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Abstract

We present DEPS, an end-to-end algorithm for discovering parameterized skills
from expert demonstrations. Our method learns parameterized skill policies jointly
with a meta-policy that selects the appropriate discrete skill and continuous pa-
rameters at each timestep. Using a combination of temporal variational inference
and information-theoretic regularization methods, we address the challenge of
degeneracy common in latent variable models, ensuring that the learned skills
are temporally extended, semantically meaningful, and adaptable. We empirically
show that learning parameterized skills from multitask expert demonstrations signif-
icantly improves generalization to unseen tasks. Our method outperforms multitask
as well as skill learning baselines on both LIBERO and MetaWorld benchmarks.
We also demonstrate that DEPS discovers interpretable parameterized skills, such
as an object grasping skill whose continuous arguments define the grasp location. 1

1 Introduction

The standard application of reinforcement learning to long-horizon sequential decision-making
problems often fails to leverage inherent behavioral patterns, leading to sample inefficiency. In
contrast, humans exhibit a remarkable ability to extract and reuse strong priors from past experiences.
For instance, training a single task-specific policy to master an Atari game can demand over 10
million samples [18, 9], whereas humans can achieve effective gameplay after merely 20 episodes.
A promising avenue for explicitly learning such priors from experience lies within the options
framework [27], which aims to discover modular and temporally extended skills. These skills can
then be flexibly reused and composed, facilitating generalization to novel tasks and reducing the
effective planning horizon.

While prior research has predominantly focused on learning either purely discrete or continuous
skills, these approaches possess inherent limitations. Discrete skills alone may lack the flexibility
required for broad generalization, while continuous skills can be less structured and challenging to
interpret. We propose that learning parameterized skills [4, 5], which are discrete in nature but can
be modulated by continuous arguments, offers a synergistic combination of the benefits from both
independent approaches. Parameterized skills retain the structured and interpretable nature of discrete
skills, while enabling flexible reuse in novel settings through continuous conditioning.

Consider the task of learning a skill to slice fruit. Generalization is crucial here, as no two fruits are
identical, and the skill might need to be applied across diverse kitchen environments with varying
tools. Learning a distinct discrete skill for every possible scenario is not only computationally
intractable but also generalizes poorly to unseen situations. Conversely, learning a parameterized skill
like slice_fruit(x,y,z), where the continuous parameters specify the slicing action based on the
particular instance, compactly represents a family of policies for fruit slicing. This can facilitate robust
generalization to previously unseen slicing angles and accommodate different parameterizations for
various fruits, tools, and kitchen conditions.
1 Website: sites.google.com/view/parameterized-skills Code: github.com/guptbot/DEPS
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Figure 1: Three-level hierarchy of DEPS. The dis-
crete skill policy selects a skill from the library given
the full environment observation. Conditioned on
that choice, the continuous-parameter policy outputs
continuous parameters that modulate the chosen skill,
tracing a trajectory manifold (illustrated on the left).
Finally, the low-level action policy, which sees only
a compressed one-dimensional robot state, produces
the primitive action.

In this work, we introduce Discovery of
GEneralizable Parameterized Skills (DEPS),
an algorithm for discovering parameterized
skills from expert demonstrations in an end-
to-end manner. DEPS trains the three-level
hierarchy illustrated in Figure 1: (i) a dis-
crete skill selector, (ii) a continuous param-
eter selector conditioned on the discrete skill,
and (iii) a subpolicy conditioned on both. A
standard implementation of this approach is
under-specified and often susceptible to de-
generate solutions that minimize the behav-
ior cloning loss without acquiring meaningful
skill abstractions [11]. To mitigate these de-
generate solutions, DEPS incorporates several
information-theoretic constraints and architec-
tural choices, detailed in Section 4. These in-
clude compressing the observation embedding
before feeding it to the subpolicy networks to
limit information flow and predicting contin-
uous parameters conditioned on each discrete
skill rather than at every timestep. These design choices compel the model to rely on the latent
variables to solve the task, resulting in more robust, interpretable, and generalizable skills.

We evaluate the efficacy of DEPS in learning parameterized skills across two challenging multitask
environments: LIBERO [16] and MetaWorld-v2 [30]. Our primary focus is on the rapid generalization
capabilities of the learned skills, assessing their ability to adapt to novel tasks through finetuning
with limited data. We demonstrate significant quantitative performance improvements over prior
work in low-data regimes and provide qualitative visualizations of learned skills corresponding to
fundamental actions like grasping, moving, and releasing objects. We find that DEPS consistently
achieves the highest average success rate across various pretraining settings compared to existing
methods, underscoring its ability to learn flexible and high-performing skills.

2 Related Work

A straightforward approach to learning from multitask demonstration data is to train a monolithic
policy that maps a state and task label to a single action. However, previous works suggest that the
difficulty of a sequential decision-making problem scales with the problem horizon [24, 10, 21]. To
improve sample efficiency and generalization, many methods hence focus on learning temporally-
extended action abstractions called options/skills [27].

There is a large body of work focusing on learning skills from demonstrations [14, 19, 15, 13, 26, 25,
11, 33, 6]. Notably, Shankar and Gupta [25] introduce temporal variational inference to learn skills
from demonstrations. However, their method is restricted to low-dimensional state spaces. Prior work
also found multi-level hierarchy to be useful for skill learning [3, 7, 1, 20, 8, 22]. All the methods
above are restricted to learning a fixed number of discrete skills or continuous skills.

Early work on parameterized skills, including work by da Silva et al. [4], proposed the construction
of parameterized skills by analyzing the structure of policy manifolds. However, this required labeled
parameters of tasks for training. More recent methods, such as LOTUS [28] and EXTRACT [31],
learn goal-conditioned discrete skills by first clustering demonstration trajectories into different
discrete skills using pretrained models such as VLMs, and then learning parameterized policies
corresponding to each cluster. However, this approach implicitly makes the assumption that the same
discrete skill takes place in visually similar environments, which may not hold in practice. Fu et al.
[5] propose to learn parameterized through online meta-learning. However, their approach requires
several separate stages of training online and needs to manually design a set of tasks for each skill.

Using parameterized skills as the new action space, a large body of previous work focuses on
Parameterized-action Markov Decision Process (PAMDP) [17, 2, 29, 32, 23]. These works presume
a predefined library of parameterized skills, whereas our three-level hierarchy learns every policy
layer end-to-end directly from raw trajectory demonstrations.
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Figure 2: The underlying probabilistic graphical model of DEPS. The variational encoder has access
to all the information of the trajectory from history to future. The discrete and continuous policy
works as the high level policy that infers the parameterized skills based on information from previous
timesteps. The low-level subpolicy infers actions based on the parameterized skills as well as the
current state. Variables observable by each model are shaded in gray.

