
Optimal Sampling-Based Planning for Linear-Quadratic
Kinodynamic Systems

Gustavo Goretkin1, Alejandro Perez1, Robert Platt Jr.2, and George Konidaris1

Abstract—We propose a new method for applying RRT∗ to
kinodynamic motion planning problems by using finite-horizon
linear quadratic regulation (LQR) to measure cost and to extend
the tree. First, we introduce the method in the context of
arbitrary affine dynamical systems with quadratic costs. For
these systems, the algorithm is shown to converge to optimal
solutions almost surely. Second, we extend the algorithm to non-
linear systems with non-quadratic costs, and demonstrate its
performance experimentally.

I. INTRODUCTION

The RRT∗ algorithm [1] offers a practical and effective
method for probabilistically-complete optimal motion plan-
ning in many domains. Like all members of the RRT family
of planning algorithms [2], it incrementally builds a tree by
determining the “closest” vertices in the tree to a random
sample, “steering” the system from a nearby vertex toward the
sample, and adding this extension to the tree. While developing
methods for locating nearby vertices and for steering the
system toward new vertices is straightforward for kinematic
systems, it is much more challenging for kinodynamic sys-
tems (with kinematic and differential constraints) because of
the difficulties in calculating locally optimal kinodynamic
trajectories. Identifying an appropriate distance metric and
extension method are the key elements required to apply
RRT∗ to kinodynamic systems. Moreover, it has been shown
that the performance of RRT-based algorithms is sensitive to
the distance metric [3] and that the state space is efficiently
explored only when this metric reflects the true cost-to-go [4].

To illustrate the class of problems we would like to solve,
consider a torque-driven pendulum that starts at rest. We would
like to find a control trajectory (torque input) that swings the
pendulum up to the upright position, subject to constraints
on the control input and on the time. For example, we might
require that the pendulum be upright at exactly 10 seconds.
We also wish to minimize some cost, such as control effort.
In this case it would not be optimal to expend effort getting
the pendulum upright earlier than it needs to.

1Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology {goretkin, aperez, gdk}@csail.mit.edu

2Computer Science and Engineering University at Buffalo, The State
University of New York robplatt@buffalo.edu

This work was supported in part by the NSF under Grants No. 1117325.
Perez was supported by NSF Graduate Fellowship Grant No. 1122374.
Goretkin was supported by the MIT EECS - Draper Research and Innovation
Scholarship. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation. We also gratefully ac-
knowledge support from ONR MURI grant N00014-09-1-1051, from AFOSR
grant FA2386-10-1-4135 and from the Singapore Ministry of Education under
a grant to the Singapore-MIT International Design Center.

While it is possible to design controllers that work on
this specific domain, we search for a general method that is
agnostic to the details of the dynamics of the system, the cost
metric, and the constraints.

For systems with linear dynamics and quadratic costs,
optimal control theory offers methods for computing optimal
feedback policies and the corresponding cost-to-go functions
using linear quadratic regulation (LQR). However, these meth-
ods alone do not provide a way to handle constraints on the
control input or in the state. This suggests that we can use LQR
as a cost metric and extension method for RRT∗ to handle
linear-quadratic systems with state and control constraints.
Additionally, it suggests that we can approximate the cost
metric and the extension method for non-linear systems by
linearizing system dynamics in a local region of state space
and applying LQR.

Recently, several researchers have applied ideas from linear
control theory to estimate distance and to calculate locally
optimal trajectories (as originally suggested by LaValle and
Kuffner [2]). Glassman and Tedrake applied the idea to the
standard RRT formulation in order to plan in underactuated
domains using an affine version of LQR to estimate kinody-
namic ‘distances’ between a random sample and vertices in the
tree [5]. Our prior work extended this idea to the RRT∗ setting
using an infinite-horizon LQR controller that both estimated
the cost and calculated trajectories for extending the tree [6].
Due to its use of an infinite-horizon LQR controller, this
steering method does not produce locally optimal trajectories
for finite-time extensions, even for linear systems. Webb and
van den Berg [7] used a finite-horizon optimal controller
to calculate the extension trajectories by first computing the
optimal finite time-horizon. In conjunction with RRT∗, this
extension method was proven to converge to optimal solutions
for linear systems. However, this approach is only applicable
to a limited class of cost functions. Specifically, it supports
only those cost functions that trade off between time and
control effort and it is not possible to constrain the time of
solution trajectories. Therefore it is not suitable for problems
that require a fixed trajectory length. Moreover, the extension
of this method to non-linear dynamics results in trajectories
that do not obey the differential constraints imposed by the
dynamics.

