
Synthesizing Navigation Abstractions for
Planning with Portable Manipulation Skills

Eric Rosen∗ Steve James† Sergio Orozco∗ Vedant Gupta∗ Max Merlin∗

Stefanie Tellex∗ George Konidaris∗

Abstract: We address the problem of efficiently learning high-level abstrac-
tions for task-level robot planning. Existing approaches require large amounts
of data and fail to generalize learned abstractions to new environments. To ad-
dress this, we propose to exploit the independence between spatial and non-spatial
state variables in the preconditions of manipulation and navigation skills, mirror-
ing the manipulation-navigation split in robotics research. Given a collection of
portable manipulation abstractions (i.e., object-centric manipulation skills paired
with matching symbolic representations), we derive an algorithm to automatically
generate navigation abstractions that support mobile manipulation planning in a
novel environment. We apply our approach to simulated data in AI2Thor and on
real robot hardware with a coffee preparation task, efficiently generating plannable
representations for mobile manipulators in just a few minutes of robot time, sig-
nificantly outperforming state-of-the-art baselines.

Keywords: Learning Abstractions, Mobile Manipulation

1 Introduction

Planning for mobile manipulation is difficult because of its long-horizon nature. There are two ap-
proaches to addressing this difficulty: subtask decomposition and structural decomposition. The
former approach decomposes the problem into smaller subtasks (e.g: hierarchical planning [1, 2]),
and leverages abstractions in two forms: action abstractions, also called skills, which package mo-
tor behaviors into a single invokable action, and perceptual abstractions, typically represented as
grounded symbols, which compactly represent the relevant aspects of task state. Learned abstrac-
tions can address complex planning problems [3], but existing approaches are sample inefficient
because they do not exploit structure present in the robot and the world. The second approach—
structural decomposition—aims to design algorithms that do just that. Navigation stacks typically
focus on building maps and localizing a robot in a map [4, 5], and using those maps to navigate to a
goal via path planning [6]. Research in robotic manipulation structures the task of effectively inter-
acting with objects [7] into component algorithms such as object recognition [8], interactive percep-
tion [9], grasp synthesis [10], kinematic motion planning [11], and learning for manipulation [12].
This approach can produce algorithms that generate useful behavior while avoiding learning entirely.

We propose to combine these two complementary approaches by exploiting structural assumptions
to efficiently learn high-level abstractions. We begin by splitting abstractions to do with manipu-
lation from those to do with navigation. Manipulation abstractions are expensive to learn but are
typically object-centric and therefore portable, while navigation abstractions are not portable: how
the robot should abstract its map pose and navigate between locations depends on the specifics of a
single scene. Efficiently learning the navigation components of the abstraction, which must be re-
learned for each task, is thus critical. We therefore assume a given (pre-learned or hand-constructed)

∗Brown University
†University of the Witwatersrand

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.



(a) An Action-Oriented Semantic Map for a coffee
preparation task.

(b) Spot executing portable manipulation skills in
coffee preparation task. Given a new environment
with these objects, our approach efficiently con-
structs the navigation abstractions—both action
and state—to support planning using these skills.

Figure 1: An AOSM for a coffee preparation task. (a) The underlying semantic map consists of a
3D point cloud of the scene (black points) along with the detected pose and attributes of objects.
(b) Given a set of portable manipulation skills (start top left clockwise: pouring water, picking up a
cup, placing a cup, and pushing a brewing button), an AOSM also includes a distribution over poses
where the robot can execute each skill (visualized by colored areas in map (a)).

set of portable manipulation abstractions (both skills and symbols), and consider how to efficiently
generate the navigation abstractions that support planning with them in a novel environment.

Our key insight is that spatial and non-spatial state variables typically contribute independently to
whether a motor skill can be executed; and that under those conditions, a unique data structure—an
Action-Oriented Semantic Map (AOSM) [13] (Figure 1a), which encodes the spatial locations from
which manipulation skills can be executed—is necessary and sufficient to generate all the navigation
abstractions required to support manipulation planning. We provide an algorithm to autonomously
and efficiently construct an AOSM from a given set of manipulation skills using well-established
mapping and path planning algorithms; a robot can thereby complete its abstract representation
of a new task by constructing its navigation components in just a few minutes of robot time. We
evaluate our approach in both simulation (using AI2Thor [14]) and on real robot hardware (a Boston
Dynamics Spot). In simulation, our approach decreases the number of interactions required to learn
navigation abstractions by an order of magnitude compared to the state of the art, and enables the
robot to transfer learned symbols to new environments. On real robot hardware, our system generates
a representation of a coffee-making task for two different kitchen environments in a few minutes.