3 Background

We begin with deriving a training objective for learning continuously parameterized discrete skills
from provided demonstration data. Consider a set of tasks T , which are assumed to share a consistent
state space, action space, and transition function. In the Learning from Demonstration setting, we
assume access to a training dataset of task demonstrations D = {Ti}Ni=1; each demonstration is
denoted as Ti = {τi, li}, where τi = {st, at}Mi

t=1 is the trajectory and li ∈ T is the task / goal
description associated with the trajectory. Our goal is to learn a policy that can not only perform well
for tasks covered within the training dataset Tseen =

⋃
{li}Ni=1, but also generalize to novel tasks

Tunseen = T \ Tseen.

For complex, long-horizon tasks l ∈ T , we assume a natural decomposition into a sequence of
discrete skills κ = {ki}Mi=1, where k ∈ K represents a set of distinct skills. These discrete skills are
further conditioned on continuous-valued parameters z ∈ Rd. Our hierarchical approach comprises
three main components:

1. A discrete policy πK(kt | s1:t, a1:t−1, l) that predicts the discrete skill.

2. A continuous policy πZ(zt | s1:t, a1:t−1, kt, l) that predicts the continuous parameters for
the chosen discrete skill.

3. A subpolicy πA(at | s1:t, a1:t−1, kt, zt) that generates an executable action based on the
current discrete skill and its continuous parameterization.

During interaction, the agent first samples a discrete skill kt ∼ πK , then a continuous parameter
zt ∼ πZ , and finally an action at ∼ πA.

4 Discovery of GEneralizable Parameterized Skills (DEPS)

We introduce DEPS, a framework for learning continuously parameterized skills from demonstrations.
DEPS jointly trains a hierarchical policy by maximizing a variational lower bound on the likelihood of
demonstrated trajectories. This section details the derivation of our training objective using temporal
variational inference and then describes our approach to modeling skills as parameterized trajectory
manifolds, a key component for generalization.
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4.1 Variational Inference for Parameterized Skill Discovery

Consider a sampled demonstration T = {τ, l} ∈ D, where τ = {st, at}Mt=1, and some corresponding
sequence of discrete skills κ = {ki}Mi=1 and continuous parameters ζ = {zi}Mi=1. Then, we can write
the joint likelihood of these sequences p(τ, κ, ζ, l) as follows:

p(τ, κ, ζ, l) = p(s1, l)

M∏
t=1

{πK(kt|s1:t, a1:t−1, k1:t−1, z1:t−1, l)π
Z(zt|s1:t, a1:t−1, k1:t, z1:t−1, l)

πA(at|s1:t, a1:t−1, kt, zt)p(st+1|st, at)}. (1)

To train policies πK , πZ , and πA that are autoregressively usable at inference time, each policy can
only be conditioned on prior observations, actions, discrete skills, and continuous parameters. In line
with prior literature, we aim to maximize the objective E(τ,l)∼D [log p(τ, l)]. However, calculating
log p(τ, l) exactly involves an intractable marginalization over all possible sequences of discrete
and continuous skills. We use temporal variational inference [25] to estimate E(τ,l)∼D [log p(τ, l)]
while maintaining the autoregressive structure of the policies learned. We introduce a variational
distribution q(κ, ζ|τ, l) which is meant to approximate p(κ, ζ|τ, l). Due to the non-negativity of KL
divergence:

E(τ,l)∼D [log p(τ, l)] ≥ E(τ,l)∼D [log p(τ, l)−DKL(q(κ, ζ|τ, l)||p(κ, ζ | τ, l))] := L.

Note that the bound above is tight when q(κ, ζ|τ, l) = p(κ, ζ|τ, l). Now,

L = E(τ,l)∼D, (κ,ζ)∼q(κ,ζ|τ,l)

[
log p(s1, l) +

M∑
t=1

{
log πK

(
kt | HK

t

)
+ log πZ

(
zt | HZ

t

)
+ log πA

(
at | HA

t

)
+ log p(st+1 | st, at)

}
− log q(κ, ζ | τ, l)

]
. (2)

where HK
t = (s1:t, a1:t−1, k1:t−1, z1:t−1, l), HZ

t = (s1:t, a1:t, k1:t, z1:t−1, l), and HA
t =

(s1:t, a1:t−1, kt, zt), and where the last step uses the joint distribution derived in Equation 1.

Keeping computational efficiency during training in mind, to enable the discrete skills and con-
tinuous parameters for each timestep to be sampled in parallel, we assume that conditional on
previous states and actions, (kt, zt) is independent of (ki, zi) for i < t. This allows us to rewrite
πK(kt|s1:t, a1:t−1, k1:t−1, z1:t−1, l) as πK(kt|s1:t, a1:t−1, l) and πZ(zt|s1:t, a1:t−1, k1:t, z1:t−1, l)
as πZ(zt|s1:t, a1:t−1, kt, l). Since the subpolicy πA is only conditioned on the current continuous
and discrete parameters, one can show that for any fixed πA, the joint likelihood in Equation 1 can be
maximized by the simplified expressions for πK and πZ above. Our empirical results in Section 5
also validate that this assumption does not prevent useful skills from being learned.

Since q(κ, ζ|τ, l) is meant to approximate p(κ, ζ|τ), one can now rewrite q(κ, ζ|τ, l) as follows:

q(κ, ζ|τ, l) =
M∏
t=1

q(kt|τ, l)q(zt|τ, kt, l). (3)

Using Equation 3 and the observation that the dynamics p(st+1|st, at) and the joint distribution of
the task and initial state, p(s1, l), do not affect the gradient of our loss, we can rewrite Equation 2 in
the following, cleaner, form:

L = E(τ,l)∼D, (κ,ζ)∼q(κ,ζ|τ,l)

[
M∑
t=1

log πA(at | H′A
t )

]
− E(τ,l)∼D

[ M∑
t=1

DKL

(
q(kt | τ, l) ∥πK(· | H′K

t )
)

− Ekt∼q(kt|τ,l)

[
DKL

(
q(zt | τ, kt, l) ∥πZ(· | H′Z

t )
)]]

, (4)

where H′A
t = (s1:t, a1:t−1, kt, zt),H′K

t = (s1:t, a1:t−1, l),H′Z
t = (s1:t, a1:t−1, kt, l).

We represent the discrete skills using categorical distributions and the continuous parameters using
Gaussian distributions. Hence, the KL-divergence terms above can be calculated exactly. We therefore
minimize this loss to learn the discrete and continuous policies as well as the low-level policy.
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4.2 Skills as Parameterized Trajectory Manifolds

A common failure mode in learning skills from demonstrations is for the low-level policy to minimize
behavior cloning loss without discovering meaningful, generalizable skill abstractions. This often
occurs when state spaces for different tasks have minimal overlap, allowing a high-capacity policy to
memorize task-specific behaviors in different state space subsets. To address this, DEPS introduces an
information bottleneck in the subpolicy and models skills as manifolds of parameterized trajectories.
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Figure 3: Skills as Parameterized Trajectory Man-
ifolds. We hypothesize that a single skill corre-
sponds to a family of parameterized trajectories. A
one-dimensional state representation indexes into
this generalizable manifold to predict actions.