We propose a new approach to applying LQR to the problem
of finding optimal finite-horizon extension trajectories and
costs in the context of RRT∗. This new algorithm converges,
with probability one, to the optimal plan for problems with
affine dynamics and quadratic cost functions. Unlike the
method of Webb and van den Berg [7], our method does

not necessitate computing the optimal time horizon for each
extension. Instead, we include time as an additional dimension
of the space in which the tree grows, an approach commonly
used to solve problems in time-varying environments [8], [9].

Because the search tree explicitly represents state-time and
explores all possible trajectories in this space, we can set
contraints on the length of time of the solutions. This makes
the algorithm applicable to a wider range of problems. In
particular, we show that for any linear dynamical system with
a quadratic cost function, our algorithm satisfies Karaman and
Frazzoli’s conditions [10] for guaranteeing the probabilistic
optimality of the resulting trajectory. Moreover, the algorithm
can be directly extended to non-linear systems by lineariz-
ing the dynamics at vertices in the tree. These approximate
dynamics are, in general, affine, i.e., containing a zero-order
term. LQR is typically applied to linear systems, so we also
include an extension to LQR which can be applied to affine
systems. We present several experiments that suggest that our
algorithm obtains good results in these settings.

II. BACKGROUND

A. Problem Statement

Given a deterministic system with known process dynamics,
the optimal kinodynamic motion planning problem is to find a
trajectory that begins in a given start state, terminates in a goal
region, avoids obstacles, and satisfies differential dynamics
constraints. Let the state space and control input space of the
system be described by compact sets, X ⊆ Rn and U ⊆ Rm,
respectively. Assume that a start state, z0 ∈ X , a goal region,
Xgoal ⊂ X , and an obstacle space, Xobs ⊂ X , are given.
The system process dynamics are described by a continuously
differentiable function,

ẋ(t) = f(x(t), u(t)), (1)

where x(t) ∈ X and u(t) ∈ U . The optimal kinodynamic
motion planning problem is as follows.

Problem 1: (Optimal kinodynamic motion planning [10])
Given a state space, X ⊆ Rn, a start state, z0 ∈ X , an

obstacle region, Xobs ⊂ X , a goal region, Xgoal ⊂ X , a
control input space, U ⊆ Rm, and function f : X × U →
X describing the system process dynamics, find a control,
u : [0, T] → U , for some T ∈ Tgoal ⊆ R>0 such that the
corresponding dynamically feasible trajectory, x : [0, T] →
X \ Xobs, starts at x(0) = z0, avoids the obstacle region,
reaches the goal region, x(T) ∈ Xgoal, and minimizes the
cost functional

J(x, u) =

∫ t=T

t=0

g(x(t), u(t)). (2)

B. RRT∗

The Optimal Rapidly-Exploring Random Tree (RRT∗) [1]
is a version of the RRT algorithm [2] that has the asymptotic
optimality property, i.e., almost-sure convergence to an optimal
solution.

The RRT∗ procedure is presented in Algorithm 1. The basic
algorithmic primitives for operation are the following:

• Random sampling: The Sample procedure provides inde-
pendent uniformly distributed random samples of states
from the configuration space.

• Nearest nodes: Given a set V of vertices in the tree and a
state z′, the Nearest(V, z′) procedure calculates the state
z ∈ V from which z′ can be reached with the lowest cost.