2 Background

We adopt the Markov Decision Process (MDP) formalism for modeling agent decision-making.
MDPs model the agent’s environment as a tuple (S,A, T,R, γ), where S is the set of states, A is the
set of low-level actions, T is a transition function describing the environment dynamics, T (s′|s, a),
R is the reward function that expresses real-valued rewards, R(s, a, s′) and γ ∈ [0, 1] is the discount
factor. A policy π(a|s) determines the probability of an action a being executed in state s. Solving
an MDP is equivalent to finding the policy that maximizes the sum of discounted future rewards:
Jπ(s) = E

[∑∞
i=0 γ

iR(si, ai, si+1)
]
.

Abstract Representations An abstract action set can reduce the problem diameter of solving an
MDP by leaving lower-level controllers to resolve repeated subtasks. The options framework [15]

2



is the most popular abstract action framework. An option o is a tuple with three components: an
option policy πo; an initiation set Io ⊆ S that identifies low-level states the option policy can be
executed from; and a termination condition βo(s) → [0, 1] that determines which states cease policy
execution.

An advantage of using abstract actions (or motor skills) is that they need not necessarily be functions
of the full problem state. For example, a motor skill for walking can just the robot’s local perception,
rather than an entire map. In such cases we model the option components as depending on some
observation space D obtained using sensor model ϕ(S) → D, and refer to the option as being
portable since it can be reused in several places in a task, and in new tasks [16, 17].

We are interested in learning an abstract representation that facilitates planning. A probabilistic plan
p is sequence of (potentially abstract) actions to execute from states sampled from a distribution
Z: pZ = {o1, ..., opn

}. A suitable representation for planning must enable the agent to correctly
evaluate the probability of a plan. Konidaris et al. [3] proved that it is necessary and sufficient
to learn when an option can be executed (known as the preconditions) and what the result of ex-
ecuting an option is (known as the image operator). Computing the image operator for arbitrary
options is challenging; however, it is tractable for a subclass of subgoal options [18]. A subgoal
option’s resulting state distribution after executing the policy is independent of the starting state, so
Pr(s

′ |o, s) = Pr(s
′ |o). Therefore, computing the entire image operator can be substituted with

representing the effect of executing the option (the distribution over states the agent will be in af-
ter executing the option), Effect(o). An option that only modifies a subset of state variables—its
factors– induces an abstract state space expressible using a classical planning representation like
PDDL [3]. In this formulation, preconditions and effects can be represented by propositional sym-
bols (which constitute an abstract state space), and actions are expressed as operators over those
symbols. With an object-centric state-space, the learned symbols can instead be predicates parame-
terized by object types [19].

A two stage approach is used to learn a portable symbolic vocabulary and generate a forward model
for a set of portable skills. First, symbols for the portable options are learned over the observation
space D in a training environment, then the portable options are partitioned in a test environment to
make them subgoal in both S and D. We defer the details of this process to James et al. [17, 20], and
note that we use a similar approach for constructing our portable symbolic vocabulary. However, this
formulation can take several hours and over a hundred skill executions to learn a representation for
a simple task [3, 21, 22]; our main contribution is defining and leveraging the spatial independence
property to make learning abstractions much more efficient.

Related Work Our work focuses on learning state abstractions that enable long-horizon task plan-
ning by leveraging manipulation skills and semantic maps, similar to Task and Motion Planning
(TAMP) frameworks. However, our work differs from TAMP based on the assumptions we make:
Rather than use motion planning to generate manipulation behaviors, we treat manipulation skills
as black-box skills that can be implemented with or without motion planning (e.g: learned motor
policies [23]), and only require a model of the environment to support path planning for locomotion,
which is readily accessible using off-the-shelf SLAM.

