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ABSTRACT
A major challenge for reinforcement learning is automatically gen-

erating curricula to reduce training time or improve performance in

some target task. We introduce SEBNs (Skill-Environment Bayesian

Networks) which model a probabilistic relationship between a set

of skills, a set of goals that relate to the reward structure, and a set

of environment features to predict policy performance on (possi-

bly unseen) tasks. We develop an algorithm that uses the inferred

estimates of agent success from an SEBN to weigh the possible

next tasks by expected improvement. We evaluate the benefit of the

resulting curriculum on three environments: a discrete gridworld,

continuous control, and simulated robotics. The results show that

SEBN-based curricula frequently outperform other baselines.
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1 INTRODUCTION
Adapting skills to new or unseen tasks is a major challenge in Rein-

forcement Learning (RL). Curriculum Learning [5, 25], an approach

for training agents using a sequence of increasingly difficult envi-

ronments, often promotes the effective development of more robust

policies. But customizing a curriculum can require substantial hu-

man insight, especially in robotics, where the environment or tasks

that need to be performed can change frequently. An ideal solution

to this problem would be an automated curriculum that enables the

robot to discern for itself when it needs to adapt, how long should

train, and in what environments.
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Past work on automated curriculum generation such as [20, 33]

has primarily focused on choosing what skills to train while holding

the environment itself static. More recent approaches that build a

curriculum over different environments such as [27] do not consider

agent skill competencies. Furthermore, these environment-based

approaches require explicit evaluation on an environment before

being able to calculate an estimate of agent success or regret to add

those environments to the curriculum.

We address the aforementioned issues by introducing Skill En-

vironment Bayesian Networks (SEBNs) as a potential method for

estimating agent competency level and selecting the most appro-

priate environments for training. SEBNs model a probabilistic rela-

tionship between these goals, skill competencies, and environment

features using data from past rollouts. Competencies can be explicit

or latent. The SEBN can estimate agent success rates on new, pos-

sibly unseen, environments. We use these estimates to select the

next set of training tasks within a curriculum in what we call an

SEBN-guided automated curriculum. Importantly, the SEBN does

not require explicit evaluation on each possible environment to

estimate agent success.

The contributions of the paper include: (1) Introducing and for-

malizing the SEBN for skills, task features, and reward structure;

(2) Providing an algorithm for constructing curricula using SEBNs;

(3) Introducing Megagrid, a gridworld environment that simpli-

fies generating partially-specified environments for transfer learn-

ing; (4) Assessing SEBN-based curricula on three distinct environ-

ments: a discrete gridworld (DoorKey), continuous control (Bipedal-

Walker), and a difficult simulated robotics domain (robosuite); and

(5) Demonstrating that SEBN-based curricula produce more robust

policies: they reach success more quickly than policies trained with

other curricula in the continuous control and robotics environments,

and they perform comparably in the gridworld environment.

2 BACKGROUND AND PRELIMINARIES
Bayesian statistics rely on some sort of informed prior, provided or

learned, to estimate the future values. In an SEBN, part of this prior

is provided in the form of the network and in the strength of rela-

tionships, and part of the prior is learned through the collection of

samples from the environment. We next provide our motivation for

this Bayesian approach (§2.1) with some background on Bayesian
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Networks (§2.2). We then formalize the curriculum learning prob-

lem (§2.3), how we use task features to construct tasks (§2.4), and

an extension to the options framework (§2.5).

2.1 Evidence Centered Design
Our motivation for using a Bayesian Network to estimate learning

proficiency comes from the method of Evidence Centered Design

(ECD) [23], a technique used in human educational assessments.

In Evidence-Centered Design, statistical models, such as Bayesian

networks, are used to measure the proficiency levels of a given stu-

dent. These proficiency measurements are then used to inform task

and assessment creation. For example, ECD could be used to help

model and analyze the performance of a tennis player. The Bayesian

network in this domain can include nodes that represent latent com-

petencies (e.g., mobility, footwork, dynamic vision, etc.) and nodes

that represent observable metrics (e.g., number of successful serves,

return rate, game score). The performance of a tennis player on the

observable metrics is used to infer their latent competencies. New

training goals can then be set using these estimated competencies.

This technique is effective in human educational contexts, and we

hypothesize that a similar approach could be applied to assist in

designing a curriculum to improve learning in robotic agents.

2.2 Bayesian Networks (BNs)
Bayesian Networks (BNs) [30] are a type of graphical model that

provide an efficient way to represent and reason about probabilistic

relationships among a set of random variables. A Bayesian Network

(𝑋, 𝐷,Φ) is defined by a set of variables 𝑋 , their corresponding do-

mains𝐷 , and a set of parent functions Φ that specify the conditional

probability distributions of each variable given its parents. When 𝐷

is discrete, these parent functions are typically specified in a tabular

format known as Conditional Probability Tables (CPTs).

It is common to use BNs to model relationships between latent

and observable variables. Once constructed, the network can be

used to infer latent values from observed values. New data can

be entered in the form of evidence values for observed variables

in a BN. The probabilities over other variables in the network are

calculated by conditioning on this observed evidence, i.e., as a con-

ditional probability: 𝑃 (𝑋1 |𝑋2, ..., 𝑋𝑁 ). We will employ a standard

bucket elimination algorithm (aka variable elimination) [8, 9] to

perform inference. In this paper, the observable variables of the BN

relate to the environment of an agent and a target performance it

is attempting to achieve; both are modeled as a task in an MDP

problem and defined in §2.3. The unobservable variables will relate

to a set of latent competencies that we define in §3.1.

2.3 Curriculum Learning
We adapt the notation of Narvekar et al. [25] to describe a task as the
interaction of an agent with its environment to meet some objective.

A task, formalized as an episodic Markov Decision Process (MDP),

is a tuple 𝑀 = (S,A, 𝑝, 𝑟 ), where S is the set of states, A is the

set of actions, 𝑝 (𝑠′ |𝑠, 𝑎) gives the probability of being in state 𝑠′

after taking action 𝑎 in state 𝑠 , and 𝑟 (𝑠, 𝑎, 𝑠′) is the reward function

of transitioning to 𝑠′ after taking action 𝑎 in 𝑠 . A solution to𝑀 is

a policy 𝜋 that maximizes the cumulative sum of rewards for an

episode of length T, i.e.,

∑𝑇
𝑡=1 𝑅𝑡 .

