router microarchi-
tecture by Kim [9]. We took this design and applied several
optimizations enabled by our application characteristics.

We must smartly map roadmap topologies to physical BFCCs.
We use a simulated annealing approach to obtain an acceptable
solution to this mapping problem during a preprocessing phase.
Annealing found quality mappings from roadmaps to the
physical interconnection network in a matter of seconds to
minutes, depending on the parameters used.

VI. RESULTS

We evaluate using the pick-and-place task since it is ubiqui-
tous in robotics. We generate roadmaps of various sizes for the
six degree-of-freedom Jaco II robotic arm from Kinova. We run
experiments on sampled environments consisting of randomly
placed and sized obstacles and different source/destination pairs.
We consider roadmaps ranging from 4k to 256k edges, but
our area and timing numbers focus on a 128 x 128 network
implementation solving problems for a 16k-vertex, 32k-edge
roadmap. Previous work has shown this size suffices to solve
challenging robotics problems [3].

Our results are not unique to the specific application or
robot used. Our design can be used in any roadmap-based
planning task, including autonomous driving [17], automated
inspection [22], and automated machine-tending [4]. We have
tested different iterations of our accelerator with four different

Component Area (mm2) Transistor
Estimate (M)

Collision Detection 397 1990
Network Routers 24 122
BFCCs 19 97
Control Nodes 10 48
Total 450 2260

TABLE I
COMPONENT SIZES FOR 128X128 IMPLEMENTATION.

robots, a range of end-of-arm-tooling, and in a variety of
scenarios with consistent results.

A. Performance/Area/Power

We used the Synopsys toolchain and the NanGate 15 nm
Open Cell Library [13] to synthesize our design and obtain
performance, area, and power estimates. The following numbers
are for an implementation with 16,384 vertices (128 x 128).

Because the collision detection microarchitecture is com-
pletely parallel with respect to the edges in the roadmap, its
latency depends solely on the number of obstacle voxels it
must process. For the random pick-and-place environments we
sampled, there was an average of 750 obstacle voxels, which
means collision checking takes an average of 750 cycles, since
each voxel requires only a single cycle to process.

For the 16k-vertex graph, the mean time to completion is
360 cycles. Adding the time for the programmable network to
detect completion yields a mean of 630 cycles. However, as is
common in accelerator design, moving data around takes just
as much time as the computation. There is additional overhead
of 950 cycles to communicate collisions to the BFCCs and
actually extract the path. Including the time to perform collision
detection, the total average latency is 2,330 cycles from the
time the obstacle voxels arrive to the time a path is ready
for output. Synthesis in Synopsys indicates the accelerator
could easily be clocked at 1 GHz, so this translates to a 2.3
microsecond latency. This latency is roughly five orders of
magnitude faster than conventional sampling-based planners,
and two orders of magnitude faster than previous proposed
accelerators for the same use case [14], [15].

The breakdown of area on the chip is in Table I. In total, a
16k-vertex design is 450 mm2 and requires around 2.3 billion
transistors. Synopsys estimates the power consumption of the
accelerator to be 35 watts.

B. Performance Scaling

Figure 3a shows that because there is dedicated hardware
for each edge, the time to perform collision detection is
independent of the number of edges in the roadmap. Our
16k-vertex accelerator can handle up to 32,768 edges, but
the microarchitecture easily scales to larger roadmaps. This
figure also helps deconstruct how much of the benefit derives
from the aggressive precomputation compared to the dedicated
hardware, by exploiting the same precomputation implemented
on a CPU and GPU. The CPU runs a highly-optimized C
program running on a 4-core Haswell i7 with 8 GB of RAM,
and is instrumented with OpenMP directives to use all hardware



Fig. 3. Performance scaling.

threads. The GPU runs a well-tuned CUDA kernel running on
a Tesla K80. Both strategies achieve a roughly 10x speedup
compared to a conventional sampling-based planner at runtime,
but are still much slower than our accelerator.

Figure 3b shows the scaling of our Bellman-Ford accelerator.
Dedicated hardware for each node enables performance to scale
linearly with the average number of hops through the graph.
The CPU is the same 4-core Haswell i7 running the shortest
path implementation in Klampt [8], a well-optimized robotics
software package. The GPU uses the nvGraph graph analytics
API [16] on a Tesla K80. Because our microarchitecture
involves tightly coupling the shortest path with collision
detection, whereas the GPU involves communication over PCI-
e, no data movement overhead was included for either to be
fair (so this figure shows only compute time).