TAMP solutions integrate high-level task planning with low-level continuous motion planning to ex-
ploit a planning hierarchy where different specialized planning and learning algorithms can exploit
the structure present at each level [24] and across modes [25]. However, whereas standard TAMP
approaches assume access a given state abstraction is sound for a particular task [26, 24], we for-
malize an independence property between spatial and non-spatial state variables to more efficiently
learn a sufficient representation for planning with given manipulation skills. Most similar to our
work are TAMP approaches that leverage semantic maps for improving task and motion planning.
Galindo et al. [27] investigate how semantic maps can act as a hybrid knowledge base for TAMP in
the context of navigation. This work also uses a semantic map to improve task planning, but only
extracts additional information from a semantic map, whereas we identify a specific augmentation
to a semantic map that is provably sufficient for supporting manipulation planning. Our work is

3



also related to approaches that leverage Large Language Models (LLMs) for task planning. These
approaches [28, 29] generally assume the existence of a preprocessed map that enables navigation
to support manipulation. Our work here formalizes this data structure and lays the theoretical foun-
dations for how this specific data structure can not just be used in task planning with LLMs, but also
for learning symbols for task planning.

3 Exploiting Spatial Independence for Learning Abstractions

Problem Definition We are interested in the problem of a robot that must navigate an environment
and manipulate objects to achieve a goal. To this end, we represent the decision problem as an
MDP, and factor the state s ∈ S into the state of the robot Sr and the state of the environment Se:
S = Sr × Se. Furthermore, the state of the environment can be factored into a discrete set of q
objects (or entities) the robot may manipulate, SΩ = Ω1 × ... × Ωq , and a map of the environment
m ∈ M , Se = M×SΩ. This structured representation of the environment is often called a semantic
map [14]. Since the robot and all of the objects exist in a physical space, they each have a pose in
the map. Therefore, we factor the state of the robot Sr into some pose Sb in the map and any other
information describing the state of the robot S′

r: Sr = Sb×S′
r, and similarly for each object Ωi ∈ Ω:

Ωi = Ωb
i × Ω′

i. The task-specific semantic map defines a constraint function on the feasible poses
of the robot, and can be used in conjunction with a path planner N(sb, s

′
b) to generate trajectories

through the space of robot poses Sb from a start state sb to a set of goal states s′b (i.e: locomote the
robot around the scene).

Given the above setting, our problem is formalized follows. For a given set of portable manipulation
options O and a semantic map Se, we must take plans that consist only of manipulation actions
(called a manipulation-only plan pO = {o1, ..., opo},∀i ∈ {1, ..., po}, oi ∈ O, where po is the
length of the plan pO), and learn a portable abstract representation that supports generating task-
specific navigation behaviors based on Se that can be interleaved into the manipulation-only plan to
make the probability of success non-zero. Note that even though the state space is fully observable,
it crucially does not include information about what configurations in space afford manipulation,
which is what our approach learns.

Figure 2: An example figure of a robot iteratively constructing an AOSM in a novel environment.
(Left): The robot has a partial map of the environment and has not seen any objects. (Middle): The
robot moves around to construct more of the map, and the vision model identifies a cup (position
visualized as red circle). (Right): The robot uses a learned navigation symbol to sample a pose to
pick the cup, and then navigates to that pose in order to execute the manipulation skill.

Approach Our approach is based on autonomously constructing an Action-Oriented Semantic
Map (AOSM) [13] and using it for task planning. Formally, an AOSM (O,Se, (V,E)) is a data
structure where O is a set of k portable manipulation options, Se is a semantic map, and (V,E)
is a topological graph. The topological graph (V,E) is an undirected graph that contains k nodes
V = {v1, ..., vk}, where each node vj represents a region of configuration space for the base of
the mobile manipulator (i.e: each node vj represents a set of poses in the semantic map). Node

4



vj corresponds to the set of poses in the semantic map that have a non-zero probability of being
in the initiation set of option oj . So, vj = {p ∈ Ioj |p ∈ m}. The node vj is also referred to as a
navigation symbol σoj for the option oj , since a symbol is a probabilistic binary classifier for testing
membership of a set, and this symbol only depends on whether the robot’s configuration is within
a specific region of space that is relevant for navigation (discussed in more detail below). An edge
e = (va, vb) ∈ E represents that a motion planner N(va, vb) can be used to successfully navigate
from the set of poses in va to the set of poses represented by vb. AOSMs were introduced in Rosen
et al. [13], where they were hand-crafted by a user. Here, we assume access to a set of portable
manipulation skills O and the semantic map Se, and we provide a novel algorithm for learning the
topological graph (V,E) that consists of the navigation symbols and edge connectivity between
them, which together define an AOSM.