Information Bottleneck via State Compres-
sion. Our core strategy is to provide the subpol-
icy πA(at|s′t, kt, zt) with a compressed, lower-
dimensional version of the current state, s′t, in-
stead of the full observation st. This aims to:

1. Enhance State-Space Overlap and Gen-
eralization: Mapping raw states into a
shared, compressed space increases input
distribution overlap across tasks, resulting
in policies that generalize to novel tasks
within or near this compressed manifold.

2. Force Reliance on Latent Variables: A
highly compressed state s′t alone is often
insufficient to determine the correct action
at. The subpolicy must rely on the discrete
skill kt and continuous parameter zt to re-
solve ambiguity, compelling these latents
to encode crucial skill-related information.

Conceptualizing Skills. What distinguishes a versatile "skill" from a collection of disparate be-
haviors? We posit that a versatile skill exhibits a lower-dimensional structure. Trajectories from
executing a coherent skill (e.g., "pick up a toy" from various positions) likely lie on or near a common
low-dimensional manifold, with variations corresponding to different paths or modulations. In
contrast, trajectories from disparate behaviors (e.g., "clean dishes" and "pick up toys") belong to
different manifolds. A parameterized skill (k, z) thus selects and refines a family of trajectories
sharing a common structure. Movement along such a trajectory can be indexed by a low-dimensional
variable (e.g., progress), motivating aggressive state compression.

Projective State Compression to One Dimension. Given the discrete skill kt, continuous parameter
zt, and a feature vector sprojt from the raw observation st (e.g., robot end-effector coordinates), we
compress sprojt into a scalar s′t:

s′t = tanh
(
w(kt,zt) · s

proj
t + b(kt,zt)

)
. (5)

Here, w(kt,zt) (a vector) and b(kt,zt) (a scalar bias) are outputs of a small MLP, fcompress(kt, zt).
The vector w(kt,zt) defines a skill-specific projection axis. The tanh activation normalizes s′t to
[−1, 1], ensuring a bounded index. This 1D compressed state s′t, along with kt and zt, is fed to
a feedforward network to output action distribution parameters. This forces kt and zt to encode
task-relevant information not captured by the highly compressed s′t.

4.3 Overall Framework and Flow

The DEPS framework consists of four interconnected neural network components: a variational
network (q), a discrete policy network (πK), a continuous policy network (πZ), and a subpolicy
network (πA). These are trained jointly using the objective in Equation 4.

The variational network q(κ, ζ|τ, l) is implemented as a bidirectional GRU. It processes entire
demonstration trajectories to infer posterior distributions over skills kt and parameters zt. To
encourage temporally extended skills, continuous parameters zt are predicted per discrete skill k
rather than per timestep within a trajectory. This prevents the continuous parameters from rapidly
changing, and potentially embedding the action to take at each timestep. Additionally, to prevent the
continuous parameters from overfitting to specific trajectories, we introduce a Skill Parameter Norm
Penalty to discourage large-magnitude continuous parameters.
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The discrete policy πK(kt|s1:t, a1:t−1, l) and continuous policy πZ(zt|s1:t, a1:t−1, kt, l) form the
high-level policy. In practice, the entire conditioning context is often unnecessary; in our experiments,
we find that removing the history of actions from πK and πZ still produces high empirical performance
while simplifying the implementation. Both πK and πZ are implemented as unidirectional GRUs
that process the history of states. Their outputs, combined with the current task l (and kt for πZ),
are passed through MLPs to predict the current skill kt and its parameters zt autoregressively. The
low-level subpolicy πA(at|s′t, kt, zt) executes the chosen skill.

Unlike the variational network’s strategy of predicting one set of continuous parameters per skill
instance for an entire trajectory, the continuous policy network πZ predicts continuous parameters
for every timestep. This allows for refinement of the continuous parameter zt at each step based on
the most recent observation, enabling more reactive behavior during inference.

Crucially, DEPS incorporates an information asymmetry: the high-level policies (variational net-
work, discrete policy, and continuous policy) have access to both rich image observations if available
and the robot’s proprioceptive state. In contrast, the low-level subpolicy πA only observes the robot’s
proprioceptive state (which is then compressed into s′t). This restriction forces the subpolicy to rely
on (kt, zt) for skill-specific guidance and prevents it from overfitting to visual details that might
hinder generalization. By learning to operate from a more abstract, compressed state representation
conditioned by the latent skill variables, the subpolicy is encouraged to learn more generalizable be-
haviors. Appendix A contains additional details, along with the pretraining and finetuning procedures.

5 Experiments
We empirically evaluate the ability of DEPS to generalize to novel tasks with minimal finetuning
across two challenging multitask environments, LIBERO [16] and MetaWorld-v2 [30]. Within each
benchmark, we first pretrain on a series of tasks to learn parameterized skills. The pretrained model
is then finetuned on an unseen task for 500 gradient steps, and its performance is evaluated with 20
rollouts after every 50 steps of finetuning (for a total of 10 evaluations). Each rollout is assigned a
binary reward based on whether the task was successfully completed. We evaluate the performance
of our approach on a series of novel and previously used evaluation sets. For each set of evaluation
tasks, we report two metrics:

• Mean Success: The average success rates across all unseen tasks, averaged across all 10
evaluations. This measures the algorithm’s consistency.

• Mean Highest Success: The highest success rate across all 10 evaluations of a given task,
averaged across all unseen tasks. This measures the performance of the algorithm when
using the optimal number of gradient steps during finetuning for each specific task. Previous
work [16, 33] uses this metric to evaluate performance.

We report both metrics along with their standard deviation across evaluated seeds. We find that DEPS
displays consistently superior rapid generalization to unseen tasks across diverse evaluation settings.

5.1 Baselines

We compare our approach against the following baselines (1) A multitask behavior cloning network
(BC), (2) the same multitask BC architecture, but without any pretraining (BC-Untrained), and
(3) PRISE [33], the state-of-the-art baseline that learns action “tokens" and then applies byte pair
encoding to learn common action sequences (PRISE). Information on the specific hyperparameters
used and steps taken to ensure a fair comparison across baselines can be found in Appendix C.

5.2 Experiment Setting

LIBERO LIBERO is a multitask benchmark involving various object manipulation tasks with
a robot arm (visualizations of example tasks are provided in Figure 4) across visually diverse
environments. To pre-train model architectures, we use 80 tasks from LIBERO-90 using the offline
dataset provided by Liu et al. [16]. For each of the 80 pretraining tasks, the dataset provides 50
demonstrations collected using human tele-operation. The state-space for each task includes images
from two different viewpoints, a 9-dimensional vector representing the robot’s state, and a language
description of the task at hand. The action space consists of a 6-dimensional real-valued vector
representing desired arm movements, along with a binary variable to open/close the gripper. We
perform 20 passes over the pretraining data for each method.
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Table 1: Average success rate across evaluation settings on
LIBERO and MetaWorld-v2. All results are averaged across
5 seeds.

