
Learning to Plan with Portable Symbols

Steven James 1 Benjamin Rosman 1 2 George Konidaris 3

Abstract
We present a framework for autonomously learn-
ing a portable symbolic representation that de-
scribes a collection of low-level continuous en-
vironments. We show that abstract representa-
tions can be learned in a task-independent space
specific to the agent that, when combined with
problem-specific information, can be used for
planning. We demonstrate knowledge transfer
in a video game domain where an agent learns
portable, task-independent symbolic rules, and
then learns instantiations of these rules on a per-
task basis, reducing the number of samples re-
quired to learn a representation of a new task.

1. Introduction
On the surface, the learning and planning communities op-
erate in very different paradigms. Agents in reinforcement
learning (RL) interact directly with the environment in order
to learn either an optimal behaviour or the dynamics of the
environment (Sutton & Barto, 1998). The latter produces a
learned forward model of the transition dynamics, which can
then be used in some form of tree search to compute optimal
actions (Coulom, 2006; Kocsis & Szepesvári, 2006).

Unfortunately, this approach founders when confronted with
low-level, high-dimensional and continuous state and action
spaces. The innate action space of a robot, for instance,
involves directly actuating motors at a high frequency, but
it would take thousands of such actuations to accomplish
most useful goals. Thus planning is simply infeasible, even
with a perfect model.

Approaches such as hierarchical reinforcement learning
(Barto & Mahadevan, 2003) tackle this problem by abstract-
ing away the low-level action space using higher-level skills,
which can accelerate learning and planning. While skills
alleviate the problem of reasoning over low-level actions,

1University of the Witwatersrand, Johannesburg, South Africa
2Council for Scientific and Industrial Research, Pretoria, South
Africa 3Brown University, Providence RI 02912, USA. Correspon-
dence to: Steven James <Steven.James@wits.ac.za>.

Accepted to the ICML/IJCAI/AAMAS 2018 Workshop on Planning
and Learning (PAL-18), Stockholm, Sweden.

the state space remains complex and planning continues to
be challenging.

On the other hand, the classical planning approach is to rep-
resent the world using abstract symbols, with actions repre-
sented as operators that manipulate these symbols (Ghallab
et al., 2004). Such representations use only the minimal
amount of state information necessary for task-level plan-
ning. This is appealing since it mitigates the issue of reward
sparsity and admits solutions to long-horizon tasks, but
raises the question of how to build the appropriate abstract
representation of a problem. This is often resolved manu-
ally, requiring substantial effort and expertise. Fortunately,
recent work demonstrates how to learn a provably sound
symbolic representation autonomously, given only the data
obtained by executing the high-level actions available to the
agent (Konidaris et al., 2018).

A major shortcoming of that framework is the lack of
generalisability—an agent must relearn the appropriate sym-
bolic representation for each new task it encounters. This is
a data- and computation-intensive procedure involving clus-
tering, probabilistic multi-class classification, and density
estimation in high-dimensional spaces.

We introduce a framework for deriving a symbolic ab-
straction over a portable state space known as agent space
(Konidaris et al., 2012). Because agent space depends only
on the sensing capabilities of the agent (which remain con-
stant regardless of the environment), it is independent of the
underlying state space and thus a suitable mechanism for
transfer.

We demonstrate successful transfer in the Treasure Game
(Konidaris et al., 2015), indicating that an agent is able to
learn symbols that generalise to different tasks, reducing
the amount of experience required to learn a high-level
representation of a new task.

2. Background
We assume that the tasks faced by an agent can be mod-
elled as a semi-Markov decision process (SMDP) M =
〈S,O, T ,R〉, where S ⊆ Rn is the n-dimensional continu-
ous state space and O(s) is the set of temporally-extended
actions known as options available to the agent at state s.
The reward function R(s, o, τ, s′) specifies the feedback

Learning to Plan with Portable Symbols

the agent receives from the environment when it executes
option o from state s and arrives in state s′ after τ steps. T
describes the dynamics of the environment, specifying the
probability of arriving in state s′ after option o is executed
from s for τ timesteps: T oss′ = Pr(s′, τ | s, o).