When a robot has access to an AOSM, it can sample poses in the map that enable the robot to exe-
cute its manipulation skills (Figure 2). When the navigation symbols are learned in an object-centric
spatial frame (i.e: the regions of space are in an object-centric frame instead of a map frame), they
can be ported to new environments by grounding to global poses based on the known poses of the
objects in the semantic map Se. Once an AOSM has been constructed, given a manipulation-only
plan pO = {o1, ..., opo

},∀i ∈ {1, ..., po}, oi ∈ O, a starting base pose S0
b , and a path planner

N(sb, s
′

b), we can use the AOSM to sample poses from the navigation preconditions of each manip-
ulation option {S1

b , ..., S
po

b },∀Si
b ∼ σoi , and leverage the the path planner to synthesize a sequence

of locomotion path plans pN = {n1, ..., npo−1}, ni ∼ N(Si−1
b , Si

b) that can be interleaved into
the manipulation plan pO, pO′ = {o1, n1, o2, n2, ..., , opo−1, npo−1, opo

}. This augmented plan has
the requisite additional actions required to make the manipulation-only plan feasible in the specific
map the robot finds itself in. An AOSM can only can be used when it is possible to decompose
initiation sets into navigation and manipulation preconditions. We now prove this assumes a crucial
independence property of the factors of the initiation set, which we formally describe in the rest of
this section.

First, note that we can define navigation symbol as a symbol σ whose factors (the set of state
variables the grounding classifier depends on) are the robot’s mobile base state variables Sb,
Factors(σ) = Sb (we call this type of factor a spatial factor). To determine whether a state vari-
able is in the factor associated with the initiation set of a manipulation option (i.e: the state variable
is a defining state variable for that set of states), we can use the notion of projection. The projection
of a list of state variables v out of a set of states X is defined as Proj(X, v) = {s|∃x ∈ X, s[i] =
x[i],∀i /∈ v}, which removes any restrictions on the values of the state variables v for the states in
X . If we project out a state variable from a set of states and it changes the set of states, we say
that the state variable is a defining state variable for that set of states (since deciding whether a state
is a member of X depends on a restricted value for v). If that set of states is the initiation set Io
of an option o, then that collection of state variables is by definition the factors of Io, Factors(Io).
In this case, the set of states describing the initiation set can be described by the intersection of
independent state sets [3]. Formally, we say a factorfs is independent in the initiation set Io when:
Io = Proj(Io,Factors(Io)/fs) ∩ Proj(Io, fs). With this definition, we now define the spatial inde-
pendence property:

Definition 3.1 (Spatial Independence). The initiation set Io for an option o’s has the spatial inde-
pendence property if:

Io = Proj(Io,Factors(Io)/Sb) ∩ Proj(Io, Sb). (1)

Note that when learning a probabilistic symbolic representation, the sets are replaced with distribu-
tions and the intersection is replaced with multiplication, and therefore the independence property
is defined exactly as conditional independence. When an option’s initiation set has the spatial inde-
pendence property, we can construct an independent symbol to represent Proj(Io,Factors(Io)/Sb)
which by definition is a navigation symbol since it it only depends on Sb. Intuitively, this projection
represents the set of base locations the robot must be in order to successfully execute the option

5



Figure 3: Results for our experiments on transferability of learning abstractions (left and right are
single-scene setting/multi-scene setting respectively). We report the cumulative number of sampled
locations that manipulation actions are attempted from against the average cumulative number of
times the agent has successfully completed the plan (bars are standard error across 5 seeds.)

o without regards to the state of the rest of the world. 3 Since an AOSM captures the navigation
symbols, then when the spatial independence property holds for an option, an AOSM is a necessary
and sufficient characterization of the spatial components of the initiation set. We leave details of
the formal conditions under which we will resolve a manipulation option o for some set of start-
ing states Z in the supplementary material. With an AOSM, given a manipulation-only plan, we
can synthesize the requisite navigation actions to interleave into the plan and support execution. To
evaluate the probability of the entire plan, we first learn a portable symbolic vocabulary similar to
James et al. [17] (described in Section 2) but do not include spatial information about the objects
or robot in the observations, and then separately learn navigation symbols using the spatial data in
an object-centric frame. With the portable symbolic vocabulary, manipulation-plans can be gener-
ated, and with the addition of the navigation symbols grounded for a specific environment, we can
evaluate the probability of a manipulation-only plan with navigation actions interleaved in.