Evaluation Set Algorithm Mean Success Mean Highest Success

LIBERO-OOD

DEPS 0.34 ± 0.08 0.66 ± 0.12
PRISE 0.10 ± 0.09 0.27 ± 0.23
BC 0.15 ± 0.04 0.36 ± 0.08

BC-Untrained 0.01 ± 0.00 0.08 ± 0.02

LIBERO-10

DEPS 0.08 ± 0.04 0.24 ± 0.09
PRISE 0.02 ± 0.02 0.07 ± 0.06
BC 0.07 ± 0.02 0.18 ± 0.03

BC-Untrained 0.00 ± 0.00 0.01 ± 0.00

LIBERO-3-shot

DEPS 0.26 ± 0.03 0.49 ± 0.03
PRISE 0.07 ± 0.07 0.19 ± 0.14
BC 0.11 ± 0.05 0.22 ± 0.08

BC-Untrained 0.01 ± 0.00 0.03 ± 0.01

MW-Vanilla

DEPS 0.45 ± 0.03 0.65 ± 0.03
PRISE 0.21 ± 0.07 0.33 ± 0.10
BC 0.35 ± 0.02 0.51 ± 0.01

BC-Untrained 0.25 ± 0.02 0.45 ± 0.05

MW-PRISE

DEPS 0.32 ± 0.03 0.53 ± 0.03
PRISE 0.06 ± 0.02 0.17 ± 0.05
BC 0.25 ± 0.02 0.41 ± 0.03

BC-Untrained 0.12 ± 0.01 0.29 ± 0.01

Figure 4: Images of example
tasks from LIBERO

Figure 5: Images of example
tasks from MetaWorld-v2

Pretrained checkpoints are then evaluated on the following three test settings:

• LIBERO-OOD: 10 unseen tasks from LIBERO-90 involving previously unseen environments
and objects, making it a strong test of generalization to out-of-distribution tasks. Descriptions of
the tasks in this set can be found in Appendix D. Each task comes with 50 expert demonstrations.

• LIBERO-10: The standard LIBERO evaluation dataset, consisting of long-horizon tasks,
which are mostly concatenations of tasks seen in the pretraining set, measuring the ability of an
algorithm to accurately complete in-distribution but long-horizon tasks. Each task comes with
50 expert demonstrations

• LIBERO-3-shot: This dataset consists of the tasks in LIBERO-OOD but with only 3 demon-
strations per task, testing the ability to successfully learn new tasks with minimal data.

MetaWorld-v2 MetaWorld-v2 is a multitask benchmark involving various object manipulation
tasks with a robot arm (visualizations of example tasks are provided in Figure 5). To evaluate perfor-
mance on MetaWorld-v2, we utilize the provided expert scripted policies provided in MetaWorld,
collecting 50 demonstration trajectories for each task. The state-space for each task includes an image
and an 8-dimensional vector representing the robot’s state, while the action space is a 4-dimensional
real-valued vector. We pretrain each method on a set of 10 tasks, performing 40 passes over the
training data. We then evaluate the performance of pretrained checkpoints on two different evaluation
sets described below (information on the specific tasks used for pretraining and finetuning can be
found in Appendix D). Due to the shorter average time horizon and lower task diversity compared to
LIBERO, we focus on the 3-shot fine-tuning performance in both evaluation sets.

• MW-Vanilla: A standard set of 5 unseen tasks proposed in MetaWorld.
• MW-PRISE: 5 unseen tasks as used in PRISE, consisting of longer horizon tasks on average.

5.3 Primary Experimental Results

Table 1 shows the mean success and mean highest success rate with minimal finetuning on each of the
evaluation datasets outlined in Section 5.2. DEPS achieves a significantly higher mean success and
mean highest success rate across evaluation regimes, showing the effectiveness of parameterized skills
and observation-space compression in learning generalizable abstractions. Notably, in LIBERO-OOD,
which tests rapid generalization to out-of-distribution environments and objects, DEPS achieves a
mean success rate of 0.34, which is more than double that of the standard BC approach (0.15) and
more than triple the performance of PRISE (0.10). Even in the extremely data-scarce LIBERO-3-shot
setting, DEPS maintains robust performance (0.26 mean success), outperforming both PRISE (0.07)
and standard BC (0.11) by substantial margins. DEPS maintains its advantage across both evaluation
sets in MetaWorld-v2, where tasks have a generally shorter horizon.
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Figure 6: Average success rates as a function of
the number of finetuning gradient steps taken for
LIBERO-OOD (left) and MW-Vanilla (right).

Table 2: Robustness of parameterized skills over
different total pretraining epochs (PT). Results
use 50-shot finetuning over LIBERO-OOD and
are averaged across 3 seeds.

PT Algorithm Mean Success Mean Highest Success

5
DEPS 0.24 ± 0.08 0.64 ± 0.09
PRISE 0.02 [upto 0.05] 0.11 ± 0.13
BC 0.07 ± 0.03 0.30 ± 0.08

10
DEPS 0.39 ± 0.02 0.75 ± 0.01
PRISE 0.12 ± 0.15 0.27 ± 0.33
BC 0.10 ± 0.06 0.30 ± 0.12

15
DEPS 0.39 ± 0.05 0.74 ± 0.04
PRISE 0.12 ± 0.14 0.33 ± 0.26
BC 0.12 ± 0.06 0.32 ± 0.07

The relatively poor performance of PRISE, despite its strong results in Zheng et al. [33], highlights
the challenges of rapid generalization compared to the more extensive fine-tuning procedures used in
prior work. Similarly, the near-zero performance of the untrained BC baseline on LIBERO tasks (0.01
mean success on LIBERO-OOD) underscores the importance of pretraining for successful adaptation
in complex environments.

Figure 6 shows the mean success rates on LIBERO-OOD and MW-Vanilla as a function of the number
of fine-tuning gradient steps taken (averaged across 5 seeds). DEPS outperforms other baselines
irrespective of the number of gradient steps taken. These results collectively demonstrate that DEPS
provides a robust foundation for rapid generalization across diverse robotic manipulation tasks.

5.4 Robustness to Pretraining Amounts

While the results in Section 5.3 use 20 epochs of pretraining for LIBERO and 40 epochs of pretraining
for MetaWorld-v2, we also evaluate the performance of our approach on smaller pretraining amounts
to evaluate its data efficiency and robustness to different pretraining amounts. Table 2 shows the
performance of DEPS and evaluated baselines on smaller pretraining amounts. DEPS consistently
outperforms evaluated baselines across pretraining amounts. This same observation also holds across
MetaWorld (results can be found in Appendix E). Notably, with limited pretraining (e.g. 5 epochs),
the margin between our method and evaluated baselines increases. This suggests that, in addition to
improving generalization to unseen tasks, learning parameterized skills with compression might also
increase the data efficiency of pretraining.

