
Constrained Dynamic Movement Primitives for
Collision Avoidance in Novel Environments

Seiji Shaw∗, Devesh K. Jha‡, Arvind U. Raghunathan‡, Radu Corcodel‡,
Diego Romeres‡, George Konidaris†, and Daniel Nikovski‡

Abstract— Dynamic movement primitives are widely used
for learning skills that can be demonstrated to a robot by a
skilled human or controller. While their generalization capa-
bilities and simple formulation make them very appealing to
use, they possess no strong guarantees to satisfy operational
safety constraints for a task. We present constrained dynamic
movement primitives (CDMPs), which can allow for positional
constraint satisfaction in the robot workspace. Our method
solves a non-linear optimization to perturb an existing DMP’s
forcing weights to admit a Zeroing Barrier Function (ZBF),
which certifies positional workspace constraint satisfaction.
We demonstrate our approach under different positional con-
straints on the end-effector movement on multiple physical
robots, such as obstacle avoidance and workspace limitations.

I. INTRODUCTION

Trajectory generation for manipulators for tasks that re-
quire complex, dynamic movements is often difficult and
time-consuming. Learning from Demonstration (LfD) offers
an efficient approach to teach motor skills to robots [1],
[2], since expert demonstrations can be directly used to
learn a suitable representation of the movement. However,
these skills will need to contend with new operational
constraints when executed in new environments, such as
collision avoidance to new obstacles. Our goal is to find a
way to adapt motor skills learned from demonstration to new
environmental constraints.

One of the most popular LfD approaches is the dynamic
movement primitive (DMP) [3], [4], a nonlinear dynamical
system that can fit expert demonstration trajectories by
decoupling a nonlinear forcing function from the nominal
attraction behavior. DMPs have been applied to learning a
wide range of skills [5], [6], [7], [8], [9]. While they can be
reparameterized by their start and goal positions and preserve
the qualitative shape of the trajectory, adapting them to new
environments with novel operational constraints (see Figure
1 for an example) is not obvious.

For dynamical systems like DMPs, safety can be defined
by whether the trajectories of the system remain within a
specified ‘safety set.’ Such a set can be defined by removing
obstacles from the set that defines the robot’s workspace.
Ames et al. [10] introduce Zeroing-Barrier Functions (ZBFs),

∗Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA.
seijis@mit.edu. †Department of Computer Science,
Brown University, Providence, RI. gdk@cs.brown.edu.
‡Mitsubishi Electric Research Labs (MERL), Cambridge, MA.
{jha,raghunathan,corcodel,romeres,nikovski}@
merl.com

a way to certify whether a dynamical system is forward-
invariant in a set, i.e. whether the state of the system is
always in that set.

In this paper, we use ZBFs to guarantee that a learned
DMP will avoid obstacles and respect workspace limits. We
present Constrained DMPs (CDMPs), which adapts a learned
DMP to novel collision avoidance constraints introduced by
executing the skill in new environments. This is achieved
by perturbing the weights of the DMP’s learned forcing
functions to satisfy positional constraints specified in a ZBF,
given by the user. The weight perturbations are computed
by forming an nonlinear optimization problem that changes
the weights until the conditions for ZBF forward-invariance
certification in the safety set is satisfied. The optimization
is transcribed as a nonlinear program (NLP) that can be
solved using off-the-shelf non-linear program solvers (such
as IPOPT [11], [12]). We include demonstrations of suc-
cesful CDMP computation on two robots in three different
domains where we can successfully compute CDMPs which
satisfy operational constraints in the robot workspace. Com-
pared to the past work on incorporating collision avoidance
constraints in DMPs [13], [14], [15], [16], we provide
guarantees for safety set invariance for the new trajectories,
which encompass obstacle-avoidance and novel workspace
constraints.