4 Simulation and Hardware Experiments

We test the hypothesis that exploiting the spatial independence property of manipulation options
increases sample efficiency and transferability of learned abstractions. First, we investigate the ef-
fect of leveraging the spatial independence assumption on the number of samples required to learn
a useful set of abstractions for planning. Secondly, we evaluate the effectiveness of transferring
abstractions from a training environment to a novel environment. Together, these experiments high-
light how AOSMs can be used to efficiently learn and transfer abstractions with only a few number
of interactions with the environment.

Coffee Preparation Task We conduct both of our experiments in a simulated mobile manipulation
domain, AI2Thor [14], using a coffee preparation task in 15 virtual kitchens. In this task the robot
must navigate through a large simulated kitchen and manipulate objects; to successfully make coffee,
it must pick up a cup, bring it to a coffee machine, turn on the coffee machine to make the beverage,
and then pick up the prepared coffee mug. We assume the robot has access to a set of portable manip-
ulation skills (PickUp(Mug), ToggleOn(CoffeeMachine), PutIn(Mug,CoffeeMachine), Make-
Coffee(Mug,CoffeeMachine)) that can be reused across different kitchen scenes, but that the agent
must construct navigation abstractions for each different scene. AI2Thor provides semantic maps
of each scene, which include a 2D occupancy grid of the environment, the number of objects in

3We note that this assumption may be violated in realistic domains (for example, the location of objects
may constrain what locations the robot can execute a manipulation option from), but we later discuss how we
can still use an AOSM to synthesize effective navigation abstractions even when this assumption is not met.

6



the environment, their object type and attributes, and their pose. We use 77 different objects, each
characterized by a vector of length 108. We also include the 3D position and 1D yaw of the robot’s
base (4 additional state variables), resulting in a low-level observation vector of 8320 elements.

Simulation Experiment: Spatial Independence for Learning Symbols In the first experiment,
our goal is to evaluate how leveraging the spatial independence assumption affects the samples
required to construct a symbolic vocabulary that supports planning. We therefore evaluate a state-
of-the-art baseline [19] for learning symbols that does not incorporate the spatial independence
assumption against an augmentation of the approach that does leverage the spatial independence
assumption. We report performance as a function of the number of samples from the environment.

Part of the model learning process requires identifying which factors are independence since there
is no a priori assumption about the structure of the initiation and effect sets of the skills. Partitioning
is done via DBSCAN clustering [30], and the precondition classifiers are learned using a SVM [31]
with an RBF kernel (hyperparameters are optimized using grid search. The effect density estimation
is performed with a kernel density estimators [32, 33] with a Gaussian kernel, with a grid search
over the bandwidth.

Figure 4: Learning symbols for the coffee prepa-
ration task, without the spatial independence as-
sumption (James et al. [19]) and with the spatial
independence assumption (AOSM). We report the
number of sampled interactions with the environ-
ment against the planning success rate across 10
seeds.

Approaches We use a codebase for learning
symbols [19] that is state-of-the-art but does not
leverage any spatial independence assumptions
as our baseline. More details on the algorithm
can be found in [19], but in summary: the robot
collects transition data in an environment by ei-
ther randomly navigating to a pose or choosing
manipulation skills to execute, and then uses
this data to learn a model describing the precon-
ditions and effects of the skills via a partition-
ing and clustering process. Part of the model
learning process requires identifying which fac-
tors are independent since there is no a priori
assumption about the structure of the initiation
and effect sets of the skills. Details on the learn-
ing can be found in the supplementary material.

Metrics To evaluate the usefulness of the re-
sulting abstractions, we use Fast Downward
[34], an off-the-shelf symbolic planner, to plan
using the resulting symbolic vocabulary. We
then use a binary metric to determine how use-
ful the representation is for planning: if the re-
sulting plan accomplishes the goal, then the symbolic vocabulary is deemed successful. Otherwise,
the symbolic vocabulary is deemed a failure. Our goal is to minimize the interactions required to
learn a successful symbolic vocabulary for planning. We collect 1000 transitions with 10 different
random seeds.