5.5 Additional Quantitative Results

We provide additional experimental results in the Appendix that suggest that (i) compression to 1D
state is essential to DEPS’ performance (Appendix F), (ii) changing the limit on the maximum number
of discrete skills considerably improves the performance of DEPS, suggesting improvements over the
presented results may occur with a hyperparameter sweep (Appendix G), (iii) learning only discrete
or only continuous skills does not replicate DEPS’ performance (Appendix H), and DEPS maintains
its performance advantage on increasing the number of finetuning gradient steps (Appendix I).

5.6 Qualitative analysis of Learned Parameterized Skills

In addition to its strong quantitative performance, DEPS also learns interpretable parameterized skills,
with discrete skills and continuous parameters encoding skill-relevant information. To this end, we
provide visualizations showing the (i) segmentation of tasks into intuitive discrete skills, (ii) smooth
variations in the skill policy on varying the continuous parameter (iii) high overlap in the continuous
parameters used across tasks and (iv) monotonicity in the learned compressed state embeddings.

Analysis of Learned Trajectory Segmentations. We find that DEPS discovers intuitive param-
eterized skills. In LIBERO, the learned skills correspond to primitive behaviors such as grasping,
moving, and releasing objects. The same discrete skills are used consistently across environments
and object types, with changing continuous parameters to encode task-specific details. We provide
a representative visualization of the decomposition of trajectories into skills in Figure 7, and more
visualizations can be found on our project website (sites.google.com/view/parameterized-skills).

8

https://sites.google.com/view/parameterized-skills


gras  p_object move_object release_object close_door

grasp_object move_object release_object close_drawer

Task: (remove the obstacle and) close the microwave door

Task: put the butter at the back in the top drawer of the cabinet and close it

Figure 7: Visualization of the discovered discrete skills for two sample tasks. Images represent
the points at which the sampled discrete skill changes, with the discrete skill taking place between
two images indicated on top (DEPS labels discrete skills as integers, which are visible in the figure.
The natural language skills were selected to be consistent with the discovered segmentations of
the demonstration trajectories). We find that general skills corresponding to grasping, moving, and
releasing objects are learned and robustly applied across visually diverse tasks. Furthermore, for less
frequent subtasks such as closing drawers and microwaves, independent discrete skills are discovered.

Analysis of Learned Continuous Parameterizations We find that changing the continuous pa-
rameters provided to a single discrete skill results in smooth variations in the resulting policy. For
example, changing the continuous parameters to the discovered skill to grasp objects smoothly varies
the resulting grasp location. Additionally, for a given skill, we find that there is overlap in the
continuous parameters used for different tasks, suggesting that the continuous parameters encode
skill-relevant information, not task or environment relevant information. Visualizations of this can be
found on our project website.

Figure 8: Plot of the learned 1-dimensional compressed state indices (y-axis) with respect to the
time-step (x-axis). Each plot represents a single trajectory from a different task in LIBERO-90, and
each colour corresponds to a different discrete skill. We find that the compressed state changes
monotonically within a discrete skill, suggesting its use as an index.

Analysis of Learned Observation Compressions We verify whether the learned 1D compressed
states function as “indices” into a trajectory as outlined in Section 4.2. Figure 8 shows the learned
compressed state for single trajectories as a function of the timestep. We find that the state embeddings
for a single skill monotonically increase/decrease at roughly uniform rates as the timestep increases,
as would be expected from an index into a trajectory. Furthermore, we find sudden changes in the
learned compressed state when the selected discrete skill and continuous parameter switches, which
is consistent with our expectation that the index should “reset” on changing the trajectory represented
by the current parameterized skill.

In Appendix F, we provide an ablation of the performance of DEPS with and without compression
to one-dimensional state. We find that our compression method significantly improves the task-
generalization ability of the learned parameterized skills.
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6 Conclusion
We present DEPS, an end-to-end method to learn parameterized skills from demonstration data. To do
this, we initially derive a loss function using temporal variational inference; however, simultaneously,
we note that directly utilizing this loss function admits degenerate solutions. To avoid this, we utilize
a series of information-theoretic methods. Notably, we present a novel view of skills as families
of similar trajectories, motivating the aggressive compression of observations to one-dimensional
“indices.” We evaluate the resulting algorithm across a diverse and rigorous set of evaluation using
LIBERO and MetaWorld-v2, measuring its performance on unseen tasks under (i) different pre-
training/finetuning task splits, (ii) different pretraining budgets (iii) different finetuning budgets (iv)
different amounts of finetuning data and (v) different measures of success (Mean Success and Mean
Highest Success). We find that DEPS consistently outperforms existing baselines across evaluation
settings. The performance improvement offered by DEPS is especially notable when evaluated on
out-of-distribution tasks (LIBERO-OOD, Table 1), low-data regimes (LIBERO-3-shot, Table 1), and
limited compute availability (Table 2). We discuss limitations of our approach in Appendix J. We
believe our approach shows promise towards better data-efficient task generalization in robotics.
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A Implementation Details

A.1 Variational Network

The variational network learns the distribution q(κ, ζ|τ, l). We implement this as a bidirectional GRU
that takes as input the encoded states and actions corresponding to a sampled demonstration trajectory
τ as well as a task ID (or the provided task embedding in the case of LIBERO), denoted by l. At
each timestep t, the outputs of the GRU are passed through a prediction head to predict a categorical
distribution of the discrete skill at that particular timestep t. A separate output head is used to predict
the continuous parameters. However, to prevent the continuous parameters from changing at each
timestep, we predict the continuous parameters for each discrete skill instead of each timestep. This
“restricts" the amount of information conveyable through the discrete skills and continuous parameters
that encode a trajectory, forcing the subpolicy networks to learn temporally extended policies. 2 We
model the continuous parameters as Gaussian distributions using the reparameterization trick [12].

Once the discrete skills are sampled, they can be used as indices into the set of predicted continuous
parameters to choose the associated continuous parameter for each timestep. 3

As training progresses, we observe that the average distance between continuous parameters increases,
possibly indicating overfitting. To encourage compact and generalizable representations, we introduce
a Skill Parameter Norm Penalty that discourages large-magnitude continuous parameters. Formally,
we add the following regularization term to the loss in Equation 4: Lnorm = λnorm

∑M
t=1 ∥zt∥2, where

zt denotes the continuous parameters active at timestep t (corresponding to the skill kt) as predicted
by the variational network for that skill instance, and λnorm is a regularization coefficient.

A.2 Discrete and Continuous Networks

DEPS implements the skill distribution πK(kt|s1:t, a1:t−1, l) and parameterization distribution
πZ(zt|s1:t, a1:t−1, kt, l) with a discrete and continuous neural network, respectively. Both mod-
els have the same architecture, implemented as a one-directional GRU, which takes in as input the
history of states. The output of the GRU at each timestep is then concatenated with the task ID l and
passed through an MLP; for the discrete skill network, this MLP predicts a categorical distribution
with |K| possible values, from which kt is sampled at each timestep. For the continuous skill network
this MLP predicts a set of parameters for each of the |K| skills. In practice, we find that it is sufficient
to only predict the mean for each dimension of the continuous parameters, i.e. |K| × d values for a
d-dimensional continuous parameterization. We then index into the parameters corresponding to the
sampled discrete skill kt at each timestep.