Let T be a set of all tasks an agent could complete in𝑀 , where a

task𝑚𝑖 ∈ T is a task-specificMDP𝑚𝑖 = (S𝑖 ,A𝑖 , 𝑝𝑖 , 𝑟𝑖 ). For all tasks
inT , letDT be the set of all possible transition samples fromT (see

Narvekar et al. [25] for a complete definition). In their formalism, a

Curriculum 𝐶 = (V, E, 𝜃,T) is a directed acyclic graph, whereV
is the set of vertices, E ⊆ {(𝑥,𝑦) | (𝑥,𝑦) ∈ V ×V ∧ 𝑥 ≠ 𝑦} is a set
of directed edges, 𝜃 : V → P(DT ) is a function that associates

samples within each vertex, and P(DT ) is the powerset of DT .
In this paper, we develop what Narvekar et al. [25] call a task-

level curriculum, where each vertex 𝑣 ∈ V is associated with

samples from a single task in T . That is, the mapping function for

task𝑚𝑖 is 𝜃 : V → {DT
𝑖
|𝑚𝑖 ∈ T }. For convenience, we will refer

to a task’s available samples at vertex 𝑣 as𝑚𝜃
𝑖
. In other words, a

task descriptor 𝜃𝑖 is used to construct task𝑚𝑖 , and a curriculum is

a sequence of tasks𝑚1,𝑚2, ...,𝑚𝑡𝑎𝑟𝑔𝑒𝑡 up to some target task.

Before we describe howwe construct this function using task fea-

tures, we point out some deviations from the model just described.

The curriculum being a DAG is a very strong assumption and is

not true of the SEBN-guided curriculum. While the episodic MDP

model of Narvekar et al. provides a more comprehensible model of

curriculum learning, the RL algorithms of this paper actually learn

with a discount factor 𝛾 , and one could argue that the Partially

Observable MDP might be more appropriate. Both changes would

be extensions to the simplified MDP model presented here.

2.4 Task Descriptors (Env’t+Target Features)
Wewill use task features to define 𝜃 for a task𝑚𝜃

𝑖
. This is a common

approach to quantify potential transfer between two tasks (e.g.,

[16, 18, 26, 31]). The notion is that two tasks that share similar

features will exhibit better transfer. We adopt a task descriptor

similar to Rostami et al. [31] and Narvekar et al. [26].

Specifically, we parameterize 𝜃 with a vector that consists of set

of environment-specific features 𝐸 and a set of one or more perfor-

mance targets 𝐾 . Thus, 𝜃 ((Z0) |𝐸 | (Z0) |𝐾 | ) will indicate the specific
task𝑚𝜃

𝑖
. We will often omit the task descriptor for clarity and just

reference𝑚𝑖 . Note that the task descriptor is underspecified with

respect to the environment, so one configuration of 𝜃 represents a

class of different environments an agent can encounter.

Example Task Descriptors using Bipedal Walker. The Bipedal

Walker (BPW) benchmark [38] involves two-legged agent mov-

ing through terrain in a 2D environment. Figure 1 shows some

example terrains. The top portion Figure 2 shows 𝐸 and 𝐾 for

the bipedal walker. Here, 𝐸 consists of five features that control

the difficulty of the environment, and there is a single target of

moving to the right by at least 30 steps (The dashed latent com-

petencies are defined in §3.1). The task descriptor for this BPW

is 𝜃 (pit-gap, stump-height, stair-width, stair-steps, roughness, moved>30). A task𝑚𝜃
𝑖
for

BPW involves a particular setting of the parameters for 𝜃 . ■

2.5 Extending Targets to Include Options
One could imagine a richer set of targets in 𝐾 , even ones that

are hierarchically organized as a decomposition of subtasks. The

options framework [35, 36] is a common model for such situations.

Briefly, a subtask 𝑗 for task𝑚𝑖 is an option 𝑜 𝑗 = (S𝑗 , 𝜋 𝑗 ,TERM𝑗 ),
where S𝑗 ⊆ S𝑖 are the starting states of the option, 𝜋 𝑗 is used to



(P3 S0 N0 W0 R0) (P0 S0 N3 W3 R0)

(P0 S1 N0 W0 R0) (P0 S0 N0 W0 R4)

Figure 1: Challenge environments for BipedalWalker with
corresponding descriptors (P:pit gap, S:stump height, W:stair
width, N:stair steps, and R:ground roughness).

Figure 2: The SEBN for the Bipedal Walker environment.

take action while the option is enabled, and TERM𝑗 : S𝑖 → {0, 1}
is a function that indicates the option has terminated.

For a specific task𝑚𝑖 , a subtask𝑚
𝑗
𝑖
= (S𝑗 ,A𝑖 , 𝑝𝑖 , 𝑟 𝑗 ) indicates

that an option has a specific context: it works over a set of states

S𝑗 that are a subset of the tasks states S𝑖 , it uses a specific reward
independent of the task reward, and it has the same actions and

transitions as the original task𝑚𝑖 . Each option 𝑗 is enabled as part

of the feature parameters for 𝜃 (i.e., (Z0) |𝐾 | )).

Example Task Descriptors using DoorKey. Suppose we want an
agent to learn to navigate in a gridworld environment to a goal

while opening locked doors. Fig. 3 shows several possible environ-

ments for this agent and their corresponding environment feature

vector. In the easiest environment (top left), the agent (the white

arrow) starts very near the goal (“A”) in an empty grid. Adding

additional obstacles such as a wall, shown as chess rooks, or a

locked door, shown as a lock, with a key to unlock it, adjusts the

environmental features accordingly. The first three components

of the task descriptor 𝜃 indicate whether the distance (D) of agent

starts near (within 2 squares) of any point of interest (key or goal),

the presence of a wall (W), and the presence of a locked door (L).

DoorKey also enables the use of options. The top right part of

Figure 4 shows a network of targets 𝐾 for this problem, correspond-

ing to ordered subtasks. This problem has three options (at(goal),

opened(door), and has(key)), each with its own reward. A distinct

policy is learned for each of these options. The last three compo-

nents of 𝜃 indicate which of these three subgoals are enabled for a

task: getting a key (K), opening a door (O), or being at (A) a cell. ■

3 BAYESIAN CURRICULUM LEARNING
The key idea in this section is to use a BN to estimate performance

on 𝐾 over the environmental features from 𝐸 plus a set of estimated

(D0 W0 L0 K0 O0 A1) (D1 W1 L0 K0 O0 A1) (D1 W0 L1 K0 O0 A1) (D0 W1 L1 K1 O1 A1)

Figure 3: Example environments for DoorKey with corre-
sponding environment features (D:distance,W:wall, L:locked
door) and target features (K:key, O:opened, A:at).