II. RELATED WORK

Learning from demonstration, or imitation learning, is an
active area of research in the robot learning community [1].
In general, there are two common behavior representations
trained by LfD: a stochastic policy or a dynamical or geo-
metric representation of a concrete trajectory. A case of the
latter, DMPs have been widely successful in learning motor
skills for robots because they present a simple dynamical
system that can encode a wide range of motor skills.

Training stochastic policies often involves behavior
cloning, or optimizing a parameterizable policy to match the
expert demonstration [2]. Diffusion-based models [17] are
a recent development of a behavior model that can scale
to high-dimensional output spaces (e.g. images) and have
been shown to produce surprisingly robust controllers. The
amount of time and computation required to train these
models, however, make approaches like these intractable for
our problem.

On the other hand, DMPs enjoy wide application in a
variety of robot tasks, but are unable to incorporate opera-
tional constraints with strong guarantees. Collision avoidance

Fig. 1: A simple block stacking environment using the proposed CDMP algorithm. The demonstration (top row) was provided
in a collision-free environment. A box obstacle is introduced during execution and a simple DMP collides (middle row)
with the obstacle during execution. The proposed CDMP (bottom row) is able to successfully avoid the novel obstacle.

is usually incorporated by combining DMPs with artificial
potential fields (or using other similar heuristics) [13], [14].
In general, the technique lacks a formulation that can nat-
urally incorporate any form of positional constraint without
the time-consuming experimental tuning processes or risks
of local minima that artificial potential field-like approaches
possess ([14], Sec. V-C). More recently, there has been some
work on using DMPs with sampling based methods to allow
collision avoidance [18]. These methods use sampling to find
a state from which the DMP can avoid obstacles. In contrast,
in the proposed method, we perturb the learned forcing
function to satisfy constraints on the robot’s workspace.

We also draw inspiration from approaches in safety-critical
control that uses optimization-based approaches to constrain
the control inputs of a dynamical system to maintain strong
guarantees of the system’s safety. At the center of these
approaches are control Lyapunov functions (CLFs) [19] and
control barrier functions (CBFs) [10], [20], [21], which
certify convergence and safety set forward-invariance, re-
spectively. In a similar vein, Tedrake et al. [22] compute
Lyapunov-stable regions for locally-defined LQR controllers
via sum-of-squares optimization. Since a DMP is just a
nonlinear dynamical system, we leverage Ames et al.’s
zeroing barrier function (ZBF) formalism (which Ames et al.
extends to control-affine systems to define CBFs) to certify
the forward-invariance of a DMP in a predetermined safety
set [10], [20].

A key insight of our work is to perturb the weights of
an already-learned DMP to admit an already-existing ZBF
so that the DMP is guaranteed to be forward-invariant in a
user-defined safety set. There is a large body of work that
constrains more general parameterizable dynamical systems
via Lyapunov functions [23], [24], [25] and contraction map-
pings [26]. While these techniques guarantee convergence
of the dynamical system, such methods cannot maintain
the DMP’s ability to generalize motions over changes in

the attraction point, a property that our approach preserves.
Nomotista et al. [27] leverage a diffeomorphism to map non-
convex obstacles into a complex space, where they constrain
dynamics of a control system via CBF. Khansari-Zadeh et
al. [28] propose a real-time dynamical-reshaping approach
for avoidance of convex obstacles. While these approaches
work for obstacles that follow their assumptions, it is unclear
if such an approach can be modified for avoidance of non-
compact sets like the space outside workspace boundaries.
Ohnishi et al. [29] consider CBFs for learning agents to
avoid more abstract task-specific constraints for agents whose
dynamics are learned via reinforcement learning. We solve
a task-specific learning-by-demonstration problem instead.

III. BACKGROUND

In this section, we review the mathematical details of
DMPs and ZBFs relevant to our formulation of our CDMP.

A. Dynamic Movement Primitives
DMPs were first introduced by Ijspeert et al. [3], [4].

To remove explicit time dependency, they use a canonical
system to keep track of the progress through the learned
behavior:

τ ṡ =−αss (1)

where s = 1 at the start of DMP execution (and αs > 0) and
τ > 0 specifies the rate of progress through the DMP.