• Near nodes: Given a set V of vertices in the tree and
a state z′, the Near(V, z′) procedure provides a set of
states in V from which z′ may be reached with a less-
than-threshold cost:

Near(V, z′) =

{
z ∈ V : J(x∗z,z′ , u∗z,z′) ≤ γ

(
log n

n

) 1
d

}
,

where x∗z,z′ and u∗z,z′ denote the locally optimal trajectory
(ignoring obstacles) and control between z and z′, n is
the number of vertices in the tree, d is the dimension of
the space, and γ is a constant.

• Steering: Given two states z, z′, the Steer(z, z′) proce-
dure returns a locally optimal path x∗z,z′ that connects z
and z′.

• Collision checking: Given a trajectory x,
CollisionFree(x) returns true if the path lies in
the obstacle-free portion of configuration space.

Algorithm 1: RRT∗((V,E), N)

for i = 1, . . . , N do1

zrand ← Sample;2

znearest ← Nearest(V, zrand);3

xnew ← Steer(znearest, zrand); znew ← xnew.end();4

if CollisionFree(xnew) then5

Xnear ← Near(V, znew);6

cmin ←∞; zmin ← NULL; xmin ← NULL;7

for znear ∈ Xnear do8

x← Steer(znear, znew);9

if Cost(znear) + Cost(x) < cmin then10

cmin ← Cost(znear) + Cost(x);11

zmin ← znear; xmin ← x;12

V ← V ∪ {znew};13

E ← E ∪ {(zmin, znew) };14

(V,E)← Rewire((V,E), Xnear, znew);15

return G = (V,E);16

The algorithm works as follows. The graph G is initialized
with V = {z0} and E = ∅. First, a state is sampled, denoted as
zrand, from the configuration space (Line 2), then, the nearest
vertex is extended toward this sample (Line 3). The resulting
trajectory is denoted as xnew and its final state as znew (Line
4). If no collision is found in this trajectory, the Near function
is invoked to calculate the set of vertices close to znew (Line
6). For each near vertex, the algorithm adds the previously

Algorithm 2: Rewire((V,E), Xnear, znew)

for znear ∈ Xnear do1

x← Steer(znew, znear) ;2

if Cost(znew) + Cost(x) < Cost(znear) then3

if CollisionFree(x) then4

zparent ← Parent(znear);5

E ← E \ {zparent, znear};6

E ← E ∪ {znew, znear};7

return (V,E);8

stored cost of reaching that vertex to the cost of reaching
znew from that vertex. Then, zmin, the vertex in the set Xnear

that reaches znew with minimum cost, is returned along with
the path (Lines 7-12). The algorithm then connects zmin to
znew, and attempts to “rewire” the vertices in Xnear using
the Rewire procedure (Algorithm 2). The Rewire procedure
attempts to connect znew to each vertex in Xnear. The znew
vertex is made the parent of a vertex in Xnear if the trajectory
connecting znew to the vertex does so by incurring less cost
than that of its current parent.

C. Affine LQR

Linear quadratic regulation (LQR) is an optimal control
technique that efficiently calculates an optimal feedback policy
for linear systems with quadratic cost functions. This paper
uses finite-horizon LQR, which solves the following problem:
given deterministic linear process dynamics,

ẋ(t) = Ax(t) +Bu(t), (3)

find a state and control trajectory, x and u, that minimize the
cost functional

JLQR(x, u) =x(T)TQFx(T)

+

∫ t=T

t=0

x(t)TQx(t) + u(t)TRu(t), (4)

where we have initial and final value constraints on the state
trajectory, x(0) = z0. LQR obtains the optimal solution to
the above problem in two steps. First, it calculates the opti-
mal cost-to-go function by integrating the differential Riccati
equation (Equation 5) backward in time starting at the final
time T with P (T) = QF and integrating toward 0

−Ṗ (t) = ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q (5)

Second, LQR calculates the optimal action (the one that
descends the cost-to-go) to take at time t ≤ T using:

u(t) = −R−1BTP (t)x(t).

