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Abstract
We present a method for using adverb phrases to
adjust skill parameters via learned adverb-skill
groundings. These groundings allow an agent to
use adverb feedback provided by a human to di-
rectly update a skill policy, in a manner similar to
traditional local policy search methods. We show
that our method can be used as a drop-in replace-
ment for these policy search methods when dense
reward from the environment is not available but
human language feedback is. We demonstrate
improved sample efficiency over modern policy
search methods in two experiments.

1. Introduction
In collaborative human-robot environments, embodied
agents must be capable of integrating language commands
into behavior. Natural language instruction can range from
feedback on the subtlest of movements to abstract, high-
level plans. While humans are generally capable of giving
and receiving language feedback regarding all aspects of a
task, methods for integrating language understanding into
behavior differ based on the level of behavioral abstraction
the instruction refers to. Following (Rodriguez-Sanchez
et al., 2020), who argued that the structure of language
closely relates to the structure of an agent’s decision process,
we focus on grounding adverbs—words used to describe
the quality of a verb (i.e. a skill)—to directly modify skill
execution.

We adopt the framework of hierarchical reinforcement learn-
ing (Barto & Mahadevan, 2003), wherein an agent’s be-
havior is mainly generated by skills responsible for low-
level motor control, and learning is primarily concerned
with sequencing given skills to solve a task. Much existing
research on integrating language understanding into hier-
archical agents attempts to map language to sequences of
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abstract skill executions (Andreas et al., 2017; Mei et al.,
2016; Oh et al., 2017). However, agents must also be able
to use language to modify their underlying skill policies.
Commands like “lift the pallet higher” and “crack the egg
gently” clearly request adjustments to a specific skill exe-
cution. Therefore, a key question is how natural language
understanding can ground to changes in the lowest levels of
behavior.

The existence of adverbs that modify discrete verbs calls for
agents with a discrete set of skills, with behavior that can
be modified by a parameter vector describing how the skill
can be executed (Da Silva et al., 2012; Masson et al., 2016).
We propose a novel method for grounding adverbs to adjust-
ments in skill parameters—called adverb-skill groundings—
which, when integrated into policy search, lead to greater
sample-efficiency than traditional policy search methods
that typically depend on explicit reward from the environ-
ment. We demonstrate the effectiveness of adverb-skill
groundings for policy search in a toy ball-throwing domain
and a domain involving a simulated 7-DoF robot arm. We
compare the sample efficiency of our approach to PI2-CMA
(Stulp & Sigaud, 2012), a state-of-the-art local policy search
method.

2. Background
2.1. Mechanisms of Hierarchical Control

Reinforcement learning tasks are typically modeled as
Markov decision processes (MDPs). An MDP can be rep-
resented by the tuple ⟨S,A,R, T, γ⟩, where S is the set of
states, A is the set of actions, R is the reward function,
T is the transition function, and γ is the discount factor.
The goal of an agent is to find a policy, π(a|s)—a function
that selects an action for each state—which maximizes the
expected sum of discounted rewards:

Eπ

[ ∞∑
t=0

γtR(st, at, st+1)

]
.

Masson et al. (2016) introduced Parameterized Action
Markov Decision Processes (PAMDPs) to model situations
where agents have access to discrete actions that are param-
eterized by real-valued vectors. For each step in a PAMDP,
an agent must choose a discrete action a ∈ Ad and a cor-

1



Guided Policy Search for Parameterized Skills using Adverbs

responding continuous parameter x ∈ Xa ⊆ Rma . As
pointed out by Rodriguez-Sanchez et al. (2020), parameter-
ized actions are a plausible target for grounding adverbs,
because adverbs modify verbs in a similar fashion to how
continuous parameters modify actions in a PAMDP. This
work refines and formalizes this relationship by grounding
adverbs directly to adjustments in skill parameters.

2.2. Policy Search Methods

Policy gradient methods (Sutton et al., 1999) are a collection
of local search methods which optimize a policy by lever-
aging the gradient of a performance metric. Formally, they
optimize a parameterized policy πθ based on the gradient
of a scalar performance metric J(θ), using an update rule
similar to gradient ascent:

θt+1 = θt + α∇̂J(θt).