To capture attraction behavior, DMPs use a spring-damper
system (the transformation system) with an added nonlinear
forcing term. Writing the DMP equations as a system of
coupled first-order ODEs yields

τ ż = αz(βz(g− y)− z)+ f (s) (2)
τ ẏ = z, (3)

where g denotes the goal pose. The forcing term is defined
as a sum of radial-basis functions

f (s) =
∑

N
i=1 wiψi(s)

∑
N
i=1 ψi(s)

(4)

ψi(s) = exp(−hi(s− ci)
2), (5)

where hi and ci denote the inverse width and center of the
Gaussian basis functions, respectively. The forcing term is
learned from the demonstration by solving a locally weighted
regression to fit the demonstration provided by an expert.

B. Zeroing Barrier Functions

Since DMPs are formulated as autonomous nonlinear dy-
namical systems, we can certify them for safety set forward-
invariance using zeroing barrier functions [20], [10].

First, let h(x) : Rn → R be a continuous differentiable
function. Define set C to be the following super-level set:

C = {x ∈ Rn : h(x)≥ 0} (6)
∂C = {x ∈ Rn : h(x) = 0} (7)

Int(C) = {x ∈ Rn : h(x)> 0}. (8)

Assume we have a nonlinear dynamical system of the
form:

ẋ = f (x). (9)

We call h(x) ZBF if the following inequality holds:

ḣ(x)≥−α(h(x)), (10)

where α : R→ R is a class-K function [10]. Like Ames et
al., we consider the specific case

ḣ(x)≥−γh(x). (11)

with constant γ > 0. Given a dynamical system (9), a valid
ZBF h(x) exists if and only if our dynamical system ẋ= f (x)
is forward-invariant in the set C , i.e. if x0 ∈ C and ẋ = f (x)
then:

x ∈ C , ∀t ∈ [0,∞). (12)

ZBFs, given the ‘if and only if’ relation above, are a general
way to think about safety-set invariance for dynamical sys-
tems of any kind. They are also amenable to be written as
dynamic constraints in a mathematical optimization problem
(Section IV-A).

IV. CONSTRAINED DYNAMIC MOVEMENT PRIMITIVES

We present our formulation of the proposed constrained
DMP (CDMP), which we cast as a nonlinear optimization
problem.

The main insight behind our proposed formulation of
CDMPs is to take an existing DMP with a forcing function
learned from an expert trajectory and then minimally change
the dynamics governed by the forcing function weights to
admit positional constraints induced by a ZBF. We introduce
additional parameters that perturb the weights {wi} of the
forcing function of the learned DMP. These perturbations
are computed by solving an optimization problem, where
the ZBF inequality (eq. 11) is added as a constraint.

A. CDMPs as a Nonlinear Optimization Problem

As was explained earlier in Section III-A, the system of
equations and the forcing function for DMP could be written
and expressed by the following system of equations:ṡ

ż
ẏ

=
1
τ

 −αss
(αz(βz(g− y)− z)+ f (s))

z

 , (13)

where

f (s) =
∑

N
i=1 wiψi(s)

∑
N
i=1 ψi(s)

(14)

is the forcing function expressed as a weighted sum of
radial basis functions, where the weights are learned from
the provided expert demonstration and govern the evolution
of the DMP trajectory.