An option o is defined by the tuple 〈Io, πo, βo〉, where Io is
the initiation set that specifies the states in which the option
can be executed, πo is the option policy which specifies the
action to execute, and βo is the termination condition, where
βo(s) is the probability of option o halting in state s.

2.1. Portable Skills

We adopt the approach of Konidaris et al. (2012) whereby
tasks are related because they are faced by the same agent.
For example, consider a robot equipped with various sensors
that is required to perform a number of as yet unspecified
tasks. The only aspect that remains constant across all these
tasks is the presence of the robot, and more importantly its
sensors, which map the state space to a portable observation
space D known as agent space.

We define an observation function φ : S → D that maps
states to observations and depends on the sensors available
to an agent. We assume the sensors may be noisy, but that
the noise has mean 0 in expectation, so that if s, t ∈ S , then
s = t =⇒ E[φ(s)] = E[φ(t)]. We refer to the SMDP’s
original state space as problem space.

Augmenting an SMDP with this new agent space produces
the tuple 〈S,O, T ,R, γ,D〉, where the observation space
D remains constant across all tasks. We can use D to learn
agent-space options, whose option policies, initiation sets
and termination conditions are all defined in agent space.
Because D remains constant regardless of the underlying
SMDP, these options can be transferred across tasks.

2.2. Abstract Representations

Much like Konidaris et al. (2018), we are interested in
learning an abstract representation to facilitate planning—
that is, learning to plan. We define a probabilistic plan
pZ = {o1, . . . , on} to be the sequence of options to be exe-
cuted, starting from some state drawn from distribution Z.
It is useful to introduce the notion of a goal option, which
can only be executed when the agent has reached its goal.
Appending this option to a plan means that the probability of
successfully executing a plan is equivalent to the probability
of reaching some goal.

A representation suitable for planning must allow us to
calculate the probability of a given plan executing to com-
pletion. As a plan is simply a chain of options, we must
therefore learn when an option can be executed, as well as
the outcome of doing so. This corresponds to learning the
precondition, which expresses the probability that option o

can be executed at a given state, and the image, which rep-
resents the distribution of states an agent may find itself in
after executing o from states drawn from some distribution.
Figure 1 illustrates how the precondition and image are used
to calculate the probability of executing a two-step plan.

For continuous state spaces, we cannot represent the im-
age of an arbitrary option; however, we can do so for a
subclass known as subgoal options (Precup, 2000), whose
terminating states are independent of their starting states
(Konidaris et al., 2018). That is, for any subgoal option
o, Pr(s′ | s, o) = Pr(s′ | o). We can thus substitute the
option’s image for its effect. If an option is not subgoal,
we may be able to partition its initiation set into a finite
number of subsets, so that it becomes subgoal when ini-
tiated from each of the individual subsets. That is, we
divide an option o’s start states into classes C such that
P (s′|s, o, c) ≈ P (s′|o, c)∀c ∈ C. Given subgoal options,
we can construct a plan graph corresponding to an abstract
MDP.

We may also assume that the option is abstract—that is, it
obeys the frame and action outcomes assumptions (Pasula
et al., 2004). For each option, we can decompose the state
into two sets of variables s = [a, b] such that executing the
option results in state s′ = [a, b′], where a is the subset of
variables that remain unchanged.

Whereas subgoal options induce an abstract MDP, abstract
subgoal options allow us to construct a model corresponding
to a factored abstract MDP. Equivalently, subgoal options
induce a PPDDL description (Younes & Littman, 2004),
where each operator’s precondition and positive effect is
a single proposition. Abstract subgoal options result in
preconditions and effects with conjunctive propositions.

Z

o1?

Io1

(a) The agent begins at dis-
tribution Z, and must deter-
mine the probability with
which it can execute the
first option o1.

Z

o1

o2?

Z1

Io2

(b) The agent estimates
the effect of executing o1,
given by Z1. It must then
determine the probability
of executing o2 from Z1.

Figure 1. An agent attempting to calculate the probability of exe-
cuting the plan pZ = {o1, o2}, which requires knowledge of the
conditions under which o1 and o2 can be executed, as well as the
effect of executing o1 (Konidaris et al., 2018).