Figure 4: The SEBN for the DoorKey environment.

proficiency Ψ on latent competencies, which are hidden or unob-

served. Before we formally define the SEBN, we describe extend

the DoorKey example to discuss this process.

Example of Latent Competencies using DoorKey. Suppose we have
collected the agent’s past performance on different environments

in 𝐸. For example, say we ran our agent on the empty-grid (D0 W0

L0), wall-only (D1W1 L0), and door-only (D1W0 L1) environments

and recorded that the agent was successful on the empty-grid and

door-only environments but not the wall-only environment. This

failure might be due to the agent not yet knowing how to navigate

around walls. We can think of this ability as a latent "avoid wall"

competency that an agent needs to have mastered to solve tasks

that require it. Furthermore, using the notion that there is this latent

competency, we can easily predict that the agent will fail on the

wall-and-door (D0 W1 L1) environment without having any data

of the agent’s performance on that specific type of environment. ■
The bottom row of Fig. 4 shows a set of latent competencies Ψ.

In this example, we chose four latent competencies: (move, pick up,

avoid wall, open) that we expect the agent to need to master to suc-

cessfully solve different tasks. These latent variables are provided

by an expert, similar to Abel et al. [1].

We can use the SEBN to predict two important quantities. First,

when faced with a new, possibly unseen, task𝑚𝑖 ∈ T , we need to

estimate the proficiency of each competency in Ψ. This is important

because competencies will advance at different rates and some tasks

will require more proficiency than others for specific competencies.

Second, when faced with a new, possibly unseen, task, we need

to be able to predict performance on 𝑘 𝑗 ∈ 𝐾 given the current

estimates of competency level from the first step. This is important

because it can be used to select from a set of candidate tasks for

training in the next iteration of a curriculum.

Returning to Fig. 4, suppose a new task is defined over E and 𝐾 .

The proficiency estimate(s) can be calculated using the links to the



bottom row. Once these estimates are provided back to the network,

the expected reward can be calculated in the target layer 𝐾 .

3.1 Competencies (Latent or Explicit)
As with the "avoid wall" latent competency for DoorKey, we pro-

pose that there is some shared latent set of competencies of which

mastery over can predict an agent’s success rate on different met-

rics in different environments. More concretely, let 𝜅𝑖 ∈ 𝐾 be a set

of observable metrics, which can be any measurable target (e.g.,

a standard reward function, a shaped or partitioned reward func-

tion, or the completion an option). For example, we can define a

binary variable that is 1 if an agent received a reward of more than

a threshold value, and 0 otherwise.

Drawing inspiration from ECD, we propose that there exists a set

of latent competencies Ψ that are not directly observable but can be

inferred from the observed metrics. These competencies are such

that the probability of success on a given observable metric 𝜅𝑖 of

an agent on a specific task𝑚𝑖 is dependent on sufficient mastery of

the corresponding latent competencies. This relationship allows us

estimate the impact of competencies on unseen tasks. A BN allows

us to model this relationship, estimate competency levels from data,

and subsequently estimate success rates on different environments.

Explicit competencies can be derived from techniques that de-

compose a task into subtasks. For example, in hierarchical planning,

a method decomposes an abstract task [11, 12]. A set of such meth-

ods could be used to construct the competencies. For example, Patra

et al. [28, 29] have used hierarchical goal networks to decompose

tasks and train RL policies. They call the resulting policies goal

skills. For the SEBN defined in Fig. 4, all four of the competencies

in Ψ could be defined as an explicit goal network. For this SEBN,

the dependencies in the network are exactly the same as a corre-

sponding hierarchical goal skill network. Consequently, we could

take any problem with a heirarchical goal skill network, define

environment-conditioned dependencies, and convert it to a SEBN.

The flexibility of letting competencies be latent or explicit allows

us to model environments where intermediate decompositions may

not be well-defined. In the absence of an easy way to check if an

agent satisfies a goal for a given goal-skill, then it can be set to be a

latent competency in the SEBN.

3.2 Skill Environment Bayesian Network
We can now define a Skill Environment Bayesian Network (SEBN)

for estimating the competency level of an agent and modeling the

relationship between agent competency levels, env features, and

observable goals/metrics. The SEBN is a tuple {𝑋, 𝐷,Φ}, where the
variable set 𝑋 = 𝐸 ∪ 𝐾 ∪ Ψ is split into three sets of variables:

Environment Variables. 𝐸 is a set of variables that represent

the features of an environment descriptor. Each variable in this

set corresponds to a specific feature of the environment; thus the

domain of a given variable is the set of possible values the corre-

sponding environment feature can take. In the DoorKey example,

𝐸 consists of features for wall, door, and distance.

Target Variables. 𝐾 is set of variables that directly correspond

one or more targets. If there is a single policy, then 𝐾 will have

a single node, as in Figure 2. But if there are options available to

the agent, then each 𝜅 𝑗 ∈ 𝐾 corresponds to the option for task𝑚
𝑗
𝑖

(cf. §2.5). These variables then provide estimates of the value of

executing that option in the current environment. For the purposes

of this paper, that estimate is thresholded such that each variable

returns a boolean value corresponding to whether its estimate

meets a performance threshold, which roughly corresponds to an

estimate of whether the option will succeed or fail.

Competency Variables. Ψ contains the set of variables that

represent the competency levels of an agent. Each variable in this

set denotes the level of proficiency an agent has in a particular

competency and takes values in a range from {0, 1, ..., 𝑁 } where
𝑁 is the highest proficiency level for a given competency. For this

paper, we will define competency with two or three levels of pro-

ficiency. Competency levels are roughly ordered, as provided in a

set of requirement specifications, by a human expert. The rationale

for writing these specifications is to convey whether a given en-

vironment requires sufficient proficiency in several competencies.

Specifications follow roughly ordered values of competency (e.g. a

higher “move” competency should enable harder tasks). The com-

petencies can be latent (e.g., capturing whether an agent avoids

obstacles while moving) or explicitly learnable (cf. §3.1).