We introduce new weight perturbations {ζi} so that the
DMP with a new forcing function with perturbed weights
{wi − ζi} can satisfy the ZBF inequality for forward-
invariance in the user-defined safety set. The perturbed
forcing function of the new DMP can be expressed as

f̃ (s) =
∑

N
i=1(wi−ζi)ψi(s)

∑
N
i=1 ψi(s)

. (15)

We compute {ζi}i=1,...,N by casting them as decision vari-
ables in the following minimization problem:

min
ζ1,...,ζN

N

∑
i=1

ζ
2
i , (16)

subject to the dynamic constraints

τ

ṡ
ż
ẏ

+
 αss
−
(
αz(βz(g− y)− z)+ f̃ (s)

)
−z

= 0 (17)

ḣ(x)+ γh(x)≥ 0 (18)
x(t0) = x0, (19)

where the state x = [s,z,y]T . Equation (18) represents
the user-specified ZBF that represents the new positional
constraints. The intuition behind minimizing these pertur-
bations as a part of the optimization objective is to (1)
ensure a relatively smooth trajectory and (2) keep the new
trajectory closer to the demonstration trajectory given by the
expert. The constraint is enforced at a discrete number of
‘collocation points’ along the trajectory. While adding more
collocation points allows for stricter constraint satisfaction
for the physical system, the amount of computation required
to solve the problem also sharply increases (Sec. V-B).

The optimization problem represented by Equations (16)-
(19) is converted to a finite dimensional discretized problem
using PyRoboCOP [12], which is then transcribed into a
nonlinear program. The resulting NLP is then solved using
IPOPT in the PyRoboCOP environment. We compute new
DMP weights {wi − ζi} using the solution perturbations
found by PyRoboCOP (see Algorithm 1).

We need to solve (16) every time a novel constraint
is introduced in the environment. This can be equivalent
to adding new obstacles in the workspace of the robot.
In general, the solution to the NLPs can not be done in
real-time. However, these trajectories need to be computed
only once before operation and executed to complete some
repetitive tasks. An online version of the algorithm is left for
future work.

Algorithm 1 Compute CDMP

Input: weights {wi}, xstart , xgoal , α (DMP proportional
gain), β (DMP damping gain) , h(·) (ZBF), γ (class-
K linear fun. proportional constant), n (number of
collocation points)

Output: weights {w′i}
Computes perturbation w.r.t. optimization 17-19.

1: {ζi}← SolvePerturbations({wi}, xstart , xgoal , α , β , h(·),
γ , n)
Compute new weights CDMP that admits h(·)

2: for k in [1..|{wi}|] do
3: w′i← wi−ζi
4: end for
5: return {w′i}

B. Perturbation from Original Trajectory

Another important consideration during computation of
constrained DMP is to limit the amount of the deviation
of the CDMP from the original DMP trajectory. The design
of CDMP could be seen as a trade-off between constraint
satisfaction and the original forcing function. This trade-off
could be controlled using a hyperparameter which constrains
the maximum allowable deviation between the original DMP
and CDMP, which can be added as another constraint to the
trajectory optimization problem. More formally, let us denote
the original DMP trajectory as {ỹ(t)}, t ∈ [t0, t f] and the
hyperparameter for the deviation from the original trajectory
as ε . Then, the additional constraint could be represented as

||y(t)− ỹ(t)||2 ≤ ε (20)

and added to the optimization problem described in equations
(17-19). Depending on the value of ε , we can obtain a family
of CDMPs that will allow different amount of deviation of
the new trajectory from the original DMP trajectory.

C. ZBFs from Signed-Distance Functions

Given an obstacle set Ω with boundary ∂Ω in R3, we
use the usual definition of a signed distance function (SDFs)
σ : R3→ R to the boundary of the obstacle [30]

σ(x) =

{
d(x,∂Ω), if x /∈Ω,

−d(x,∂Ω), if x ∈Ω,

where the distance (or metric) d(x,∂Ω) is defined by

d(x,∂Ω) = inf
y∈∂Ω

||x,y||2.

We know that |∇σ |= 1 wherever this gradient is well-defined
(and for convex polytopes, this is true whenever σ(x)> 0).
We also know that the implicit surface embedded in R3

defined by the set of all points x ∈ R3 where σ(x) = 0 is
also the boundary of the obstacle, and σ(x)< 0 whenever x
is inside the obstacle. Thus, SDFs fulfill the requirements for
a function to designate a safety set (what we denote as h(x)
above) and certify that a DMP trajectory is also invariant in
the safety set Ωc.