One common strategy which is shared across multiple meth-
ods for local policy search involves leveraging weighted
probability averaging to perform parameter updates as op-
posed to using estimations of the gradient of the perfor-
mance metric, which can be noisy (Theodorou et al., 2010).
The structure of these algorithms is as follows: 1) Sample
K parameters from a distribution; 2) Sort the samples with
respect to their performance given by J ; 3) Recalculate the
distribution parameters based on the top Ke ‘elite’ samples
in the sorted list; 4) Repeat this process with the newly cal-
culated distribution until convergence or after a number of
iterations. Algorithms within this class differ significantly
in their implementation of these steps. For example, Cross
Entropy Methods (CEM) (Mannor et al., 2003) recalculate
the mean and covariance of the sampling distribution after
each step, while Policy Improvement with Path Integrals
(PI2) (Theodorou et al., 2010) only updates the mean. In
their design of PI2-CMA, Stulp & Sigaud (2012) integrate
a CEM-like probability-weighted averaging to update the
covariance of the sampling distribution into the base PI2 al-
gorithm, enabling it to autonomously adapt its exploration.1

2.3. Representations of Natural Language

A crucial step in processing natural language for computa-
tion is encoding sequences of natural language tokens into
mathematical representations that are semantically meaning-
ful.2 Most modern natural language processing research on
semantic representation models units of language as high-
dimensional vectors which are learned in an unsupervised
fashion from large corpora (Mikolov et al., 2013; Penning-
ton et al., 2014). These semantic space models leverage

1See Stulp & Sigaud (2012) for a more thorough analysis of
this class of direct policy improvement algorithms.

2See Markman (1998) for a more thorough account of semantic
representations.

Figure 1. In this illustration of a semantic space, words are en-
coded as points in a vector space, and semantically similar words
are located closely together. Semantic spaces which can capture
the expressive power of language are often high-dimensional, rep-
resenting features of language across many latent axes. Some
semantic space representations can encode more complex units
of language such as phrases or entire sentences. This illustration
mirrors a figure in Mitchell & Lapata (2010).

the principle of distributional semantics, a hypothesis that
semantic representations of words can be derived from the
patterns of their lexical co-occurrences.3 Semantic space
models have the advantage of capturing language similarity
as a geometric property—the distance between two language
vectors or the cosine of the angle between them can be used
as a measure of semantic similarity. Words are placed into a
learned semantic space via an embedding function:

E : P → RN ,

mapping units of language p to vectors in RN . A simplified
example of a semantic space is shown in Figure 1.

3. Grounding Adverbs to Adjustments of Skill
Parameters

We assume a language-conditioned, human-robot environ-
ment in which a human desires to use natural language to
modify the behavior of an agent engaged in solving a task.
In line with our goal to ground language to the lowest lev-
els of behavior, we assume that the agent is equipped with
a low-level motor skill Θ, which induces a parameterized
policy πΘ(τ) = π(a|s,Θ(τ)) where τ ∈ T . The goal of the
agent is to find the desired action sequence it should take
(corresponding to a hidden desired skill parameter τ∗) in
response to natural language criticism.

Interaction in the environment begins with the agent exe-
cuting its motor skill using a random initial skill parameter
τ0. The human and agent then engage in an iterative pro-

3This principle was famously summarized by Firth (1957) as,
“you shall know a word by the company it keeps.”
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(a) (b) (c)

Figure 2. (a) Illustration of the Ball-Throw task. (b) Visualization of a sample policy search for the Ball-Throw task using PI2-CMA and
ASG plotted over error contours. The samples that PI2-CMA collected are plotted in green. PI2-CMA required 30 episodes to converge,
while ASG required a single episode using an adverb phrase. (c) Error curves for the Ball-Throw task. Both policy searches terminate
once error is below a certain threshold (dashed red line).

cess of behavior modification in which the human provides
criticism regarding the agent’s most recent skill execution
in the form of an adverb phrase l, and the agent responds
with an updated skill execution using a new skill parameter
τt+1. This process repeats until the human is satisfied with
the skill execution, i.e. when τt is within ϵ of τ∗.

The novel intuition presented in this work is that adverb
phrases encode rich information about the agent’s low-level
skill performance. Specifically, they encode a desired ad-
justment, δτ , to the policy parameters for a parameterized
skill. To extract skill adjustments from adverb feedback,
we propose an adverb-skill grounding (ASG), Λ, that maps
adverb phrases, l, and skill parameters, τ , to adjustments in
skill parameters:

Λ : L× T → R|T |.