The parent functionsΦ provide the distribution of possible values

of each variable conditioned on their parent variables. To construct

these parent functions, we specify a list of competency requirements

that is procedurally used to construct the corresponding CPTs. We

provide specific detail about this process in §3.3.

Once constructed, we can use the SEBN to estimate an agent’s

competency levels and determine what environments or compe-

tencies the agent should focus on learning next. To do this, we

must estimate two quantities for a task 𝑚𝑖 ∈ T : Competency
Level: 𝑃 (Ψ = 𝜓 |𝜅𝑖 = 𝑟,T = 𝑚𝑖 ) - the probability that an agent

has a competency level of 𝜓 , given its prior performance of at

least reward 𝑟 on target 𝜅𝑖 for task 𝑚𝑖 . Expected task reward:
𝑃 (𝜅𝑖 = 𝑟 |T =𝑚𝑖 ,Ψ = 𝜓 ) - the probability that an agent can achieve

a reward of at least 𝑟 for target 𝜅𝑖 conditioned on task𝑚𝑖 with a

given competency level𝜓 .

We will estimate the competency levels using past rollouts. We

will then apply the estimates of competency levels to estimate the

expected task reward over a collection of candidate environments

𝑚𝑖 ∈ T . These estimated probabilities will be used to determine

which environments the agent should train on next.

3.3 Defining variable distributions
To complete our network definition, we need to define the distribu-

tions of each variable in the network. The distribution of variables

in Ψ and 𝐾 are defined using a hierarchical structure. We start by

defining the leaves of this structure which are located in Ψ.

Defining Ψ. Consider the "move" competency𝑚𝑜𝑣𝑒 ∈ Ψ in the

gridworld navigation environment. In Fig. 4, we define 𝑚𝑜𝑣𝑒 as

having three levels of proficiency {0, 1, 2}, associated with a corre-

sponding parameter set 𝜙𝑚𝑜𝑣𝑒 = {0.8, 0.2, 0.0} such that the prob-

ability of the "move" at competency level 𝑗 is given by: 𝑃 (𝑚𝑜𝑣𝑒 =
𝑗) = 𝜙𝑚𝑜𝑣𝑒 ( 𝑗). In this case, the parameters denote that currently

the agent has a𝑚𝑜𝑣𝑒 competency of 80% probability for no mastery

and a 20% probability of having level one mastery.

More generally, Ψ can have a hierarchical structure and there

can be latent competencies within Ψ that depend on other latent



competencies. To allow for these hierarchies in Ψ, we define 𝐵 to

be a subset of Ψ which represents a base set of competencies (the

leaves). The distribution of these base competencies is determined

by a set of associated parameters 𝜙𝐵 .

Defining 𝐾 . The variables in 𝐾 represent the success of an agent

on a given target. In an SEBN, we seek to model the relationship

where the success probability of an agent on a variable 𝜅𝑖 ∈ 𝐾 is

dependent on three types of parent variables: (1) the environment

features 𝑒𝑖 ∈ 𝐸 relevant to 𝜅𝑖 (2) the agent’s current competency

levels𝜓𝑖 ∈ Ψ (3) other targets 𝜅′
𝑖
∈ 𝐾 This means that variables in

𝐾 depend on other variables in Ψ and 𝐾 as well as a set of variables

in 𝐸. The success of a task depends on the agent’s mastery of the

competencies required for a given environment configuration and

an independent failure rate 𝜆. A task succeeds with a rate of (1−𝜆),
if all sub-requirements in 𝐾 and Ψ are satisfied.

More concretely, for each relevant environment configuration 𝑒𝑖
in relation to a goal variable 𝜅𝑖 ∈ 𝐾 , we define a set of competency

level requirements 𝑅𝜅𝑖 that an agent must master to successfully

complete the task of 𝑘𝑖 on the environment 𝑒𝑖 . For example, in Fig. 4,

haskey depends on the distance environment feature and the latent

𝑚𝑜𝑣𝑒 and 𝑝𝑖𝑐𝑘𝑢𝑝 competencies. Suppose we define the following

competency level requirements for the haskey node:

haskey: (distance=0 | move=1, pick up = 1)

haskey: (distance=1 | move=2, pick up = 1)

These state that if the key is close (distance=0), the agent needs a

level of proficiency of 1 in the move and pick up competencies to

successfully get the key. However, if the key is far (distance=1), the

agent needs a higher level of proficiency in the move competency

(move=2). The agent should have a high chance of success if it meets

all necessary requirements and a high chance of failure otherwise.

We directly translate these requirements into entries in the cor-

responding CPTs in the following way. For the first competency

level (distance=0), we have that:

𝑃 (ℎ𝑎𝑠𝑘𝑒𝑦 = 1 |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0,𝑚𝑜𝑣𝑒 = 0, 𝑝𝑖𝑐𝑘𝑢𝑝 = 0) = 𝜆
𝑃 (ℎ𝑎𝑠𝑘𝑒𝑦 = 1 |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0,𝑚𝑜𝑣𝑒 = 0, 𝑝𝑖𝑐𝑘𝑢𝑝 = 1) = 𝜆
𝑃 (ℎ𝑎𝑠𝑘𝑒𝑦 = 1 |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0,𝑚𝑜𝑣𝑒 = 1, 𝑝𝑖𝑐𝑘𝑢𝑝 = 0) = 𝜆
𝑃 (ℎ𝑎𝑠𝑘𝑒𝑦 = 1 |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0,𝑚𝑜𝑣𝑒 >= 1, 𝑝𝑖𝑐𝑘𝑢𝑝 >= 1) = (1 − 𝜆)

For the next competency level (distance=1), we have that:

𝑃 (ℎ𝑎𝑠𝑘𝑒𝑦 = 1 |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1,𝑚𝑜𝑣𝑒 = 0, 𝑝𝑖𝑐𝑘𝑢𝑝 = 0) = 𝜆
𝑃 (ℎ𝑎𝑠𝑘𝑒𝑦 = 1 |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1,𝑚𝑜𝑣𝑒 = 0, 𝑝𝑖𝑐𝑘𝑢𝑝 = 1) = 𝜆
𝑃 (ℎ𝑎𝑠𝑘𝑒𝑦 = 1 |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1,𝑚𝑜𝑣𝑒 = 1, 𝑝𝑖𝑐𝑘𝑢𝑝 = 0) = 𝜆
𝑃 (ℎ𝑎𝑠𝑘𝑒𝑦 = 1 |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1,𝑚𝑜𝑣𝑒 = 1, 𝑝𝑖𝑐𝑘𝑢𝑝 = 1) = 𝜆
𝑃 (ℎ𝑎𝑠𝑘𝑒𝑦 = 1 |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1,𝑚𝑜𝑣𝑒 >= 2, 𝑝𝑖𝑐𝑘𝑢𝑝 >= 1) = (1 − 𝜆)

These state that the agent has a success rate of (1−𝜆) for a given goal
for an environment setting if it satisfies all necessary requirements

and a success rate of 𝜆 if there is one or more requirement missing.