Given two SDFs σ1 and σ2 representing obstacles Ω1 and
Ω2, we would typically find the SDF of Ω1∪Ω2 by taking
their minimum σ(p) = min(σ1(p),σ2(p)). However, this
poses problems of non-differentiability, which is necessary
for an optimizer to solve the optimization problem. We
resolve this issue by computing a twice-differentiable lower-
bound approximation of the minimum function as shown in
[31], which is necessary because the ZBF constraint contains
a first-order derivative of ZBF h(x):

smin(d1,d2,k) =min(d1,d2)

− k
(

1
6

)(
max(k−|d1−d2|,0.0)

k

)3

,

where k can be interpreted as a blending radius. With
repeated application of the smin operation, we can have a
twice-differentiable SDF union of all the obstacles known in
the workspace.

We note that closed-form SDFs are sufficient for rep-
resenting obstacles, because they are differentiable outside
the boundary of obstacle set Ω. To implement workspace
constraints, we recommend to take the smooth under-
approximation of signed-distances functions from bounding
planes.

Given our construction of the CDMP, we state the follow-
ing lemma:

Lemma IV.1. Let ẋ = g(x) be a DMP, γ > 0, h : R3→R be
a ZBF, and C = {x ∈R3 : h(x)> 0}. If there exists ζ1, ...,ζn
such that the CDMP ẋ = g̃(x) admits the ZBF inequality
ḣ(x) + γh(x) ≥ 0 along trajectory x(t), then g̃’s trajectory
x(t) is forward-invariant in C .

Proof. Application of Ames et al.’s Proposition B.1 [10].

As a corollary of the lemma above, we can claim that if
our solver is able to find feasible solution to (16)- (19) to
satisfy the ZBF condition, the optimized CDMP trajectory
is guaranteed to stay within the safety set where the ZBF
certification constraint is enforced at the collocation points.

V. EXPERIMENTS AND RESULTS

We experimentally verify that our algorithm could reliably
generate feasible trajectories that avoids obstacles while
preserving the flexible learning and reparameterization capa-
bilities of the original DMP. Our experiments are conducted
both numerically and on physical robots, using a Python-
based interface to IPOPT presented by Raghunathan et al.
[12]. A video with all the physical experiments could be
seen here.

Fig. 2: The orange CDMP trajectory is constrained to lie
outside spherical and cuboidal obstacles, and within the
conical boundaries.

A. Evaluation of Obstacle Avoidance

We first verify that the CDMP algorithm is able to avoid
obstacles represented by the ZBF. We perform numerical
experiments to verify whether the optimizer can handle a
large variety of ZBFs and to study the CDMP’s ability to
handle narrow passages. We also evaluate the algorithm in
real-robot scenarios to verify that the trajectories produced
by CDMPs can be easily executed on a real robot.

Our numerical experiments make use of an end-effector
position trajectory kinesthetically demonstrated by a human
expert in R3 (see Figure 2). We then insert different kinds of
obstacles along the trajectory, including spheres, boxes, and
a conically-shaped workspace boundary. As could be seen
in Figure 2, the CDMP trajectory is able to satisfy the new
constraints in all problem instances.

To evaluate CDMP’s ability to handle narrow passages,
we compare our method to the dynamic (velocity-dependant)
artificial potential field method introduced by Park et al.
[14] using a generated straight-line trajectory. As with many
potential field methods, it is not difficult to construct an
adversarial obstacle configuration that causes the DMP to
be trapped in a local minima (see Fig. 3). Even with these
obstacles, our CDMP method is able to successfully reach
the goal.

Our physical experiments tested CDMP on two different
physical robots in three different domains: a wall-hopping
domain (see Figure 1), a chess-piece moving domain (see
Figure 4), and a whiteboard drawing domain (see Figure 5).