Results The results of our experiment are in Figure 4. As the number of environmental samples
increases, the success rate of planning with the symbols improves for both approaches, as expected.
Learning with the spatial independence assumption, however, is able to learn a successful symbolic
vocabulary with a nearly 100% planning success rate with about 50 samples, where as the baseline
approach that does not leverage the spatial independence requires about 300 samples. This is due in
part to the fact that, without leveraging the spatial independence assumption, the baseline requires
more samples to learn to disentangle spatial information from non-spatial information, which is
challenging since the spatial data is continuous. Our approach builds in the disentanglement between
the spatial and non-spatial data, easing learning. These results demonstrate that our approach—

7



which structures in the independence assumption—is more sample efficient than state-of-the-art
approaches to learning abstractions. Examples of the learned symbolic vocabulary are in Figure 5.

Figure 5: Example operators for two manipulation skills with the navigation symbols injected into
the preconditions (red highlight). (Left): A learned operator for the PickUp(Mug) skill in AI2Thor.
Symbols are renamed manually to provide human interpretability (Right): A hand-specified operator
for the PutIn(Mug,CoffeeMachine) skill in the Spot experiment.

Simulation Experiment: Transfer of Learned Abstractions In the second set of experiments,
we evaluate how AOSMs help transfer learned abstractions to novel environments. We provided a
manipulation-only plan that prepares coffee, and the robot constructs the navigation symbols that
enable it to generate supporting navigation behaviors. There are two important design choices when
learning navigation symbols that can be chosen independently of each other: 1) which spatial frame
are the navigation symbols learned in, and 2) what proposal distribution is used for rejection sam-
pling. We evaluate different choices of these design choices in two settings: one where the robot
learns symbols in a single scene, and one where it must learn symbols across different scenes (i.e:
transfer is necessary). For each task execution in a scene, we report the cumulative total number of
manipulation skills the robot executed, until the plan succeeded. Our results can be see in Figure 3,
and full details of our experiments can be found in the Supplementary material. The main takeaway
is that learning symbols in an object-centric frame is important for transferability.

Robot Hardware Demonstration We demonstrate the effectiveness of AOSMs by executing
a coffee preparation task on a Boston Dynamic Spot platform (Figure 1b). In this task, the
robot must gather coffee grinds and water, pour them both into a coffee maker, close the lid
of the coffee maker, and push a button to turn it on. We supply the robot with a set of
portable manipulation skills PickUp(CoffeeGrinds), PickUp(WaterCup), Place(CoffeeGrinds),
Place(WaterCup), Pour(WaterCup), Pour(CoffeeGrinds), CloseLid(CoffeeMachine) and
PushButton(CoffeeMachine), whose implementation on the robot can be seen in Figure 1b. The
objects are scattered around the room, requiring the robot robot to navigate the environment cor-
rectly to successfully execute the manipulation skills. Images and full details on the robot hardware
demonstration and evaluation can be found in Supplementary material.

5 Limitations

While our approach leverages spatial structure to make learning abstractions for mobile manipulators
more efficient, several of the input assumptions limit generality. Namely, our approach assumes a
fully observable environment so the semantic map must be created before learning occurs. Future
work will investigate learning in partially-observable environments, handling skill repertories that
are continuously parameterized, and operating in highly-dynamic and unstructured environments
like outdoors.

6 Conclusion

We have introduced the spatial indepence property, and proven how it can be used to more effeciently
learn navigation abstractions by building an Action-Oriented Semantic Map. Once a robot has built
an AOSM, it can find and execute long-horizon mobile manipulation plans; in our work, a real robot
was able to construct the relevant navigation abstractions using just several minutes of data. Our
results offer a promising path to enabling real robots to learn task-level abstractions in practical
amounts of time, a capability critical for complex, goal-directed behavior.

8



References
[1] P. Bercher, R. Alford, and D. Höller. A survey on hierarchical planning-one abstract idea,

many concrete realizations. In IJCAI, pages 6267–6275, 2019.

[2] S. Pateria, B. Subagdja, A.-h. Tan, and C. Quek. Hierarchical reinforcement learning: A
comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

[3] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. From skills to symbols: Learning symbolic
representations for abstract high-level planning. Journal of Artificial Intelligence Research, 61:
215–289, 2018.