For the environment features set𝐸, the distribution of variables in

this set is fully controlled for the purpose of curriculum generation.

Therefore, the data (samples obtained from rollouts) can be used as

the distribution for variables in 𝐸.

3.4 Curriculum through Inference
The general algorithm to generate an SEBN-guided automated cur-

riculum is as follows. First we define a generation of the algorithm

as 𝐿 rollouts. Let T be the set of possible tasks and 𝑃T (𝑚𝑖 )𝑡 be the
probability that task𝑚𝑖 = (𝑒𝑖 , 𝜅𝑖 ) is chosen in the current genera-

tion 𝑡 . We first initialize 𝑃T (𝑚𝑖 )0 to some initial task distribution.

This initial weighting can be biased towards easier tasks or can be

set to a uniform distribution for better initial competency estima-

tion. Let Φ𝐵 = {..., 𝜙𝐵𝑖 , ...} be the set of parameters associated with

the base competencies 𝐵 in the SEBN. For each generation, we take

the following steps:

(1) Sample 𝐿 rollouts (𝑚𝑖 = (𝑒𝑖 , 𝜅𝑖 ) ∼ 𝑃T , 𝑜𝑖 ). For each rollout,

we record a set of observable metrics 𝜅𝑖 .

(2) Solve the MLE problem:

Φ∗𝐵 = argmax

Φ𝐵

∏
𝐿

𝑃 (𝐸 = 𝑒𝑖 , 𝐾 = 𝜅𝑖 ) (1)

for Φ∗
𝐵
, the values of the parameters for the base competen-

cies, which is an estimate of agent proficiency level in those

competencies.

(3) Update the task distribution for the next generation: 𝑃T (𝑚𝑖 ) =
𝐹 (𝑃Φ∗

𝐵
(𝜅𝑖 |𝑚𝑖 )) where 𝐹 is some function that maps the esti-

mated success rate of an environment 𝑃Φ∗
𝐵
(𝜅𝑖 |𝑚𝑖 ) to a prob-

ability distribution.

For our work, we define 𝐹 using the following fitness function:

𝐹 (𝑚𝑖 )𝑡 = (𝑃Φ∗
𝐵
(𝜅𝑖 |𝑚𝑖 )𝑡 − 𝑃Φ∗

𝐵
(𝜅𝑖 |𝑚𝑖 )𝑡−1)2

𝑃T (𝑚𝑖 )𝑡+1 = 0.5 · 𝐹 (𝑚𝑖 )∑
𝑚𝑖
𝐹 (𝑚𝑖 )

+ 0.5 · 𝑃T (𝑚𝑖 )𝑡 . (2)

In [33], it was proposed that curricula should focus on problems

where the agent improves the most or has the most expected im-
provement in competence. To simulate this in our approach, we

choose a fitness function where the fitness of the environment is a

function of the difference between the current estimated success

rate and the estimated success rate on the last generation’s SEBN.

We also add a smoothing factor to improve learning stability.

Note that our curriculum is agnostic to the choice of learning

algorithm and policy which can be assumed to be black boxes.

The curriculum only requires observations of rollouts and not the

internal reward structure of a given policy.

Algorithm 1: SEBN-guided Automated Curriculum

Input: Initial tasks 𝑃T0 , Generation size 𝐿, SEBN (𝑋, 𝐷,Φ)
Initialize: Initialize policy 𝜋
while not converged do

Sample L environments𝑚𝑖 = (𝑒𝑖 , 𝜅𝑖 ) ∼ 𝑃T0
for 𝑖 = 1→ 𝐿 do

Collect rollout data (𝑚𝑖 , 𝜅𝑖 ) while training policy 𝜋
Solve the MLE problem (Equation 1) for estimated competency

level Φ∗
𝐵
on SEBN (𝑋,𝐷,Φ)

For candidate environments, estimate agent success rate

𝑃Φ∗
𝐵
(𝜅𝑖 |𝑚𝑖 ) using SEBN with Φ updated with Φ∗

𝐵

For each candidate environment𝑚𝑖 , update 𝑃T (𝑚𝑖 )𝑡+1 using
expected improvement weighting of 𝑃Φ∗

𝐵
(𝜅𝑖 |𝑚𝑖 ) (Equation 2)

3.5 Candidate Selection
On a domain such as Megagrid, we can evaluate 𝑃Φ∗

𝐵
(𝜅𝑖 |𝑚𝑖 ) for

every combination of environmental features. However, calculating

𝑃Φ∗
𝐵
(𝜅𝑖 |𝑚𝑖 ) for all possible environments in BipedalWalker took

too much time at the end of each rollout generation. In general,

for domains with a large amount of environmental features, it is

impractical to evaluate 𝑃Φ∗
𝐵
(𝜅𝑖 |𝑚𝑖 ) for every single task𝑚𝑖 ∈ T .



One way to solve this computational problem is to search in the

space of possible environment configurations and only update the

distribution of the most promising environments. For our search

procedure, we adapt a greedy sample-search procedure based on KL-

Search from [14]. This algorithm employs a heuristic search along

variables in a Bayesian network to minimize a KL distance heuristic

between two networks. By modifying algorithm to instead search

for nodes with maximum differences between the current genera-

tion’s SEBN and the next generation’s SEBN updated with Φ∗
𝐵
, we

can find environments where the estimated success rate changes

the most. This modification produces a tree search algorithm that

selects nodes in the OR-tree corresponding to a given SEBN where

the difference (𝑃Φ∗𝑠𝑖 (𝜅𝑖 |𝑚𝑖 )𝑡 − 𝑃Φ∗𝑠𝑖 (𝜅𝑖 |𝑚𝑖 )𝑡−1) is greatest.
Given a partial configuration 𝑋 , we use the following heuristic:

ℎ(𝑋1=0) = | log(𝑃𝑡−1 (𝑋 )) − log(𝑃𝑡 (𝑋 )) | · 𝑃𝑡 (𝑋 ) (3)

where 𝑃𝑡 (𝑋1=0) = 𝑃Φ∗𝑠𝑖
(𝜅𝑖 |𝑋1)𝑡 . We use Weighted Mini-bucket

Elimination [22] with an ibound of 20 to estimate SEBN probabilities

when exact inference is too computationally expensive. Once we

select 𝑁 = 20 nodes on the OR-tree using this method, we perform

the same calculations from Eq. 2 over the 20 selected environment

configurations to define our curriculum for the next generation.