The standard LQR formulation requires process dynamics to
be linear and imposes a quadratic penalty in x and u centered
at the origin. However, our application requires LQR to make
use of three coordinate frames: one for the final-state constraint
which ensures that the Steer function actually reaches z′

(represented by QF), one for the dynamics, and another for the
cost function. Additionally, our non-linear extension requires
LQR to handle affine process dynamics. 1 Specifically, suppose
that the process dynamics are now

ẋ(t) = Ax(t) +Bu(t) + c, (6)

and instead of minimizing Equation 4, suppose that our goal
is now to minimize

Jaff (x, u) = (x(T)− z∗)TQF (x(T)− z∗)

+

∫ t=T

t=0

(x(t))TQ(x(t))

+ 2qT (x(t)) + u(t)TRu(t) + d, (7)

where q is the first-order term in the cost function and d is
the constant term (which may be used to penalize time). This
can be solved by introducing a change of coordinates in the
state space. We augment the state vector,

x̄(t) = [xT , 1]T . (8)

Changing to homogenous coordinates allows linear transfor-
mations in the augmented space to behave as affine transfor-
mations in the original space. The new process dynamics are:

˙̄x(t) =

(
A c
0 0

)
x̄(t) +

(
B
0

)
u(t). (9)

It may be verified that these process dynamics are the same as
those in Equation 6 but in the form of Equation 3. The bottom
rows of the matrices in Equation 9 preserves the augmented
value in Equation 8. We can now express the offset cost
functional in Equation 7 as:

J(x̄, u) = x̄ (t)
T
Q̄F x̄ (t) +

∫ t=T

t=0

x̄(t)T Q̄x̄(t) + u(t)TRu(t),

(10)

where Q̄F =

(
QF −qF
−qF T (z∗)T z∗

)
, and Q̄ =

(
Q q
qT d

)
and we solve the affine version of the problem by applying

LQR to the augmented system in the standard way. In the rest
of this paper, we will refer to this process of solving systems
with affine dynamics and second-order costs as LQR.

III. KINODYNAMIC PLANNING FOR SYSTEMS WITH
AFFINE DYNAMICS AND QUADRATIC COSTS

In this section, we propose a version of RRT∗ that finds
optimal motion plans for affine kinodynamic systems with
quadratic costs. The algorithm works by constructing a tree
where each vertex has an associated state and time. Our
method can handle both finite and infinite horizon problems.

1While some systems are actually affine, our primary goal for handling
affine dynamics is to extend to nonlinear systems.

A. The Kinodynamic Planning Problem with Affine Dynamics
and Quadratic Costs

Consider the version of Problem 1 where the system process
dynamics are affine (of the form in Equation 6) and where the
cost functional is quadratic. The obstacle region, Xobs, may
be of any shape. We consider two instances of the problem:
a) where the time horizon, T , is fixed and given as input, and
b) where the time horizon is free to vary in order to minimize
cost (i.e., T is an optimization variable).

B. Extensions to the Tree

Rather than sampling points in state space (Step 2 of
Algorithm 1), our algorithm samples points from state-time,
vrand = (zrand, trand) ∼ X × (0, T], where T is a maximum
final time constraint.

Steps 3 and 4 are implemented using LQR. We integrate the
differential Riccati equation for the affine dynamics backward
in time to 0 starting from trand with the quadratic cost
function centered at the sample point, z∗ = zrand (see
Section II-C). The LQR cost function used in the Riccati
integration (Equation 10) has Q and R equal to their values
in the global quadratic cost function. QF is set to a multiple
of the identity matrix that is sufficiently large to cause LQR
to find trajectories that terminate very close to the random
sample.2 The result of this integration will be written as
a function, P : [0, T] → Sn+1

+ (the result of the Riccati
integration is always a positive semi-definite matrix). The
P function is used to implement Step 3 of Algorithm 1
by evaluating the LQR cost-to-go function for each vertex,
vi = (xi, ti) ∈ V , in the tree. Without loss of generality, we
assume the time associated with the root vertex to be 0 (non-
zero start times can be handled by shifting all times forward).
As a result, there is always at least one vertex with a time
smaller than the sample time. Once the vertex ‘closest’ to the
sample is found, we generate a trajectory between (zi, ti) and
(zrand, trand) (Step 4 of Algorithm 1) using LQR. We then
verify if the trajectory intersects an obstacle region and discard
it if it does.