Using an ASG, an agent can perform a policy search with-
out direct interaction with a reward function by iteratively
adjusting its skill parameter using the following update rule:

τt+1 = τt + Λ(l, τt),

until the skill execution is satisfactory to the human. Since
an ASG need only be learned once for a given skill, we
demonstrate that they exhibit higher sample efficiency than
traditional policy search methods which utilize episodic
rewards.

Our objective is to learn Λ for a skill Θ from a set K of tu-
ples (l, τ, δτ)—where l is a vector embedding of an adverb
phrase describing the behavior difference between the poli-
cies πΘ(τ) and πΘ(τ+δτ)—which can be done using a non-
linear regression model Φ, mapping (τ, l) → δτ . We can
generate K using the following procedure: 1) Collect |K|
pairs of skill parameters (τ, τ ′) sampled uniformly at ran-
dom from T ; 2) For all pairs, execute the parameterized skill
using each parameter, resulting in policies (πΘ(τ), πΘ(τ ′));
3) Label the apparent difference between the policies with

an adverb phrase l. A human can do this after witnessing
rollouts of the policies generated in the previous step. 4)
Calculate the difference between the skill parameters to
generate a label: τ ′ − τ = δτ .

3.1. Adverb Embeddings

Our model requires a method for grounding adverb phrases
into meaningful vector embeddings. Modern semantic em-
bedding methods are designed to capture any possible natu-
ral language fragment for a given language, and as a result
they often represent language as vectors with many hun-
dreds of latent axes. The specific use-case of language
embeddings for our model requires them to capture a nar-
row class of linguistic items: adverbs of motion. For this
reason, we designed a natural and intuitive embedding pro-
cedure that produces clear and concise vector embeddings
from language. The dimensionality of our language embed-
dings match the number of unique adverb axes which are
applicable to the specified task. For a task with a jumping
agent, the adverb axes might be higher-lower and right-left.
Modifiers like “a little” and “much” act as scalar multipliers
to the adverbs they modify. For example, “A little higher and
much more to the left” will be embedded as [1,−3]. Each
axis is then normalized to between −1 and 1. While these
embeddings can easily be calculated with formal linguistic
methods using a direct compositional approach (Jacobson,
2014), future work should relax this constraint.

4. Experiments
We evaluated our model using two tasks that are prime
targets for a parameterized skill. The first is a simple ball-
launching task in which the goal of the agent is to throw a
ball to reach a target at a specified location and time. The
second task uses a simulated 7-DoF MuJoCo (Todorov et al.,
2012) robot in a modified OpenAI Gym (Brockman et al.,
2016) Fetch Slide environment, where the agent’s goal is to
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(a) (b) (c)

Figure 3. (a) The Fetch Slide task in which the goal is to hit a puck to a specified position (in red). (b) Visualization of a single episode of
an ASG policy search which uses the adverb phrase, “much lower and to the right.” (c) Error curves for the Fetch Slide task. Both policy
searches terminate once error is below a certain threshold (dashed red line).

hit a puck to a randomized target location.4 We compare our
simple policy update procedure using ASG to PI2-CMA, a
direct policy search algorithm that optimizes over the space
of skill parameters.

4.1. Ball-Throw Task

In the Ball-Throw task, an agent must throw a ball at a
target located on a wall, ygoal, at a specific time, tgoal,
where τ = [tgoal, ygoal]. The policy of the agent πθ is
parameterized by a vector θ ∈ R2 which stores the vertical
and horizontal components of velocity applied to the ball
at the origin at time t0. We implemented a parameterized
skill Θ : T → R2—converting task parameters to policy
parameters—using Newtonian physics:

Θ(τ) = [
1

tgoal
, 5tgoal +

ygoal
tgoal

].

While adverb-skill groundings do not require environmental
reward, PI2-CMA does, so we define a dense reward func-
tion as the l2-norm of the difference between the target and
current task parameters: R(τ) = −|τ − τ∗|2.

The adverbs most relevant to this task describe the target
speed and location of the ball, so we designed a simple
2-dimensional adverb embedding to capture two primitive
adverb axes: faster-slower and higher-lower. We collected
only 30 samples of training data in the form (l, τ, δτ) using
the procedure defined in section 3, which we labeled with
adverbs using the procedure in Algorithm 1.