4 EXPERIMENTAL EVALUATION
To demonstrate the effect of our proposed curriculum learning ap-

proach, we evaluate the SEBN curriculum on three environments.

DoorKey: A MiniGrid [7] inspired domain with explicit interme-

diate goal skills. In this domain, the agent must learn to navigate

through a grid-based environment to reach a goal location, while

also learning to achieve intermediate goals along the way. Bipedal-
WalkerHardcore: a simulated bipedal robot must learn to walk

forward as quickly as possible while maintaining balance. The

bipedal robot can encounter a variety of obstacles such as rough

terrain, stumps, pits and stairs that need robust policies. Robo-
suite: a robotic arm (Kinova Gen 3) must learn to open a door with

different weight and latch settings.

In each of these domains, we compare the performance of re-

inforcement learning agents trained with and without our pro-

posed SEBN-guided curriculum as well as two additional controls:

Uniform curriculum (or Domain Randomization [37]): all
environments have an equal probability of being selected. Anti-
curriculum: the probability difference in Eq. 2 is replaced with (1 -

difference) and we use a min priority queue for candidate selection

during the sample-search algorithm.

We evaluate the agents on their ability to learn effective policies

that can achieve high rewards in each domain, as well as their abil-

ity to generalize to new tasks and environments
1
. Our results show

that the SEBN-guided curriculum consistently improves the perfor-

mance of reinforcement learning agents across all three domains.

All runs are performed on an AMD EPYC 7H12 64 core CPU with

networks being handled on an A100 GPU.

DoorKey. We start with a gridworld environment named Mega-

grid inspired by MiniGrid [7]; we reimplemented this standard grid-

world environment to enable easier generation of environments

1
Supplemental figures can be found at https://arxiv.org/abs/2502.15662

Figure 5: Result of employing a SEBN-guided automated cur-
riculum on the DoorKey environment.

using the task descriptor
2
. We evaluate on the simple DoorKey

environment to evaluate the effectiveness of our curriculum learn-

ing approach when combined with explicit goal-skills. We use the

SEBN shown in Fig. 4 which has the following variables:

𝐸: includes a wall feature {0, 1}, door feature {0, 1}, and a dis-

tance feature {0, 1}. A selection of the different environments

that can be experience by an agent can seen in Fig. 3.

Ψ: includes "move to" {0, 1, 2}, "pick up" {0, 1}, "avoid wall"

{0, 1}, "drop" {0, 1}, and "open door" {0, 1}.
𝐾 : includes three options: "at(goal)" {0, 1}, "opened(door)" {0, 1},

and "has(key)" {0, 1} each trained with a PPO policy.

Observations of the environment are provided as partially observed

cardinal direction data, following the sensor convention for the

Lightworld domain in [18]. We assume that the agent has four

cardinal sensors for each item. For example, in the rightmost en-

vironment of Fig. 3, the agent would receive the observation that

there is a key one step above it, a wall one step below it, and the

goal 4 steps below it (0.875 key - up, 0.875 wall - down, 0.5 goal

- down). An agent gets a reward of 1 if it reaches the goal square

or completes any intermediate goals required (e.g. picking up a

key or opening a door). There is no step penalty but the episode is

automatically terminated if no progress has been made in 50 steps.

We train the policies using an Actor-Critic architecture [34]

trained using Proximal Policy Optimization (PPO) [32]. The policy

and value networks each have four hidden layers which are used

to calculate their corresponding outputs.

The evaluation curve of our policies can be seen in Fig. 5. This

evaluation is performed on the hardest environment (rightmost en-

vironment in Fig. 3). Because this environment is relatively simple,

it is easy for policies learned without a curriculum to achieve a

high success rate. However, there is a noticeable jumpstart where

the SEBN-guided curriculum provides a gain in learning efficiency.

We performed a generalization experiment where the learned

policies are transferred to an evaluation on an unseen and much

larger 32 x 32 grid environment. The policies learned using the

SEBN-guided curriculum are more robust to this change in grid

size succeeded at an average rate of 93 percent compared to only

82 percent without a curriculum.

2
Please send an email to Mark Roberts to request the Megagrid code



Figure 6: SEBN-guided automated curriculum on Bipedal-
Walker. Evaluation environments are randomly generated
within a given environment feature set.

BipedalWalker Hardcore. For the next domain, we evaluate our

SEBN-guided curriculum on BipedalWalker (BPW), a continuous

control environment. We employ a modified version of the Bipedal-

WalkerHardcore environment by Parker-Holder et al. [27] to suit a

limited computational budget. We define the following SEBN:

𝐸: includes five design parameters: ground roughness {0−7}, pit
gap {0−3}, stump height {0−2}, stair width {0−3}, and stair
steps {0−3}. Since there are toomany different environments

to perform exact inference, it is necessary to use a sample-

search procedure to select candidate environments.

Ψ: includes "move", "climb", "jump", "balance", "descend". All

with proficiency levels {0, 1, 2}.
𝐾 : includes one observable metric {0, 1}: whether the agent has

traveled a distance of 30 units (≈1/3rd of the level).

The observation of the agent consists of internal sensor measure-

ments such as (hull angle speed, angular velocity, horizontal ve-

locity, etc..) an a set of 10 lidar rangefinder measurements. On this

environment, the robotic walker gets a dense positive reward for

traveling forward on the terrain, a small negative reward for us-

ing its motors, and a negative reward of -100 if it falls down. On

environments that are too challenging for the agent at its current

capabilities, this reward structure can promote a locally optimal

behavior of simply staying still and preventing itself from falling.

To learn our policies, we use the TD3-Fork algorithm from Hong-

hao et al. [39], which was shown to train much faster than standard

PPO on BPW. We train agents for 3.5 million timesteps. During

training we evaluate against four specific challenges (Stairs, PitGap,

Stump, and Roughness in Fig. 1) as well as a combined environ-

ment (Evaluation) that contains all challenges together.We compare

against a policy trained on only the combined environment.