C. Tree Rewiring

In the context of a kinodynamic problem, RRT∗ has two
types of extension procedures [10]. In the first (Steps 6
through 14 of Algorithm 1), we identify the set of vertices,
vi ∈ Vnear ⊆ V , from which znew can be reached such that

J(x∗vi,vnew
, u∗vi,vnew

) ≤ γ
(

log n

n

) 1
d

. (11)

For each vertex in this set, we calculate the global costs by
tracing the tree back to the root and summing the costs. After
ranking these vertices in order global costs, we start at the top
of this list and attempt to connect the vertex to the random
sample using LQR (Step 9 of Algorithm 1). If the resulting
trajectory intersects an obstacle, that connection is discarded

2In principle, it is possible to integrate an inverse form of the differential
Riccati equation that allows setting QF to infinity (i.e. Q−1

F = 0). However,
we have found that setting QF to a large value works well in practice.

and the algorithm moves down the list to the vertex associated
with the next smallest cost. Once a successful trajectory is
found, the resulting branch is added to the tree.

Similarly, RRT∗ searches for vertices that can be reached
from the sample and re-wires as necessary (Algorithm 2).
Costs are calculated in the same way as above. This time,
it is necessary to integrate the differential Riccati equation
backward from each vertex in the tree. Instead of requiring this
integration to occur for the entire tree on each re-wire step, we
store the backward Riccati integration for each vertex in the
tree when it is originally added and access the appropriate P
function as necessary. Only vertices within the cost threshold
of Equation 11 are evaluated.

D. Time Horizon

A key advantage of our algorithm relative to [7] is that we
are able to find optimal trajectories for problems with specific
constraints on the time horizon. Since we construct the tree in
state-time, this amounts to extending the goal region, Xgoal,
to include time. The temporal goal region, Tgoal ⊆ R>0, is
defined to be the set of times when temporal goal constraints
are satisfied. If the problem requires Xgoal to be reached at a
particular time instant, then Tgoal is a single instant in time. If
the problem requires Xgoal to be reached between two times,
then Tgoal is a range. If there is no constraint on final time,
then, in principle, Tgoal is equal to the positive real numbers.
However, rather than sampling from the entire positive number
line in this case, we set Tgoal equal to a range between zero
and some maximum value that we are sure is greater than the
optimal time horizon.

E. Optimality

Karaman and Frazzoli [10] proved that the optimality
guarantee for RRT∗ in kinodynamic systems holds under two
conditions.

First, the trajectory found by the Steer procedure must
be optimal in the absence of obstacles [10]. Similarly, the
cost estimate used by Nearest and Near must reflect the
optimal cost. For affine systems, both of these requirements are
trivially satisfied by our algorithm because LQR finds optimal
policies and costs in this case.

The second requirement is for the domain to satisfy the
Weakened Local Controllability criterion (Assumption 3 in
Karaman and Frazzoli [10]) and the ε-Collision-Free Approx-
imate Trajectories criterion (Assumption 4 in Karaman and
Frazzoli [10]). For state that has not been augmented by the
time dimension, these conditions are trivially satisfied by any
controllable affine system. However, notice that they are no
longer technically satisfied when state is augmented by time
because it is impossible for the system to go backward in time
to reach any state-time in a ball around a given state-time.
Nevertheless, it is safe to amend these Assumptions to only
require the system to reach future state-times because of the
way the assumptions are used in the RRT∗ proof of optimality.
Essentially, these assumptions are needed to ensure that there
exists a neighborhood of approximately optimal trajectories

(a) (b) (c) (d)

Fig. 1. Example of using our algorithm to find an optimal solution to the kinodynamic motion planning for the double integrator in the presence of obstacles.
The four images show the tree at different points during growing. The blue lines show the tree. The red path denotes the current best path to the goal. The tree
in (a) contains 21 vertices; in (b) contains 85 vertices; in (c) contains 485 vertices; and in (d) contains 1049 vertices. The costs of the four best trajectories,
from left to right, are 209, 17, 16, and 9.