Learning to Plan with Portable Symbols

3. Building a Portable Symbolic Vocabulary
Prior work (Konidaris et al., 2018) has defined symbols as
names for precondition and effect distributions over low-
level states, which are directly tied to the SMDP in which
they were learned. We instead propose learning a symbolic
representation over agent spaceD. Transfer can be achieved
in this manner (provided φ is non-injective1), because D
remains consistent both within the same SMDP and across
SMDPs, even if the state space or transition function do not.

We assume that the agent possesses subgoal agent-space
options, but that the goal (and hence goal option) is defined
in problem space. This produces an issue because, given a
current distribution over agent-space observations, we can-
not determine the probability with which a problem-space
option can be executed. This follows naturally from the
property that φ is non-injective. We therefore require addi-
tional information to disambiguate such situations, allowing
us to map from agent space back into problem space.

We can accomplish this by partitioning our agent-space op-
tions based on their effects in S , resulting in options that are
subgoal in both D and S. This necessitates having access
to both problem- and agent-space observations. Recall that
options are partitioned to ensure the subgoal property holds,
and so each partition defines its own unique image distribu-
tion. If we label each class in C, then each label refers to a
unique distribution in S and is sufficient for disambiguating
our agent-space symbols.

Consider an option GoToDoor that causes the agent to
approach the door in its field of view. Figure 2a illustrates its
effect given an agent-centric view, which is then combined
with partition labels (Figure 2b). This produces the lifted
symbol InFrontOfDoor(X), where InFrontOfDoor
is the name for a distribution over D and X is simply a
partition number. Note that the only time problem-specific
information is required is when determining the values of X.

4. Generating a Forward Model
We now show how to build a forward model by combining
agent-space distributions and partition labels, which results
in parameterised symbols. This can be viewed as a two-step
process. The agent first learns domain-independent symbols
in agent space, which are not strictly tied to the current task,
and then determines their parameters and how they link to
each other, which depends on S and thus the current task.

The first phase is equivalent to learning propositions in agent
space, which are portable because agent space is shared
between SMDPs. An example is an agent that learns that
the effect of passing through a door is that it finds itself

1We require that φ be non-injective since the ability to effect
transfer relies on two distinct states in S being identical in D.

(a) (b)

Figure 2. (a) A single agent-space symbol representing the effect
of the option GoToDoor. (b) GoToDoor is subgoal in D but
not in xy-space, since the door it approaches depends upon the
agent’s location. However, we can partition the option into two
options GoToDoor(1) and GoToDoor(2) which are subgoal
in S. The coloured regions represent the two partitions.

in a room. The second phase learns the specifics of the
current environment: which doors connect to which rooms,
for example, which differs between buildings. This involves
learning how the parameter of the precondition relates to
the effect’s parameter.

We describe the approach for the Treasure Game, a dungeon-
crawler video game in which an agent navigates a maze in
search of treasure. The domain contains ladders as well as
doors which impede the agent. Some doors can be opened
and closed with levers, while others require a key to unlock.
The agent possesses a number of high-level agent-space
subgoal options, each of which executes many pixel-level
primitive actions such as JumpLeft and ClimbLadder.
More details are given by Konidaris et al. (2018).

The problem space consists of the xy-position of the agent,
key and treasure, the angle of the levers (which determines
whether a door is open) and the state of the lock. We con-
struct the agent space by first tiling the screen into cells.We
then produce a vector of length 9 whose elements are the
sprite types in the cells adjacent to the agent.

We learn a representation using agent-space transitions only,
following a procedure identical to Konidaris et al. (2018).
First, we collect agent-space transitions by interacting with
the environment. We use SVMs (Cortes & Vapnik, 1995)
with Platt scaling (Platt, 1999) to estimate preconditions,
and use kernel density estimation (Rosenblatt, 1956; Parzen,
1962) to model effect distributions. Finally, for all valid
combinations of effect distributions, we compute the proba-
bility that states drawn from their grounding lie within the
precondition of each option, discarding rules with a success
probability of less than 5%. This results in portable action
rules, one of which is illustrated by Figure 3a.