The results of the evaluation on the combined environment

can be seen in Fig. 6. Since we do not train for a large number of

environment timesteps, we can observe that without a curriculum,

TD3-Fork does not manage to learn to the point of a positive reward

on any of the test environments.

There is a significant reward divergence in the results starting at

1 million timesteps. The uniform and anti curriculum perform better

than having no curriculum with the uniform curriculum perform

marginally better than the anti-curriculum. It can be seen on each

Figure 7: SEBN-guided automated curriculum on the Robo-
suite Door environment. 15 policies are learned for each line
and evaluated on the hardest (mass=6, latch=1) environment.

graph that the policies trained using the SEBN-guided curriculum

manages to get to a point where the agent starts receiving a positive

reward for each environment, getting past the initial hurdle of the

locally optimal staying still behavior.

It is interesting to observe that the learning curve for the SEBN-

guided curriculum has much higher variance than the learning

curves for other methods. Due to the size of the environment design

space, it is necessary to use approximate inference techniques to

search for candidate environments. Because we use a sample-search

procedure, the search process is not guaranteed to find environ-

ments with the largest heuristic difference (see Eq. 3). This means

that sub-optimal environments can be introduced into the curricu-

lum. This introduces a large factor into learning curve variance

beyond standard noise from reinforcement learning algorithms.

Robosuite - Open Door. In our final domain, we evaluate the

SEBN-guided curriculum in a simulated robotics domain using the

robosuite simulation environment. In particular we choose the Door

task in which an agent needs to manipulate a robot to open a door.

For our environment design space, we include twomain parameters:

the weight of the door (with 6 different settings) and whether the

door has a latch or not. The specific robot that we choose to simulate

is a Kinova3 arm. We define the following SEBN:

𝐸: includes design parameters mass {0 − 6} and latch {0, 1}.
Ψ: includes "move arm" {0, 1}, "unlock" {0, 1}, "door" {0, 1, 2}.
𝐾 : includes one observable metric {0, 1}: whether the agent has

successfully opened the door.

To learn our policies, we use PPO on a neural network with two

hidden layers. We use the inbuilt observation setup and reward

shaping in the robosuite environment to accelerate the learning

process and we train our agents for 2 million timesteps. We evaluate

our learned policies every 100,000 timesteps and the results of the

experiment can be seen in Fig. 7.

It is interesting to observe that the default training method stag-

nates after reaching a reward plateau. When viewing the actual

behavior of the learned policy, this reward plateau is indicative of

learning a policy of moving the arm towards the door handle but

not actually moving the door. It is possible that either the weight of

the door or the presence of a latch in harder environments prevents

the agent from attempting the difficult action of applying force to



the door to get an increased reward. Since the SEBN-guided cur-

riculum will have started with at least some of its distribution in the

easy case of a light door with no latch, the agent will have learned

that opening the door can give a positive reward and transfer this

behavior to more difficult environments.

We also performed a generalization study, where we test our

learned policies on an unseen heavy door env not included during

our learning process. We observed that with the policy learned by

the SEBN-guided curriculum is easily transferred to more heavy

doors (obtaining a reward of 240 on the heavy door env compared

to 150 without a curriculum), in contrast to the other methods .

5 RELATEDWORK
Automated Curriculum Generation. Several topics relate to order-

ing tasks to improve learning performance. A few approaches have

considered the problem of estimating agent skill competencies. In

the context of education, in addition to ECD [23], another approach

close to ours is that of Green et al. [13], who used a BN to determine

the next task for the human student. This approach is similar to

[20], which considered an active learning problem in a robotics

domain of choosing which skills to practice to maximize future task

success, which involves estimating the competence of each skill

and situating it in the task distribution through competence-aware

planning. In contrast to our approach, they employ a simplified

Bayesian time series model that does not relate environmental fea-

tures with goal and skill competencies. This limits the applicability

of their approach towards only choosing what skill to train and not

the agent’s environment. Similar to our selection process, Ballera

et al. [4] used a roulette wheel selection of tasks.

A related area is the literature on Unsupervised Environment

Design (UED) [10] and other developed mechanisms for curating

environments based on a regret heuristic [17]. In prior UED ap-

proaches such as PAIRED [10], the agent’s curriculum is generated

using a regret-based heuristic. The heuristic is typically an estimate

of the true regret, since the optimal policy is unknown. In PAIRED,

this heuristic is calculated by learning an antagonistic policy and

evaluating the difference between it and the protagonist policy. In

contrast, like ACCEL [27], our method does not need to learn a

second antagonistic policy and instead uses rollouts from a single

agent to compute the next part of the curriculum. In contrast to

ACCEL, our curriculum does not rely on local changes and can

incorporate larger jumps in environment selection. Furthermore,

while it is necessary to use rollouts on each environment for ACCEL

to obtain a regret estimate, we can estimate success rates on unseen

environments by leveraging the relationships encoded between

competencies and environmental features in our SEBN.

Task Descriptors. As mentioned in §2.4, grouping tasks using

features, i.e., task descriptors, are a well understood technique

for task creation ([16, 18, 26, 31]). The key idea in these works is

to facilitate learning transfer by creating similar tasks that share

common features. These features can leave certain variables free

during task construction that enable a family of similar tasks. Our

work supplements prior work by adding the target of the task to

the task descriptor, allowing the curriculum to emphasize subtasks.

To our knowledge, there has been limited previous work in inte-

grating curriculum learning on both skills and environment features.

However, it can be said that our research expands on the concept

of using task descriptors in the creation of automated curricula. In

[29], a task-graph curricula is used to generate a curriculum over

tasks and environmental features. However, they employ a simple

greedy best-first search on the task-graph to choose an order for

their curriculum. This is different from our approach that updates

a distribution over the task-graph and dynamically adjusts this

distribution based on data from rollouts.

Hierarchical Goal Networks. The structure of our Skill Environ-
ment Bayesian network shares similarity to both goal skill networks

and fault diagnosis networks. In fault diagnosis networks [6], BNs

are used to model the relationship between a set of sensors and a

set of faults. In our case, the sensors are analogous to an SEBN’s

observable goal metrics, and the faults are analogous to an SEBN’s

skills. An SEBN can then be seen as a fault diagnosis network where

different roll-outs are independent tests that determine what latent

competencies may have not been mastered.