(a) (b)

Fig. 2. Solution tree generated by our algorithm while solving the double
integrator problem. (a) The tree is grown in the domain. The system must
move from a stationary position in the lower left to a stationary position in
the upper right. The five ellipses denote obstacles, and the tree is color-coded
for cost. The thick red line shows the current best trajectory. (b) All candidate
solution trajectories found during 100 separate runs of the algorithm, again
color coded for cost.

with non-zero measure and to ensure that Steer will be able
to make local connections with a trajectory that does not leave
an obstacle-free neighborhood. Since these requirements are
satisfied without requiring the system to go backward in time,
we are safe to modify the Assumptions in this way.

F. Experiments

We evaluated our approach to affine systems using a two-
dimensional double integrator (four dimensional state space).
This system is a unit mass with a damping factor of 0.1. The
planning problem is to reach a goal state at (8, 0) with zero
velocity 15 seconds after starting at (0, 0) with zero velocity
while minimizing a cost function with Q = 0 and R = I .
Similar evaluations of RRT∗ performance for the double
integrator have appeared in Karaman and Frazzoli [10] and
Webb and van den Berg [7]. Figure 1 illustrates the progression
of the algorithm. Initially, the algorithms finds a trajectory
(Figure 1(a)) with cost 209. The algorithm proceeded to
generate seven more trajectories to the goal with successively
smaller costs: 145, 65, 17, 15, 11, 9. Three of these successive
instances of the tree are illustrated in Figures 1(b), (c), and (d).

We also evaluated average performance over multiple runs
of the algorithm (Figure 2). Figure 2(a) shows a partial

(a) (b)

Fig. 3. The average cost of the best solution found over time, averaged over
50 runs of the algorithm for 200 time steps (left) and 400 time steps (right).
Error bars are standard error.

tree constructed by the algorithm in a test environment with
different obstacles but the same double-integrator dynamics.
Figure 2(b) illustrates different candidate solutions found while
running the algorithm 100 times with 5000 iterations on
each run. Notice that the algorithm considers many different
homotopy classes. Figure 3 illustrates algorithm performance
averaged over 100 runs of the algorithm in terms of the mean
and standard error of the lowest cost trajectory in the tree.

IV. NON-LINEAR KINODYNAMIC PLANNING

This section extends our approach to a class of non-linear
systems. First, we define the class of systems and extend the
algorithm. Then, we describe experiments that characterize the
approach.

A. The Non-linear Planning Problem
Consider the version of Problem 1 where the system process

dynamics (Equation 1) and the cost functional (Equation 2) are
both arbitrary functions of state. Define the process dynamics
to be

ẋ(t) = α(x(t)) + β(x(t))u(t),

where α is a non-linear C1 continuous function onto state
space, β is a non-linear C1 continuous matrix-valued function.
Define the cost to be

g(x, u) = h(x(t)) + u(t)T Γ(x)u(t), (12)

where h is a non-linear C2 continuous functional onto the
reals and Γ : X → Sn

+ is also non-linear and C2 continuous.

(a) (b) (c) (d)

Fig. 4. Our algorithm applied to the inverted pendulum. (a) through (c) illustrate a phase plot of the RRT tree after 500, 1000, and 1500 iterations, respectively.
The red line in each plot shows the lowest cost solution in the tree (after 500 iterations, no solution has been found). Paths are colored according to cost
(from dark blue to light cyan). (d) shows performance averaged over 50 runs (average in blue; standard error bars in green.)