We chose a feed-forward neural network as our regression
model Φ for learning the adverb-skill grounding. As shown
in Figure 2(c), adverb-skill groundings converged to within
the target error bound using 32 less episodes on average than
PI2-CMA, which required 10 reward sampling episodes for
every policy update. Across 100 trials, a single episode

4Code for both experiments is available on GitHub:
(https://github.com/SkittlePox/thesis-lang-skill-params).

using an ASG achieved the same decrease in error as ap-
proximately 16.4 episodes of PI2-CMA.

4.2. Fetch Slide Task on a Simulated Robot

We modeled a “fetch” policy on a the simulated 7-DoF
robot arm using Dynamic Movement Primitives (DMPs)
(Schaal et al., 2003) due to their successful application in
robotics. We learned a parameterized skill using a K-Nearest
Neighbors regression model—mapping puck goal positions,
τ ∈ R2, to DMP parameters, θ ∈ R13—using skill execu-
tions generated using PI2-CMA (Stulp & Sigaud, 2012) as
implemented by Abbatematteo et al. (2021).

The adverb axes that were most well-suited for describing
this task were higher-lower and left-right. We collected
50 samples of training data in the form (l, τ, δτ) using the
procedure described in 3. We labeled the data using Surge
AI,5 a crowd-sourced data-collection service that uses hu-
man workers. Workers were shown two images of a skill
execution (similar to the images in Figure 3 (b)) and asked
to rate them by how much the puck in the second image was
higher, lower, to the left, and to the right of the puck in the
first image. Their responses were then embedded using the
procedure defined in 4. The environment came with a dense
reward function, which was only used in the PI2-CMA runs.

We chose a multi-output Support Vector Machine (Vapnik,
2000) as our regression model Φ for learning the adverb-
skill grounding. As shown in Figure 3(c), adverb-skill
groundings converged to within the target error bound us-
ing 12 less episodes on average than PI2-CMA, which re-
quired 5 reward sampling episodes for every policy update.
Across 18 trials, a single episode using an ASG achieved
the same decrease in error as approximately 4.6 episodes of
PI2-CMA.

5Access to Surge AI via https://www.surgehq.ai/.
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Algorithm 1 Adverb Labeling and Embedding Procedure
(Ball-Throw)
Input: Skill Parameters, (τ, τ ′)
Output: Adverb Embedding, l

δτ ← τ ′ − τ
tadv ← 0
yadv ← 0
if |δτ0| > 0.05 + 0.15(−τ0 + 4) then

if |δτ0| > 1.2 + 0.17(−τ0 + 4) then
tadv ← 3 {“much”}

else if |δτ0| > 0.6 + 0.15(−τ0 + 4) then
tadv ← 2

else
tadv ← 1 {“a little”}

end if
end if
if |δτ1| > 0.5 + 0.15(τ1 + 15) then

if |δτ1| > 12 + 0.17(τ1 + 15) then
yadv ← 3 {“much”}

else if |δτ0| > 0.6 + 0.15(−τ0 + 4) then
yadv ← 2

else
yadv ← 1 {“a little”}

end if
end if
if δτ0 ≥ 0.0 then
yadv ← −yadv {“slower,” not “faster”}

end if
if δτ1 ≤ 0.0 then
yadv ← −yadv {“higher,” not “lower”}

end if
return [tadv, yadv]

5. Related Work
5.1. Natural Language in Reinforcement Learning

Most existing research that has used natural language in
reinforcement learning problems can be categorized as ei-
ther language-conditional (in which agents must interact
with language to solve problems) or language-assisted (in
which language can be used to facilitate learning) (Luketina
et al., 2019). Our setting is language-conditional, since the
agent is presumed only to have access to natural language
feedback. Though, prior works across both categories are
relevant.

Some previous research has attempted to map language in-
structions to reward functions. Arumugam et al. (2017) map
natural language instructions to goal-state reward functions
at multiple levels of abstraction within a planning hierar-
chy over an object oriented MDP formalism. While this
approach has the advantage of being able to interpret in-
structions at multiple levels of abstraction, the base-level
actions used in the approach are significantly more abstract
than motor skills. Goyal et al. (2019) shape reward func-
tions by interpreting previous actions to see if they can
be described by a natural language instruction, effectively
grounding natural language directly to action sequences.