In the wall-hopping and chess-piece moving domains,
a user kinesthetically demonstrates the robot a movement
in a workspace free of obstacles. New obstacles are then
introduced in the environment and are represented using
cuboidal bounding volumes. After CDMP computation, the

Fig. 3: CDMP and DMP with a dynamic potential field
learned from generated straight-line demonstration. The for-
mer is able to reach the goal, while the latter is caught in a
local minimum (best seen in color).

obtained trajectories are unrolled and tracked in both position
and velocity using a PD controller. The original DMP (top
row) collides with the new obstacle, but CDMPs (bottom
row) generates a new non-colliding trajectory.

In the whiteboard experiments, we use a Mitsubishi Elec-
tric Assista industrial manipulator arm equipped with a
force/torque (F/T) sensor at the wrist to provide feedback
for an admittance controller [32], [33] to move the robot
in a kinesthetic teaching mode to record expert demonstra-
tions. An expert moves the end-effector to draw shapes for
demonstrations (Figure 5). We then add some obstacle sets
in the original shapes. The CDMP and admittance controller
are able track the CDMP’s trajectory that avoids the new
obstacles.

B. Trade-off Between Obstacle Avoidance Fidelity and Com-
putational Complexity

The computational time for the CDMP depends on the
size of the NLP created using the original demonstration
trajectory. The size of the problem depends on the number
of collocation points where the ZBF constraints are enforced
in the problem. The number of collocation points must
be strategically chosen to sufficiently cover the path so
that a constraint is not violated between two collocation
points (in the presence of obstacles). To study the trade-off
between CDMP’s runtime and number of collocation points
chosen for the NLP, we measure the runtime of CDMP
computation on the wall-hopping problem (Figure 1) with
different number of collocations points.

All experiments were run using unoptimized code on a
Lenovo Thinkpad equipped with an Intel i7-8565U processor
and 16Gb of RAM. While fewer collocation points result in
faster compute times, the trajectory in between collocation
points is more likely to intersect with obstacles (Fig. 7).
Figure 6 shows a non-linear trend between the number of
collocation points and the computational time. This is not
surprising since we use an interior-point method (IPM) for a
non-convex optimization, where the computational time can

Fig. 4: This shows movement of pieces on a chess board using CDMP. The top row shows that the original DMP collides
with an obstacle on the way while the CDMP (bottom row) is able to avoid the obstacle during movement.

(a) Drawing a rectangle.

(b) Drawing a triangle.

Fig. 5: The proposed CDMP algorithm is successfully able
to draw demonstrated shapes in the presence of constraints.

increase sharply with problem size.

C. Preservation of DMP Properties

Since the CDMP algorithm perturbs the learned weights
of the DMP forcing function, we must experimentally verify
that the CDMP algorithm still preserves the qualitative
geometry of the DMP trajectory. More importantly, we verify
that the CDMP could preserve the start and goal reparam-
eterization properties of DMP. To evaluate whether CDMPs
generalize trajectories to novel start and goal states, we apply
the CDMP algorithm to a trajectory taught kinesthetically to
a physical robot for a multiple bin-picking task (Figure 8).
We observe that when no obstacles are present, the CDMP
behaves exactly the same as the DMP (middle trajectory).

Fig. 6: Experimental runtime of wall-jump problem.

Fig. 7: While n = 10 collocation points was much faster to
compute (Fig. 6), the trajectory was still in collision with the
obstacle since the ZBF condition was too coarsely enforced
relative to n = 50.

When obstacles are present, the CDMP will be perturbed to
avoid the obstacle (right trajectory).

In both numerical and physical robot experiments (Figures
2 and 5), the generated CDMP trajectory still captures much
of trajectory defined by the DMP. For the numerical task
learned from the bin-picking expert demonstration, we see
that the overall trajectory inverts and scales as the original
DMP would, but also perturbs when necessary to avoid
obstacles.

Fig. 8: The left-most trajectory is the unchanged DMP
trajectory for a bin picking task. The middle and rightmost
trajectories have reparameterized goals.