B. Local Approximations to Dynamics and Cost

In order to fit problems with non-affine process dynamics
and non-quadratic costs into our framework, we need to
construct local affine approximations of the dynamics and
quadratic approximations of the costs. This approach is similar
to standard practice in control where a non-linear system
is “linearized” about an operating point and linear control
theory is applied. This linearization occurs each time our
algorithm calls LQR. Let (zlin, tlin) denote the linearization
point. In Steps 3 and 4 of Algorithm 1, the system is linearized
about (zrand, trand). In Steps 6 and 9, we linearize about
(znew, tnew). We approximate the process dynamics using a
first-order Taylor expansion:

ẋ(t) = α(x(t)) + β(x(t))u(t)

≈ α(zlin) +∇zα(zlin)T (x(t)− zlin)

+β(zlin)u(t)

= A(zlin)x(t) + β(zlin)u(t) + c(zlin), (13)

where
A(zlin) = ∇zα(zlin)T

and
c(zlin) = α(zlin)−A(zlin)zlin.

We approximate the cost function similarly, this time using a
second-order expansion:

h(x(t)) ≈ h(zlin) +∇zh(zlin)T (x(t)− zlin)

+ (x(t)− zlin)T∇2
zh(zlin)(x(t)− zlin)

where ∇zh(zlin) is the gradient of h and ∇2
zh(zlin) is its

Hessian. We perform the equivalent approximation for Γ(x).
The two approximations above will enable us to formulate

an affine LQR problem with the dynamics of Equation 13
and the cost function that can be solved using affine LQR
(outlined in Section II-C). However, in order to do this, the
quadratic approximation of the cost function must be convex,
i.e. ∇2

zh(xlin) must be positive semi-definite. Since this is not
necessarily the case for arbitrary C2 continuous functionals,

Fig. 5. Several torque trajectories, color-coded by cost, which swing up
the pendulum. The torque is limited to [−0.4, 0.4]. The best trajectory found
after 3000 iterations is shown in black. Because of the quadratic actuation
cost, trajectories which bring the pendulum up earlier are more expensive.

h, we will project the Hessian onto the cone of positive semi-
definite matrices by setting all non-positive Eigenvalues to zero
(using, for example, the Eigen-decomposition of ∇2

zh(zlin)).

C. Tree Extensions and Re-wiring

Given the linear and quadratic approximations described
above, the algorithm for the non-linear case is very similar
to that used to solve the affine problem. On each iteration of
RRT∗, after taking the random sample zrand, the algorithm
creates an affine approximation of the process dynamics
and a quadratic approximation of the cost function in the
neighborhood of the sample. These approximations are used
to approximate the vertex in the tree from which the sample
can be reached with a minimum cost and to compute the LQR
policy used to perform the extension toward zrand.

Although we use the approximations to find costs and
to calculate trajectories, a key element of our approach is
that during re-wiring, we store the true costs of each path
in the tree and that each trajectory in the tree satisfies the
differential constraint and is realizable with some control
trajectory. In particular, we use the cost-to-go function in the
implementation of Near and Nearest to identify the set of
vertices for which Equation 11 holds. For each vertex within

Fig. 6. Phase plot in Figure 4 with goal set at 200 more time steps. Note
solutions are of a different homotopy class, i.e., different number of swings.

Fig. 7. All candidate solution trajectories found during 70 separate runs for
double integrator with state-dependent actuation cost. Paths are colored-coded
according to cost.

this set, we use the linearized LQR controller to calculate
a trajectory toward the sample. After finding the trajectory,
we integrate its true cost function over the trajectory and
store this true cost. Similarly, although the algorithm uses the
approximations to calculate trajectories from the sample to
other vertices in the tree within the cost radius, the true cost
of each of these trajectories is stored in the tree. As a result,
the algorithm re-wires paths according to their true costs of
executing—not the approximation.