Episodes to Converge

Ball-Throw Fetch Slide

PI2-CMA 34.1 16.3
ASG 2.1 3.6

Table 1. Results of Ball-Throw and Fetch Slide experiments. We
ran 100 trials of the Ball-Throw task and 18 trials of the Fetch Slide
task. An adverb was worth approximately 16.4 reward samples in
the Ball-Throw task and 4.6 reward samples in the Fetch Slide task.
Fast convergence occurs because the policy search is performed
over low-dimensional action parameter space.

In contrast, our work grounds atomic language fragments
directly to continuous skill parameters, which allows us to
make granular adjustments to the execution of motor skills
via language commands.

Other research has mapped symbolic instructions directly
to policy structure. Andreas et al. (2017) learn a mapping
from symbolic policy sketches to sequences of modular sub-
policies in the form of options (Sutton et al., 1999). Shu
et al. (2017) use language instructions to help a hierarchical
agent decide whether to use a previous skill or to learn a new
one. Hu et al. (2019) similarly map language instructions
to macro-actions in a real-time strategy game, which are
then performed using a separate model. Tellex et al. (2011)
generate high-level plans from the semantic structure of
language instructions. Gopalan et al. (2020) derive symbol
sketches from demonstrated navigation trajectories which
they ground language instructions to. While all of these
works ground language to agent behavior, ours is the first
to integrate language feedback at the level of modifying the
low-level behavior of motor skills.

5.2. Semantic Representation

While earlier semantic space representations were mainly
concerned with encoding individual words or n-grams into
vector space (Lund & Burgess, 1996; Landauer & Dumais,
1997), there has been recent discussion regarding how to cap-
ture phrases and sentences with similar machinery. Mitchell
& Lapata (2010) explore this problem, which hinges on
linguistic structures as being compositional, i.e. that the
meaning of a language fragment is a function of the mean-
ings of its composite parts. Compositionality itself has been
accounted for in older logic-based formalisms (Montague,
1974), but incorporating compositionality into modern se-
mantic space representations is still an unsolved problem.

Baroni & Zamparelli (2010) proposed a candidate solution
that accounts for compositionality in semantic space models
by representing nouns as vectors and adjectives as matrices,
and the meaning of their combinations to be their tensor
products. Krishnamurthy & Mitchell (2013) expand on
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this idea by using Combinatory Categorial Grammar (CCG)
(Steedman, 1996) to prescribe tensors of various modes to
syntactic categories, whose weights they learn via a training
process that utilizes a corpus.

While the primary focus of this research is not on semantic
models, we firmly believe that core linguistic principles—
such as the principle of compositionality—should be con-
sidered when designing systems for grounding language to
behavior. Accordingly, we utilized the syntax/semantics
formulation laid out by Steedman (1996) and the intuition
behind more recent compositional distributional semantics
research (Baroni & Zamparelli, 2010; Krishnamurthy &
Mitchell, 2013) in our strategy for grounding adverbs. Ad-
verbs by the CCG account are functions from verbs to verbs,
and adverbs by our account are similarly functions from
skills to skills.

6. Conclusion
We have presented a novel method for efficiently integrating
granular natural language feedback into low-level behavior.
The method relies on learning adverb-skill groundings, map-
pings of adverbs to adjustments in skill parameters, which
can be learned once using few training examples and do not
require reward from the environment. Using adverb-skill
groundings, an agent can integrate adverb feedback into a
policy search—in place of sample-based direct policy search
methods—and achieve an order of magnitude increase in
sample efficiency.

This work can be extended in several directions. First, the
adverbs that are model is capable of using for skill modi-
fication are limited by the parameterization of the skill. If
no variation in skill parameters could result in the desired
effect of an adverb, a new skill parameterization should be
learned with greater expressive power. Second, humans typ-
ically do not need to learn to ground adverbs each time they
learn a new skill; once they understand an adverb, they can
apply it to many skills. Future work might consider making
technical accommodations to enable this.

Another important question to address is how language
should be embedded for usage in modifying skill parameters.
Our embedding procedure was designed by a human expert
with knowledge of the skills and the adverbs that are most
applicable to them. Future work should look to relax this
constraint, perhaps by defining a broad and exhaustive set
of adverbs of motion which can be embedded and applied
to any skill.
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