VI. CONCLUSION AND FUTURE WORK

Simplifying motion generation for robots performing
repetitive tasks in changing environments is still a significant
challenge for robots. We propose a method for incorporating
operational constraints while generating trajectories using
demonstrations. Our method, constrained dynamic movement
primitives, can incorporate task and environmental con-
straints when generalizing to novel conditions. The proposed
CDMP was demonstrated on several examples for collision
avoidance in the presence of obstacles of different shapes
and sizes. We also confirm that the CDMP still preserves the
qualitative geometry of the trajectory, and behaves identically
to the DMP when no obstacles are present.

Even though ZBFs can, in theory, include complex op-
erational constraints like self-collision, joint limits, etc., we
need computationally efficient and smooth barrier function
representation of these constraints to be able to compute safe
trajectories. In the future, we would like to use the proposed
formulation to consider more constraints past end-effector
safety sets that can be more easily expressed in different
parameterizations of the robot configuration space, such as
joint limits and self-collision avoidance. These constraints
result in a complex, constrained optimization problem which
needs additional, non-trivial work to find a suitable zeroing
barrier function. Another limitation is the computational
efficiency with respect to the number of collocation points
along the trajectory. While fewer collocation points reduce
the amount of computation time, more of the trajectory
will be ‘exposed’ to collide with an obstacle. A possible
improvement is to make better use of warm-starting, which

are current solver (IPOPT) does not leverage.

ACKNOWLEDGEMENTS

We thank Nadia Figueroa for her introducing us to the
huge body of dynamical systems for learning from demon-
stration literature. Disclosure: George Konidaris is the Chief
Roboticist of Realtime Robotics, a robotics company that
produces a specialized motion planning processor.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469–483, 2009.

[2] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 3, pp. 297–330,
2020.

[3] A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proceedings
2002 IEEE International Conference on Robotics and Automation
(Cat. No.02CH37292), vol. 2, 2002, pp. 1398–1403 vol.2.

[4] S. Schaal, Dynamic Movement Primitives-A Framework for Motor
Control in Humans and Humanoid Robotics. Tokyo: Springer
Tokyo, 2006, pp. 261–280. [Online]. Available: https://doi.org/10.
1007/4-431-31381-8_23

[5] M. Saveriano, F. J. Abu-Dakka, A. Kramberger, and L. Peternel,
“Dynamic movement primitives in robotics: A tutorial survey,” arXiv
preprint arXiv:2102.03861, 2021.

[6] K. Muelling, J. Kober, and J. Peters, “Learning table tennis with a
mixture of motor primitives,” in 2010 10th IEEE-RAS International
Conference on Humanoid Robots, 2010, pp. 411–416.

[7] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learning to
select and generalize striking movements in robot table tennis,” The
International Journal of Robotics Research, vol. 32, no. 3, pp. 263–
279, 2013.

[8] D. K. Jha, D. Romeres, W. Yerazunis, and D. Nikovski, “Imitation
and supervised learning of compliance for robotic assembly,” in 2022
European Control Conference, 2022, pp. 1882–1889.

[9] M. Sharma, K. Zhang, and O. Kroemer, “Learning semantic embed-
ding spaces for slicing vegetables,” arXiv preprint arXiv:1904.00303,
2019.

[10] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[11] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[12] A. U. Raghunathan, D. K. Jha, and D. Romeres, “Pyrobocop: Python-
based robotic control ’i&’ optimization package for manipulation,” in
2022 International Conference on Robotics and Automation, 2022, pp.
985–991.

[13] A. Rai, F. Meier, A. Ijspeert, and S. Schaal, “Learning coupling terms
for obstacle avoidance,” in 2014 IEEE-RAS International Conference
on Humanoid Robots. IEEE, 2014, pp. 512–518.

[14] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement repro-
duction and obstacle avoidance with dynamic movement primitives
and potential fields,” in Humanoids 2008-8th IEEE-RAS International
Conference on Humanoid Robots. IEEE, 2008, pp. 91–98.