Expert guidance for RL training. One of the limitations of the

SEBN is its reliance on the expert-provided competencies. As noted,

these could be derived from hierarchical approaches. But providing

domain knowledge is common in many hierarchical RL settings.

Similar to our work, Patra et al. [28], provided a hierarchical learn-

ing structure. This kind of expert knowledge is common in imita-

tion learning (e.g., [40] [15] [21]), where an expert human guides a

learning agent. Providing expert guidance is also common in Hier-

archical RL approaches (e.g., [2]) and in standard RL approaches

(e.g., [3]). Finally, expert guidance was shown to be helpful for a

sparse-reward task in an Object Oriented MDP setting [1].

6 CONCLUSION AND FUTUREWORK
We presented a method for automated curriculum generation over

goal, skill, and environmental features using a Skill-Environment

Bayesian Network (SEBN). The SEBN was used to estimate agent

competency level using past rollouts and was used to infer estimated

agent success rates on unseen environments. We demonstrated the

effectiveness of SEBN-based curricula for three domains.

For this work, we relied on a pre-defined set of skills and envi-

ronmental features. Future work should apply the SEBN to more

open ended environments where new environmental features or

agent skills are dynamically added to the SEBN. Also, it might be

interesting to see if we can apply techniques such as GO-MTL [19]

for learning a latent space over tasks and approaches for detecting

critical regions [24] to learn new skills.

There has also been recent interest in the use of Large Language

Models (LLMs) in planning domains for the purpose of automat-

ically generating planning models. As SEBNs can be built from a

heirarchical goal network, it might might be possible to use LLMs to

automatically generate SEBNs from domain documents. Given the

support for latent competency nodes, it may be easier to generate

these SEBNs using LLMs than the equivalent goal networks.
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A REQUIREMENT SPECIFICATIONS
We provide the list of competency requirement specifications used

to construct the CPTs for each SEBN used in the paper.

DoorKey

goalreached : (distance=1| move=2)
goalreached : (wall=1 | move=1, avoid_wall=1)
goalreached : (exists_door=1 | haskey=1, move=1)
goalreached : (wall=1, exists_door=1 | dooropened=1,

avoid_wall=1, move=1)
dooropened : (exists_door=1 | haskey=1, move=1, open door=1)
haskey : (exists_door=1 |pick_up=1, move=1)
haskey : (distance=1 | move=2)

BipedalWalker

goalreached : (ground_roughness=0 | move=1)
goalreached : (ground_roughness=1 | move=1, balance=1)
goalreached : (pit_gap=1 | jump=1, balance=1, move=1)
goalreached : (pit_gap=2 | jump=2)
goalreached : (stump_height=1 | move=1, jump=1, descend=1)
goalreached : (stump_height=2 | jump=2, descend=2)
goalreached : (stair_width=1 | climb=1, descend=1)
goalreached : (ground_roughness=4 | move=2, balance=2)
goalreached : (stair_steps=2 | climb=1, descend=1)

Robosuite

goalreached : (mass=0 | move_arm=1, open_door=1)
goalreached : (lock=1 | unlock=1)
goalreached : (mass=3 | open_door=2)



Figure 8: Reward for learned policies fromFig. 7 on an unseen
large gridworld environment (size 32 x 32).

B APPROXIMATE INFERENCE ALGORITHM
For choosing candidate environments in SEBNs with a large envi-

ronment design space such as the BipedalWalker domain, we adapt

the KL-search algorithm from [14].

Algorithm 2: Candidate Selection for SEBN-guided Auto-

mated Curriculum

Input: An SEBN (𝑋, 𝐷,Φ)𝑡 , solution to (Equation 1) Φ∗
𝐵
, a

variable ordering 𝑜 over environment variables 𝐸 ∈ 𝑋
Parameters: Number of samples 𝐿

Output: 𝐿 candidate environments

𝑇 ← the OR-search tree on 𝐴 using ordering 𝑜 ;

𝑂𝑃𝐸𝑁 ← {< 𝑟𝑜𝑜𝑡 (𝑇 ), 0 >} // frontier nodes are

ordered by the second value

for 𝑖 = 1→ 𝐿 do
𝑣 ← 𝑂𝑃𝐸𝑁 .dequeue() // remove the node in OPEN

with highest priority value

for 𝑢 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑣) do
𝑃𝑡 (𝑢) ← 𝑃 (𝑢) on (𝑋, 𝐷,Φ)𝑡
𝑃𝑡+1 (𝑢) ← 𝑃 (𝑢) on (𝑋, 𝐷,Φ)𝑡 updated with Φ∗

𝐵
ℎ𝑘𝑙 (𝑢) ← | log(𝑃𝑡 (𝑢) − log(𝑃𝑡+1 (𝑢)) | · 𝑃𝑡+1 (𝑢)
Append < 𝑢,ℎ𝑘𝑙 (𝑢) > to 𝑂𝑃𝐸𝑁

Let 𝐶 be an empty list for 𝑣 ∈ 𝑂𝑃𝐸𝑁 do // nodes in

𝑂𝑃𝐸𝑁 are leaves
Forward sample 𝑒 , a full configuration of all

environment variables in 𝐸 conditioned on the partial

configuration represented by 𝑣

Append 𝑒 to 𝐶
Return 𝐶

C DOORKEY DETAILS
We provide an additional plot for policy transfer onto a large (32 x

32) gridworld environment in Fig. 8.

D BIPEDALWALKER DETAILS
We provide plots for each of the individual challenges (PitGap,

Stump, Stairs, and Roughness) in Fig. 9.

E ROBOSUITE DETAILS
An example of the task environment for the Robosuite Door en-

vironment can be seen in Fig. 10. In the example image, the latch

setting is turned on, requiring the robot to apply force to rotate

the handle before being able to open the door. We also provide an

additional graph for transferring policies to a heavy door environ-

ment with a mass setting of 12 (where the maximum setting in the

curriculum was 6).



Figure 9: SEBN-guided automated curriculum on the Bipedal-
Walker over 4 individual challenges (the four smaller plots).
Evaluation environments are randomly generated within a
given environment feature set.

Figure 10: Door task from Robosuite simulation environ-
ment.

Figure 11: Reward for learned policies from Fig. 7 on an
unseen heavy door environment with a mass setting of 12.
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