Unlike the variational network’s strategy of predicting one set of continuous parameters per skill
instance for an entire trajectory, the continuous policy network πZ predicts continuous parameters
for every timestep. This allows for refinement of the continuous parameter zt at each step based on
the most recent observation, enabling more reactive behavior during inference.

A.3 Low-Level Policy Details

The subpolicy network πA
θ learns the distribution πA(at|s′t, kt, zt).. However, we find that empirical

performance improves by removing kt as a direct input to the subpolicy network. Including kt can
lead to optimization pitfalls such as collapse to a single discrete skill or training instability.

We note that explicitly removing kt from the set of conditioning variables does not reduce the
information available to πA

θ , as the continuous parameters corresponding to different discrete skills
occupy disjoint subspaces in practice. Under this formulation, the discrete skill acts as a “selector”
that indexes into one of |K| subspaces of continuous parameters, where each subspace represents

2 While this restriction of one continuous parameter value per discrete skill per trajectory works in our
experiments, it is possible that longer-horizon trajectories will require the same discrete skill to be used with
multiple continuous parameterizations. However, the same principle easily extends to this setting, as one can
predict n sets of continuous parameters per discrete skill per trajectory, where n is a chosen hyperparameter.

3 Another key difference between our architecture and that used by Shankar and Gupta [25] is that we do not
predict binary variables representing skill termination at each timestep. We find that including this variable
makes it significantly harder to get training to stabilize by adding dependencies between different time steps,
which also slows the implementation down.
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a fundamentally different skill type. Conditioning on the continuous parameter alone can thus still
expose information about the disjoint space it inhabits and therefore the associated discrete skill being
utilized.

Hence, πA
θ takes the 1D compressed state s′t and the continuous parameter zt. This combined vector

is processed by a feedforward neural network (the "Markov policy network" head) that outputs the
parameters of the action distribution (e.g., mean and variance for a Gaussian action space, or mixture
parameters for a Gaussian Mixture Model).

A.4 Pretraining (Skill Discovery)

Pretraining involves optimizing the objective in Equation 4 on the provided expert demonstration
dataset D. During this phase, the sequences of discrete skills κ and continuous parameters ζ are
sampled from the variational network q(κ, ζ|τ, l). The bidirectional nature of q, which considers
the entire trajectory (both past and future), is crucial for discovering meaningful skill abstractions.
The first term in Equation 4 (the reconstruction term for actions) encourages the subpolicy πA and
the variational posteriors q to jointly explain the actions in the demonstrations. The KL-divergence
terms ensure that the autoregressive policies (πK , πZ) learn to predict skill sequences similar to those
inferred by q, while also regularizing q towards distributions that can be effectively modeled by these
autoregressive policies at inference time.

A.5 Finetuning (Task Generalization)

For generalizing to new, potentially unseen tasks, we finetune the learned policies (πK , πZ , πA). For
task id l, in MetaWorld we use a one-hot vector for all the 50 tasks, while in LIBERO we use the
provided latent language embeddings as done in previous work. The finetuning process also optimizes
the objective in Equation 4. However, a key difference from pretraining is that the discrete skills κ
and continuous parameters ζ are now sampled from the autoregressive policies πK(kt|s1:t, a1:t−1, l)
and πZ(zt|s1:t, a1:t−1, kt, l), respectively, instead of from the variational network q. This aligns the
training conditions during finetuning more closely with the actual inference procedure, where q is not
used. While sampling from πK and πZ for training the subpolicy can be biased, we empirically find
that this strategy improves performance on unseen tasks at inference time.

B Task Prediction from Observations

To motivate the need to provide a compressed version of the observation space to subpolicy networks,
we study the overlap in the observation space across different tasks in LIBERO-90. Specifically,
for each task in LIBERO-90, we split the 50 provided demonstration trajectories into 45 training
trajectories and 5 test trajectories. Using the 45 ∗ 90 = 4050 trajectories in the training set, we train a
simple classifier to predict which of the 90 tasks a single observation belongs to. Our model consists
of the same Resnet-18 image encoder used in our experiments, with a two-layer MLP on top (with a
hidden size of 1024). After two epochs through the training data, our model achieves an accuracy of
84% on the held-out test data. 4

Note that our model has access to a single observation as input, and therefore can not analyze temporal
information about the demonstration trajectory. Furthermore, the training and test datasets come
from separate demonstration trajectories, so it is also not possible for the model to reason based on
trajectory-specific attributes. Hence, for the model to correctly map observations to input, it must
find task-specific attributes that generalize to unseen trajectories in the test set. For this to be possible,
trajectories from the same task must occupy a common subspace. We conclude that there must be
little overlap in the observation space covered by demonstration trajectories corresponding to different
tasks.

If one implements a subpolicy network that has access to previous observations in addition to the
current observation, this would possibly increase the disjointedness between observation encodings
across different tasks. This explains why we observe no significant difference in the cloning loss
achieved by a single model mapping observation to action compared to a naive implementation of

4 While the observations used in LIBERO [16] include an embedding of the current task, we remove this
embedding for the purposes of this experiment
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temporal variational inference. As explained in Section 4.2, we mitigate this issue by passing a
compressed version of the observation space to the subpolicy network, forcing meaningful discrete
skills and continuous parameters to be learned in order to minimize behavior cloning loss.

C Model Architectures and Hyper-parameters

For our experiments using LIBERO, we use the Resnet-18 image encoder provided in LIBERO [16]
for each of the baselines. For MetaWorld, we use the same CNN image encoder used by PRISE. For
a fair comparison across methods, we ensure that each algorithm uses the same image encoders, sees
the same amount of training data per batch, and is trained/finetuned for the same number of gradient
steps. We highlight the architectural details of each baseline below:

C.1 DEPS

The variational network contains a two-layer bidirectional GRU with a hidden size of 1024. The
individual heads for the discrete and continuous parameters both have two layers each, with a hidden
size of 1024. For every timestep, the output head for continuous parameters returns an array of
dimensions (|K|, d), where |K| is the number of discrete skills (set to 10) and d is the dimensionality
of the continuous parameters (set to 4). We then average the outputs of the continuous parameters
output heads to get one set of continuous parameters per discrete skill, as highlighted in Section 4.3.

The discrete and continuous networks both consist of one-directional GRU with a hidden size of
1024, followed by two layers of hidden size 1024.