[15] H. Tan, E. Erdemir, K. Kawamura, and Q. Du, “A potential field
method-based extension of the dynamic movement primitive algorithm
for imitation learning with obstacle avoidance,” in 2011 IEEE Inter-
national Conference on Mechatronics and Automation. IEEE, 2011,
pp. 525–530.

[16] F. Stulp, E. Oztop, P. Pastor, M. Beetz, and S. Schaal, “Compact
models of motor primitive variations for predictable reaching and
obstacle avoidance,” in 2009 9th IEEE-RAS International Conference
on Humanoid Robots. IEEE, 2009, pp. 589–595.

[17] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. C. Burchfiel, and
S. Song, “Diffusion Policy: Visuomotor Policy Learning via Action
Diffusion,” in Proceedings of Robotics: Science and Systems, Daegu,
Republic of Korea, July 2023.

[18] S. Sobti, R. Shome, S. Chaudhuri, and L. E. Kavraki, “A sampling-
based motion planning framework for complex motor actions,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2021, pp. 6928–6934.

[19] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero
dynamics,” IEEE Transactions on Automatic Control, vol. 59, no. 4,
pp. 876–891, 2014.

[20] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European control conference. IEEE, 2019, pp. 3420–
3431.

[21] M. Z. Romdlony and B. Jayawardhana, “Uniting control lyapunov and
control barrier functions,” in 53rd IEEE Conference on Decision and
Control. IEEE, 2014, pp. 2293–2298.

[22] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “Lqr-
trees: Feedback motion planning via sums-of-squares verification,” The
International Journal of Robotics Research, vol. 29, no. 8, pp. 1038–
1052, 2010.

[23] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” IEEE Transactions
on Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[24] ——, “Learning control lyapunov function to ensure stability of
dynamical system-based robot reaching motions,” Robotics and Au-
tonomous Systems, vol. 62, no. 6, pp. 752–765, 2014.

[25] N. Figueroa and A. Billard, “A physically-consistent bayesian non-
parametric mixture model for dynamical system learning,” in Pro-
ceedings of The 2nd Conference on Robot Learning, ser. Proceedings
of Machine Learning Research, vol. 87. PMLR, 29–31 Oct 2018,
pp. 927–946.

[26] H. Ravichandar, I. Salehi, and A. Dani, “Learning partially contracting
dynamical systems from demonstrations,” in Proceedings of the 1st
Annual Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, vol. 78. PMLR, 13–15 Nov 2017, pp. 369–378.

[27] G. Notomista and M. Saveriano, “Safety of dynamical systems with
multiple non-convex unsafe sets using control barrier functions,” IEEE
Control Systems Letters, vol. 6, pp. 1136–1141, 2021.

[28] “A dynamical system approach to realtime obstacle avoidance,” no. 4,
pp. 433–454, 2012.

[29] M. Ohnishi, G. Notomista, M. Sugiyama, and M. Egerstedt, “Con-
straint learning for control tasks with limited duration barrier func-
tions,” Automatica, vol. 127, p. 109504, 2021.

[30] M. W. Jones, J. A. Baerentzen, and M. Sramek, “3d distance fields:
A survey of techniques and applications,” IEEE Transactions on
visualization and Computer Graphics, vol. 12, no. 4, pp. 581–599,
2006.

[31] I. Quilez, “3d distance functions.” [Online]. Available: https:
//iquilezles.org/www/articles/distfunctions/distfunctions.htm

[32] D. K. Jha, D. Romeres, S. Jain, W. Yerazunis, and D. Nikovski,
“Design of adaptive compliance controllers for safe robotic assembly,”
in 2023 European Control Conference, 2023, pp. 1–8.

[33] D. K. Jha, S. Jain, D. Romeres, W. Yerazunis, and D. Nikovski,
“Generalizable human-robot collaborative assembly using imitation
learning and force control,” in 2023 European Control Conference,
2023, pp. 1–8.