One of the problems with the method as described above
is that although we are extending from a vertex in the tree,
znear, we are approximating the process dynamics and cost
function about zrand instead of about znear. This can result
in poor control policies early in the system trajectory. Instead,
we would like to create the dynamics and cost approximations
with respect to znear. However, this is challenging because it
would require computing the LQR cost-to-go once per vertex
per random sample. Instead, we calculate the LQR solution to
the inverse system process dynamics rather than the forward
dynamics. In particular, we set

ẋ = −f(x(t), u(t)),

and integrate the Riccati equation forward from each vertex
in the tree. This computation can be cached because its result
does not change once a vertex is added to the tree.

Fig. 8. Convergence plot averaged over 70 runs for the double integrator
with state-dependent actuation cost.

D. Experiments

Figure 4 illustrates the application of the algorithm to
a torque-limited inverted pendulum with dynamics θ̈ =
− sin(θ)−0.1θ̇+u (unit mass, length, gravity, and a damping
factor of 0.1). Torque is limited to |u| ≤ 0.4. In our exper-
iment, the problem is to find a trajectory that minimizes a
quadratic action cost—the cost function of Equation 2 with:

g(x(t), u(t)) = u(t)Tu(t).

Since the inverted-pendulum has non-linear process dynamics,
it is challenging to find near-optimal solutions. Figures 4(a)
– (c) illustrate the tree-growing process. Figure 4(d) shows
algorithm performance averaged over 50 runs of the algorithm
in terms of average cost and standard error bars as a function
of algorithm iteration number. Figure 4(d) clearly shows that,
after finding an initial solution, RRT∗ improves trajectory cost.

Figure 4 exhibits a domain identical to the domain in
Figure 2 with the difference that the cost is

g(x, u) = exp(xy/25) · ux2 + uy
2.

In other words, the penalty on thrust in the x direction
becomes steeper as the mass moves up. Notice that while in
Figure 2, there is a near symmetry between two of the solution
classes, this domain favors trajectories which curve upward
(first moving right then up). The penalty on ux, the thrust
in the x direction is not enough for the optimal trajectory to
be the one that first moves completely to the right and then
completely upward – this trajectory is much longer and so
more thrust is needed to get to the same goal within the same
time. Figure 8 shows 70 runs of RRT∗ converging to the same
cost.

V. DISCUSSION AND CONCLUSIONS

We have introduced a new way of using LQR in conjunction
with RRT∗ to find optimal solutions to planning problems
involving kinodynamic systems. Our algorithm is provably
optimal for affine kinodynamic systems with quadratic cost
functions. Relative to other similar approaches [6], [7], our
new method is more flexible in that it can handle a more
general class of cost functions and various different final time
constraints. Moreover, our method can be directly extended to

a broad class of systems with non-affine process dynamics and
non-quadratic cost functions. We present experimental results
that suggest that the approach works well in these cases.

REFERENCES

[1] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, June 2011.

[2] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400,
May 2001.

[3] S. M. Lavalle, “From dynamic programming to RRTs: Algorithmic de-
sign of feasible trajectories,” in Control Problems in Robotics. Springer-
Verlag, 2002.

[4] P. Cheng and S. M. Lavalle, “Reducing metric sensitivity in randomized
trajectory design,” in In IEEE International Conference on Intelligent
Robots and Systems, 2001, pp. 43–48.

[5] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic for
rapidly exploring state space,” in Proceedings of the IEEE International
Conference on Robotics and Automation, May 2010.

[6] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez,
“LQR-RRT∗: Optimal sampling-based motion planning with automati-
cally derived extension heuristics,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, May 2012, pp. 2537–
2542.

[7] D. J. Webb and J. V. D. Berg, “Kinodynamic RRT∗: Optimal
motion planning for systems with linear differential constraints,”
arXiv:1205.5088v1, submitted.

[8] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[9] D. Hsu, R. Kindel, J.-C. Latombe, and S. M. Rock, “Randomized

kinodynamic motion planning with moving obstacles,” I. J. Robotic Res.,
vol. 21, no. 3, pp. 233–256, 2002.

[10] Karaman and Frazzoli, “Optimal kinodynamic motion planning using
incremental sampling-based methods,” in IEEE Conference on Decision
and Control (CDC), Atlanta, GA, December 2010.