To calculate the one-dimensional compressed state s′t (see Section 4.2 for notation), we use the
provided robot proprioceptive states (8-dimensional in MetaWorld, 9-dimensional in LIBERO) as
the feature vector sprojt . The compression MLP, fcompress(kt, zt), consists of two layers with a
hidden size of 128. The compressed state is then concatenated with the discrete skill and continuous
parameter before being passed through a 2-layer MLP with hidden size 1024 and a Gaussian mixture
model head with two intermediate layers and a hidden size of 1024. We use the same Gaussian
mixture model implementation as LIBERO [16]. For MetaWorld, we replace the GMM policy head
with the deterministic MLP, as has been done by previous work [33].

To calculate the loss during pretraining, in LIBERO we weigh the KL divergence terms corresponding
to the discrete skills and continuous variables by 0.5 and 0.01, respectively. The skill parameter norm
penalty is weighted by 0.1. For MetaWorld, we scale these hyperparameter down to 0.1, 0.03, and
0.03 respectively, to account for the lower loss magnitudes (due to using a deterministic policy head
instead of a GMM).

Batch sizes are chosen to fit a single GPU during pretraining and finetuning. This results in a batch
size of 3 during pretraining and a batch size of 2 during finetuning for LIBERO, and batch sizes
of 8 during pretraining and 3 during finetuning (i.e. all of the data as we do 3-shot finetuning) for
MetaWorld.

We use a learning rate of 3e− 4 and the random seeds 95, 96, 97, 98, and 99.

C.2 Behavior Cloning

We use the same general setup as described for DEPS. The main changes are that the variational,
discrete, and continuous networks are no longer used, and the subpolicy network has access to the
complete observation, including images and proprioceptive state. The observation is passed through
a 1-layer LSTM with hidden size 1024 before being passed to the same GMM head used above.

C.3 PRISE

We use the original implementation and hyperparameters provided in Zheng et al. [33], which
comes with implementations tuned for LIBERO and MetaWorld. For fair comparison to other
algorithms, we make two changes to the provided implementation: (i) we reduce the batch size to fit
our computational resources, using batch sizes to have the same amount of data per batch as the other
algorithms (ii) we reduce the total number of gradient steps taken to match the other algorithms.
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D Descriptions of Tasks in the Test Set

LIBERO We perform pretraining on the first 80 tasks in LIBERO-90 [16]. The LIBERO-OOD
dataset, which tests generalization to unseen tasks consisting of novel objects and environments,
corresponds to the last 10 tasks in LIBERO-90. Task IDs and descriptions for this dataset are provided
in Table 3. We also test performance on the LIBERO-10, details for which can be found in LIBERO.

MetaWorld-v2 We perform pretraining on the first 10 tasks in MetaWorld. Finetuning is then
performed on the MW-Vanilla and MW-PRISE datasets, as explained in Section 5.2. Information on
the specific tasks used in each dataset is provided in Table 4.

Table 3: Tasks in LIBERO-OOD
Task Index Task Description

80 STUDY SCENE2 pick up the book and place it in the right compartment of the caddy
81 STUDY SCENE3 pick up the book and place it in the front compartment of the caddy
82 STUDY SCENE3 pick up the book and place it in the left compartment of the caddy
83 STUDY SCENE3 pick up the book and place it in the right compartment of the caddy
84 STUDY SCENE3 pick up the red mug and place it to the right of the caddy
85 STUDY SCENE3 pick up the white mug and place it to the right of the caddy
86 STUDY SCENE4 pick up the book in the middle and place it on the cabinet shelf
87 STUDY SCENE4 pick up the book on the left and place it on top of the shelf
88 STUDY SCENE4 pick up the book on the right and place it on the cabinet shelf
89 STUDY SCENE4 pick up the book on the right and place it under the cabinet shelf

Table 4: Pretraining (left) and finetuning (right) task splits for MetaWorld

Task Index Pretraining Task Description

0 assembly-v2
1 basketball-v2
2 button-press-topdown-v2
3 button-press-topdown-wall-v2
4 button-press-v2
5 button-press-wall-v2
6 coffee-button-v2
7 coffee-pull-v2
8 coffee-push-v2
9 dial-turn-v2

Finetune Dataset Task Index Finetune Task Description

MW-Vanilla

45 bin-picking-v2
46 box-close-v2
47 hand-insert-v2
48 door-lock-v2
49 door-unlock-v2

MW-PRISE

10 disassemble-v2
24 pick-place-wall-v2
37 stick-pull-v2
46 box-close-v2
47 hand-insert-v2

E Performance on MetaWorld-v2 with Varying Pretraining Amounts

In Section 5 we perform 20 epochs of pretraining on LIBERO and 40 epochs of pretraining on
MetaWorld, showing that DEPS outperforms existing baselines in its rapid generalization to diverse
datasets of unseen tasks. We also show that DEPS retains its performance advantage on reducing the
number of pretraining epochs (using LIBERO-OOD), and, in the case of low pretraining amounts,
the performance gap between DEPS and other baselines increases. In Table 5, we present results
on MetaWorld analogous to those presented in Table 1, but with half as much pretraining (i.e. 20
epochs). As can be seen DEPS retains in its performance advantage, suggesting that it is robust to
different pretraining compute budgets.

F DEPS with Different Amounts of State Compression

One may ask whether compressing the observation to 1D is overly aggressive.

As outlined in Section 4.2, we believe this is not the case, as a parameterized skill can be viewed as
a family of related parameterized trajectories. Each trajectory is defined by a choice of continuous
parameterization, and given a fixed trajectory, a 1D state is sufficient as one only needs an “index”
into the trajectory (Figure 3). As the dimensionality of the state embedding increases, we expect
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Table 5: Evaluation results on MetaWorld with half as much pretraining (20 epochs). All results are
averaged across 5 seeds

Evaluation Set Algorithm Mean Success Mean Highest Success

MW-Vanilla
DEPS 0.40± 0.02 0.58± 0.04
PRISE 0.19± 0.06 0.31± 0.08
BC 0.35± 0.02 0.50± 0.03

MW-PRISE
DEPS 0.30± 0.04 0.51± 0.05
PRISE 0.07± 0.03 0.18± 0.06
BC 0.24± 0.01 0.42± 0.03

more information to be encoded in the state embedding, which implies (i) lower overlap in the
embedded state-space across tasks and (ii) less reliance on the skill parameters to encode meaningful
information, resulting in poorer performance in unseen tasks/environments.

To validate this intuition, we ablate the performance of DEPS against versions of DEPS using 2D and
3D state compression instead. Additionally, we compare against DEPS (Uncompressed), which uses a
subpolicy implementation that takes the history of robot proprioceptive states, which are then passed
through an LSTM (without any compression) before being concatenated with the current discrete
skill and continuous parameter and passed through an output head.

As can be seen in Table 6, DEPS significantly outperforms each of the baselines.

Table 6: Performance of parameterized skills with different compression dimensions. Results are on
LIBERO-OOD. 1D state compression results taken from Table 1. Results for 2D and 3D compression
and DEPS (Uncompressed) are averaged over 3 seeds.