[4] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i. IEEE robotics
& automation magazine, 13(2):99–110, 2006.

[5] J. Aulinas, Y. Petillot, J. Salvi, and X. Lladó. The slam problem: a survey. Artificial Intelligence
Research and Development, pages 363–371, 2008.

[6] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser. Heuristic approaches in robot path planning:
A survey. Robotics and Autonomous Systems, 86:13–28, 2016.

[7] M. T. Mason. Toward robotic manipulation. Annual Review of Control, Robotics, and Au-
tonomous Systems, 1:1–28, 2018.

[8] A. Billard and D. Kragic. Trends and challenges in robot manipulation. Science, 364(6446),
2019.

[9] J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal, and G. S. Sukhatme. Inter-
active perception: Leveraging action in perception and perception in action. IEEE Transactions
on Robotics, 33(6):1273–1291, 2017.

[10] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp synthesis—a survey. IEEE
Transactions on Robotics, 30(2):289–309, 2013.

[11] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[12] O. Kroemer, S. Niekum, and G. Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms. arXiv preprint arXiv:1907.03146, 2019.

[13] E. Rosen, N. Kumar, N. Gopalan, D. Ullman, G. Konidaris, and S. Tellex. Building plannable
representations with mixed reality. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 11146–11153. IEEE, 2020.

[14] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon, Y. Zhu,
A. Gupta, and A. Farhadi. AI2-THOR: An interactive 3d environment for visual AI. arXiv
preprint arXiv:1712.05474, 2017.

[15] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for tem-
poral abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[16] G. D. Konidaris and A. G. Barto. Building portable options: Skill transfer in reinforcement
learning. In IJCAI, volume 7, pages 895–900, 2007.

[17] S. James, B. Rosman, and G. Konidaris. Learning portable representations for high-level plan-
ning. In International Conference on Machine Learning, pages 4682–4691. PMLR, 2020.

[18] D. Precup. Temporal abstraction in reinforcement learning. University of Massachusetts
Amherst, 2000.

[19] S. James, B. Rosman, and G. Konidaris. Autonomous learning of object-centric abstractions
for high-level planning. In International Conference on Learning Representations, 2022.

9



[20] S. James, B. Rosman, and G. Konidaris. Autonomous learning of object-centric abstractions
for high-level planning. In International Conference on Learning Representations, 2021.

[21] B. Ames, A. Thackston, and G. Konidaris. Learning symbolic representations for planning
with parameterized skills. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 526–533. IEEE, 2018.

[22] N. Gopalan, E. Rosen, G. Konidaris, and S. Tellex. Simultaneously learning transferable sym-
bols and language groundings from perceptual data for instruction following. Robotics: Sci-
ence and Systems XVI, 2020.

[23] B. Abbatematteo, E. Rosen, S. Tellex, and G. Konidaris. Bootstrapping motor skill learning
with motion planning. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4926–4933. IEEE, 2021.

[24] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical task and motion planning in the now. In
2011 IEEE International Conference on Robotics and Automation, pages 1470–1477. IEEE,
2011.

[25] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
Integrated task and motion planning. Annual review of control, robotics, and autonomous
systems, 4:265–293, 2021.

[26] J. Wolfe, B. Marthi, and S. Russell. Combined task and motion planning for mobile manipu-
lation. In Twentieth International Conference on Automated Planning and Scheduling, 2010.

[27] C. Galindo, J.-A. Fernández-Madrigal, J. González, and A. Saffiotti. Robot task planning using
semantic maps. Robotics and autonomous systems, 56(11):955–966, 2008.

[28] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, et al. Do as i can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022.

[29] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language
models. arXiv preprint arXiv:2207.05608, 2022.

[30] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In kdd, volume 96, pages 226–231, 1996.

[31] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

[32] M. Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals
of Mathematical Statistics, 27(3):832, 1956.

[33] E. Parzen. On estimation of a probability density function and mode. The Annals of Mathe-
matical Statistics, 33(3):1065, 1962.

[34] M. Helmert. The fast downward planning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

10


	Introduction
	Background
	Exploiting Spatial Independence for Learning Abstractions
	Simulation and Hardware Experiments
	Limitations
	Conclusion