VII. CONCLUSION

We have presented a programmable architecture for motion
planning that is general enough to be applied to any robotic
problem. Being able to motion plan in under 3 microseconds
makes possible the use of complex decision making algorithms
that must invoke motion planning thousands of times as a
subroutine [6], [20], [24].

VIII. ACKNOWLEDGMENTS

This research was supported in part by DARPA under agree-
ment number D15AP00104. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The content is
solely the responsibility of the authors and does not necessarily
represent the official views of DARPA. The authors are the
founders of Realtime Robotics, Inc., which develops products
related to this research.

REFERENCES

[1] N. Atay and B. Bayazit, “A motion planning processor on reconfigurable
hardware,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2006, pp. 125–132.

[2] J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing
the RRT and the RRT∗,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2011.

[3] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in IEEE
International Conference on Robotics and Automation, 2000.

[4] R. Bohlin, “Motion planning for industrial robots,” PhD Thesis, Chalmers
University of Technology, 1999.

[5] U. Bondhugula, A. Devulapalli, J. Dinan, J. Fernando, P. Wyckoff,
E. Stahlberg, and P. Sadayappan, “Hardware/software integration for fpga-
based all-pairs shortest-paths,” in 2006 14th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, 2006.

[6] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An efficient
heuristic for task and motion planning,” in Algorithmic Foundations of
Robotics XI. Springer, 2015, pp. 179–195.

[7] F. Hauer and P. Tsiotras, “Deformable rapidly-exploring random trees,”
in Robotics: Science and Systems, 2017.

[8] K. Hauser, “Robust contact generation for robot simulation with
unstructured meshes,” in Proceedings of the International Symposium
on Robotics Research, 2013.

[9] J. Kim, “Low-cost router microarchitecture for on-chip networks,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2009.

[10] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation, 2000.

[11] P. Leven and S. Hutchinson, “A framework for real-time path planning in
changing environments,” The International Journal of Robotics Research,
vol. 21, no. 12, pp. 999–1030, 2002.

[12] S. Lian, Y. Han, X. Chen, Y. Wang, and H. Xiao, “Dadu-p: A scalable
accelerator for robot motion planning in a dynamic environment,” in
Proc. of the 55th Annual Design Automation Conference, 2018.

[13] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech,
and J. Michelsen, “Open cell library in 15nm freepdk technology,” in
Proc. of the International Symposium on Physical Design, 2015.

[14] S. Murray, W. Floyd-Jones, Y. Qi, D. Sorin, and G. Konidaris, “The
microarchitecture of a real-time robot motion planning accelerator,” in
Proceedings of the 49th Annual IEEE/ACM International Symposium on
Microarchitecture, 2016.

[15] ——, “Robot motion planning on a chip,” in Robotics: Science and
Systems, 2016.

[16] Nvidia, nvGraph API Reference. http://docs.nvidia.com/cuda/nvgraph/:
CUDA Toolkit Documentation, 2017.

[17] B. Paden, M. Cáp, S. Z. Yong, D. S. Yershov, and E. Frazzoli, “A survey
of motion planning and control techniques for self-driving urban vehicles,”
CoRR, 2016. [Online]. Available: http://arxiv.org/abs/1604.07446

[18] K. Solovey, O. Salzman, and D. Halperin, “New perspective on sampling-
based motion planning via random geometric graphs,” in Robotics:
Science and Systems, 2016.

[19] K. Sridharan, T. K. Priya, and P. R. Kumar, “Hardware architecture for
finding shortest paths,” in IEEE Region 10 Conference, 2009.

[20] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 639–646.

[21] Y. Takei, M. Hariyama, and M. Kameyama, “Evaluation of an fpga-
based shortest-path-search accelerator,” in The Steering Committee of
The World Congress in Computer Science, Computer Engineering and
Applied Computing, 2015.

[22] M. Ulrich, G. Lux, L. Jurgensen, and G. Reinhart, “Automated and cycle
time optimized path planning for robot-based inspection systems,” 6th
CIRP Conference on Assembly Technologies and Systems (CATS), 2016.

[23] W. Wang, D. Balkcom, and A. Chakrabarti, “A fast online spanner for
roadmap construction,” International Journal of Robotics Research, 2015.

[24] J. Wolfe, B. Marthi, and S. J. Russell, “Combined task and motion
planning for mobile manipulation.” in ICAPS, 2010, pp. 254–258.

[25] A. Yershova and S. M. LaValle, “Improving motion-planning algorithms
by efficient nearest-neighbor searching,” IEEE Trans. on Robotics, 2007.