We then partition the above options according to their effects
in problem space. We follow previous work (Konidaris et al.,
2015; Andersen & Konidaris, 2017) by clustering options’

Learning to Plan with Portable Symbols

effect states using DBSCAN (Ester et al., 1996), and then
assigning each cluster a label. For each transition, we record
the start and end partition label, which allows us to learn the
link between the precondition and effect parameter. This
instantiates the rules for the given task. Figure 3b shows the
different partition labels for the DownLadder operator.

5. Inter-Task Transfer
We construct a set of seven tasks corresponding to different
levels. Because the levels have different configurations, con-
structing a representation in problem space requires that we
relearn each level from scratch. However, when construct-
ing an agent-centric representation, rules learned in one task
can immediately be used in subsequent tasks. We gather
k transition samples from each task by executing options
uniformly at random, and use these samples to build both
task-specific and agent-centric (portable) models.

(a) (b)

Figure 3. (a) The precondition (top) and effect (bottom) for the
DownLadder operator, which states that in order to execute the
option, the agent must be standing above the ladder. The option
results in the agent standing on the ground below it. The black
spaces refer to unchanged low-level state variables. (b) Three
problem-space partitions for the DownLadder operator. We as-
sign a unique label to each of the circled partitions and combine it
with the portable rule in (a) to produce a grounded operator.

To evaluate model accuracy, we record a set of 100 two-
step plans 〈s1, o1, s2, o2〉 for each task. Let Mρi

k be the
model constructed for task ρi using k samples. We then
calculate the likelihood of each plan under the model:
Pr(s1 ∈ Io1 | M

ρi
k) × Pr(s′ ∈ Io2 | M

ρi
k), where

s′ ∼ Eff(o1). We build models using increasing numbers
of samples until the likelihood averaged over all plans is
greater than some acceptable threshold (we use a value of
0.75), at which point we continue to the next task. The
results are given by Figure 4.

The results show a sample complexity that scales linearly
with the number of tasks when learning problem-space sym-
bols. This is to be expected, since each task is independent
and must be learned from scratch. Conversely, learning

1 2 3 4 5 6 7
Number of Tasks

2000

4000

6000

8000

10000

12000

Nu
m

be
r S

am
pl

es
 R

eq
ui

re
d

(C
um

ul
at

iv
e)

Task-Specific Symbols
Portable Symbols

Figure 4. Cumulative number of samples required to learn suf-
ficiently accurate models as a function of the number of tasks
encountered. Results are averaged over 100 random permutations
of the task order. Standard errors are specified by the shaded areas.

and reusing portable symbols require fewer samples as we
encounter more tasks, leading to a sublinear increase.

We might have expected to see a plateauing in sample col-
lection as we learn more portable rules. However, this was
not the case owing to uniform random exploration—a better
approach would have been to use knowledge of the currently
learned partitions to guide exploration (e.g. partitions that
we have yet to model should receive more attention). De-
spite this, our approach still demonstrates the advantage of
transfer.

6. Related Work
There has been some work in autonomously learning pa-
rameterised skills, particularly in the field of relational rein-
forcement learning. Zettlemoyer et al. (2005), for instance,
are able to learn parameterised operators; however, the high-
level symbols that constitute the state space are given. Relo-
catable action models (Leffler et al., 2007) aggregate states
into “types” which determine the transition behaviour. State-
independent representations of the outcomes from different
types are learned and shown to improve the learning rate in
a single task. Jetchev et al. (2013), Ugur & Piater (2015)
and Kaelbling & Lozano-Pérez (2017) are able to discover
parameterised symbols directly from low-level states. In
these cases, the parameters refer to the state variables modi-
fied by the action. Zhang et al. (2018) learn models of an
environment’s dynamics which can generalise across tasks,
but the abstraction is given.

7. Summary
We specified a framework for learning portable symbols,
showing that the addition of problem-specific information
can be used to construct a representation for planning. This
allows us to leverage experience in solving new unseen
tasks—a step towards creating adaptable, long-lived agents.