Compression Dimension Mean Success Rate Mean Highest Success Rate
DEPS 0.34± 0.08 0.66± 0.12

DEPS (2D state) 0.13± 0.12 0.30± 0.18
DEPS (3D state) 0.05± 0.04 0.17± 0.11

DEPS (Uncompressed) 0.19± 0.05 0.48± 0.03

G DEPS with Different Limits on the Maximum Number of Discrete Skills, K

In all our experiments in Section 5, we set the maximum number of discrete skills K to 10. This is
simply meant to be an upper bound on the number of discrete skills learnable by DEPS. To demonstrate
the robustness of DEPS to different values of this hyperparameter, we ablate its performance with a
different value of this same hyperparameter (K = 20) in Table 7. As can be seen, setting K = 20 in
fact significantly improves the performance of DEPS. It is possible that the performance of DEPS
might increase even more significantly with a thorough hyperparameter sweep.

Table 7: Performance of DEPS with different values of K. Results for K = 10 taken from Table 1.
Results for K = 20 are averaged across 3 seeds.

K Mean Success Rate Mean Highest Success Rate
10 (from paper) 0.34± 0.08 0.66± 0.12

20 0.47± 0.01 0.74± 0.05

H On the Importance of Parameterized Skills

As discussed in Section 1, we believe that learning purely discrete or continuous skills possesses
inherent limitations. DEPS’ two tiered design combines the benefits of these two approaches,
providing the representation power of continuous parameters with the structured and interpretable
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nature of discrete skills. In Table 8, we we compare the empirical performance of DEPS against
approaches using only discrete or continuous parameters, showing that DEPS outperforms both
settings.

Table 8: Performance comparison between DEPS and ablated versions with only discrete skills or
only continuous parameters. Results are on LIBERO-OOD. Results for DEPS are taken from Table 1.
Results for discrete-only and continuous-only are averaged across 3 seeds.

Method Mean Success Mean Max Success
DEPS (results from paper) 0.34± 0.08 0.66± 0.12

Discrete-only 0.06± 0.02 0.16± 0.01
Continuous-only 0.15± 0.16 0.32± 0.30

I On the Impact of Evaluation Horizon

The choice to evaluate DEPS after a limited number of finetuning gradient steps (500) is intentional
and reflects the core motivation of our work: to learn transferable representations that enable rapid
adaptation to new tasks. We believe this evaluation protocol serves as a stronger test of generalization
ability as it demonstrates that DEPS learns genuinely transferable skills rather than simply learning
the downstream tasks from scratch.

For completeness, we provide additional results comparing the performance of DEPS and the BC
baselines after 5x as much finetuning (i.e. 2500 gradient steps). We perform rollouts after every 250
gradient steps of finetuning and report the Mean Success Rate and the Mean Highest Success Rates.
As can be seen, DEPS maintains its performance advantage, with the gap between DEPS and BC
actually increasing

Table 9: Performance comparison between DEPS and BC on LIBERO-OOD with 5x as many
finetuning gradient steps. Results are averaged across 3 seeds.

Method Mean Success Mean Max Success
DEPS 0.49± 0.05 0.75± 0.02
BC 0.20± 0.04 0.35± 0.04

J Limitations

DEPS shows significant performance improvements in rapid generalization abilities in diverse and
challenging environments. However, there are some important limitations to consider:

Generalization and accuracy tradeoffs As can be seen in Table 1, the performance of DEPS
is not as strong on LIBERO-10, which consists largely of in-distribution but longer-horizon tasks,
compared to other held-out task sets. Given the in-distribution nature of LIBERO-10, it makes
sense that parameterized skills will offer less of a performance improvement as there is no need to
generalize to new tasks or environments. However, it is also possible that our choice to aggressively
compress observations to one dimension before passing them to the subpolicy network, which enables
generalization, potentially comes at the cost of perfect reconstruction of in-distribution long-horizon
demonstration trajectories. The observed tradeoff may be acceptable in many practical robotics
scenarios, where learned skills from demonstrations typically serve as a starting point for further
refinement using RL. In such cases, the initial generalization capability is more valuable than perfect
execution on specific, lengthy sequences.

We envision several promising approaches to address this limitation while preserving the general-
ization benefits of our method. For instance, one may train a residual policy that has access to the
full-observation space in addition to the current discrete skill and continuous parameter, correcting
the output of the original subpolicy network. We leave a more rrigorous evaluation of this potential
shortcoming and its remedies to future work.
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Reliance on proprioceptive robot states To implement the compression strategy outlined in Sec-
tion 4.2, we use the robot’s proprioceptive state, which is provided in both LIBERO and MetaWorld,
as the feature vector sprojt . This provides a compact, low-dimensional representation of the robot’s
state, while excluding information about the environment and goal, which must then be encoded in the
discrete skills and continuous parameters. While we expect our method to generalize to environments
where proprioceptive state is not provided, we leave an evaluation of this to future work.

Method complexity Compared to naive behavioral cloning, DEPS is more complex to implement
and has more hyperparameters, resulting in more hyperparameter tuning. While we show that DEPS
has clear performance advantages, it may not be appropriate for simpler environments or narrow task
distributions requiring less generalization.

K Societal Impacts and Potential for Misuse

We do not perform studies involving human subjects, and properly attribute datasets and software
used to their authors. The research presented, which focused on enabling robots to learn parame-
terized skills from demonstrations, has the potential for significant positive societal impact. These
include enhanced automation in industrial and domestic settings, improved assistive technologies for
individuals needing support, and safer execution of tasks in hazardous environments. On the other
hand, our method inherits the common potential for misuse of robotics research, such as autonomous
weapons, labor displacement, and economic disruption, but these potentials are not unique to this
paper.

L Further Visualization of Learned Skills

We provide more visualizations of the discovered parameterized skills on our website:
sites.google.com/view/parameterized-skills.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Every claim made in the abstract clearly corresponds to the content of a section
in the paper. For example, the abstract claims improved generalization to unseen tasks in
LIBERO and MetaWorld, which is clearly conveyed in our Experiments section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a limitations section in the appendix, and clearly reference it in
our main body.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The main theoretical result in our paper is the derivation of an evidence-based
lower bound to learn parameterized skills. We provide a derivation for this objective and
clearly state the assumptions made for computational tractability.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide our code in the supplemental meterial as well as information
on the model sizes and hyperparameters for each baseline and information about the spe-
cific datasets used for evaluation. The provided information is sufficiently granular for a
reproduction of our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our implementation along with instructions to reproduce our results
with our supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Enough detail is provided in our main body for a reader to faithfully understand
our experimental settings and results. We have comprehensive appendix sections on train/test
splits and hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars clearly next to every reported result.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on the computational resources used in our appendix,
including number/type of GPUs and the time taken.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not perform studies involving human subjects, and properly attribute all
datasets and software used to their authors. We also include a section in our appendix to
discuss societal impact and potential harmful consequences.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: We discuss potential positive and negative impacts of out work in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite all owners of code repositories used in the text of our paper
as well as in our code files.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not perform any crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not perform any crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs in any way that is important or non-standard.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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