Learning to Plan with Portable Symbols

References
Andersen, G. and Konidaris, G.D. Active exploration for

learning symbolic representations. In Advances in Neural
Information Processing Systems, pp. 5016–5026, 2017.

Barto, A.G. and Mahadevan, S. Recent advances in hierar-
chical reinforcement learning. Discrete Event Dynamic
Systems, 13(4):341–379, 2003.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

Coulom, R. Efficient selectivity and backup operators in
Monte-Carlo tree search. In International Conference on
Computers and Games, pp. 72–83. Springer, 2006.

Ester, M., Kriegel, H., Sander, J., and Xu, X. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In 2nd International Conference on
Knowledge Discovery and Data Mining, volume 96, pp.
226–231, 1996.

Ghallab, M., Nau, D., and Traverso, P. Automated Planning:
theory and practice. Elsevier, 2004.

Jetchev, N., Lang, T., and Toussaint, M. Learning grounded
relational symbols from continuous data for abstract rea-
soning. In Proceedings of the 2013 ICRA Workshop on
Autonomous Learning, 2013.

Kaelbling, L.P. and Lozano-Pérez, T. Learning composable
models of parameterized skills. In Proceedings of the
2017 IEEE International Conference on Robotics and
Automation, pp. 886–893. IEEE, 2017.

Kocsis, L. and Szepesvári, C. Bandit based Monte-Carlo
planning. In European Conference on Machine Learning,
pp. 282–293. Springer, 2006.

Konidaris, G.D., Scheidwasser, I., and Barto, A.G. Transfer
in reinforcement learning via shared features. Journal of
Machine Learning Research, 13(May):1333–1371, 2012.

Konidaris, G.D., Kaelbling, L.P., and Lozano-Pérez, T. Sym-
bol acquisition for probabilistic high-level planning. In
Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, pp. 3619–3627,
2015.

Konidaris, G.D., Kaelbling, L.P., and Lozano-Pérez, T.
From skills to symbols: Learning symbolic representa-
tions for abstract high-level planning. Journal of Artificial
Intelligence Research, 61(January):215–289, 2018.

Leffler, Bethany R, Littman, Michael L, and Edmunds, Tim-
othy. Efficient reinforcement learning with relocatable
action models. In Proceedings of the 22nd AAAI Confer-
ence on Artificial Intelligence, volume 7, pp. 572–577,
2007.

Parzen, E. On estimation of a probability density function
and mode. The annals of mathematical statistics, 33(3):
1065–1076, 1962.

Pasula, H., Zettlemoyer, L.S., and Kaelbling, L.P. Learning
probabilistic relational planning rules. In Proceedings of
the Fourteenth International Conference on Automated
Planning and Scheduling, pp. 73–81, 2004.

Platt, J. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. Ad-
vances in large margin classifiers, 10(3):61–74, 1999.

Precup, D. Temporal abstraction in reinforcement learning.
PhD thesis, University of Massachusetts Amherst, 2000.

Rosenblatt, N. Remarks on some nonparametric estimates of
a density function. The Annals of Mathematical Statistics,
pp. 832–837, 1956.

Sutton, R.S. and Barto, A.G. Reinforcement Learning: An
Introduction. MIT Press, 1998.

Ugur, E. and Piater, J. Bottom-up learning of object cate-
gories, action effects and logical rules: From continuous
manipulative exploration to symbolic planning. In Pro-
ceedings of the 2015 IEEE International Conference on
Robotics and Automation, pp. 2627–2633. IEEE, 2015.

Younes, H.L.S. and Littman, M.L. PPDDL 1.0: An ex-
tension to PDDL for expressing planning domains with
probabilistic effects. Technical report, 2004.

Zettlemoyer, L.S., Pasula, H., and Kaelbling, L.P. Learning
planning rules in noisy stochastic worlds. In Proceed-
ings of the Twentieth National Conference on Artificial
Intelligence, pp. 911–918, 2005.

Zhang, A., Lerer, A., Sukhbaatar, S., Fergus, R., and Szlam,
A. Composable planning with attributes. arXiv preprint
arXiv:1803.00512, 2018.

