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Abstract
We introduce a method for actively learning pa-
rameterized skills. Parameterized skills are flex-
ible behaviors that can solve any task drawn
from a distribution of parameterized reinforce-
ment learning problems. Approaches to learning
such skills have been proposed, but limited atten-
tion has been given to identifying which train-
ing tasks allow for rapid skill acquisition. We
construct a non-parametric Bayesian model of
skill performance and derive analytical expres-
sions for a novel acquisition criterion capable
of identifying tasks that maximize expected im-
provement in skill performance. We also intro-
duce a spatiotemporal kernel tailored for non-
stationary skill performance models. The pro-
posed method is agnostic to policy and skill rep-
resentation and scales independently of task di-
mensionality. We evaluate it on a non-linear sim-
ulated catapult control problem over arbitrarily
mountainous terrains.

1. Introduction
One approach to dealing with high-dimensional control
problems is to specify or discover hierarchically structured
policies. The most widely used hierarchical reinforcement
learning formalism is the options framework (Sutton et al.,
1999), where options (or skills) define temporally-extended
policies that abstract away details of low-level control. One
of the motivating principles underlying this framework is
the idea that subproblems recur, so that options can be
reused in a variety of related tasks or contexts. Options,
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however, are typically defined as single policies and can-
not be used to solve ensembles of related reinforcement
learning problems. To address this issue, parameterized
skills have recently emerged as a promising framework for
producing reusable behaviors that can solve a distribution
of related control problems, given only a parameterized
description of a task (Kober et al., 2012; da Silva et al.,
2012; Neumann et al., 2013; Deisenroth et al., 2014). Once
acquired, parameterized skills can produce—on-demand—
policies for any tasks in the distribution, even those which
the agent has never had direct experience with. As an ex-
ample, consider a soccer-playing agent tasked with learn-
ing a kicking skill parameterized by desired force and di-
rection. Learning a single policy for each possible varia-
tion of the task is infeasible. The agent might wish, in-
stead, to learn policies for a few specific kicks and use them
to synthesize a single general skill for kicking the ball—
parameterized by force and direction—that it can execute
on-demand.

In this paper we are concerned with the question of how an
agent, tasked with learning a parametrized skill and given a
distribution from which future tasks will be drawn, should
practice. Such an agent should choose to practice tasks that
lead it to maximize skill performance improvement over
all tasks in the target distribution. Intuitively, the tasks
from which experience is most beneficial are those that al-
low the skill to better generalize to a wider range of re-
lated problems. As we will show, identifying such tasks is
not straightforward—sampling tasks according to the target
distribution, for instance, is inefficient because it does not
account for the varying difficulty of tasks. Furthermore,
non-adaptive sampling strategies ignore how some tasks
may require policies qualitatively different from those of
neighboring tasks, thus demanding more extensive training.
Continuing with the previous example, a soccer-playing
agent may wish to learn a parameterized kicking skill by
practicing different types of kicks, such as accurate ones
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towards the goal or powerful but inaccurate kicks in the
general direction of the opponent’s half field. Policies for
the former type of kick are harder to learn and generalize,
since their parameters are very sensitive to the desired di-
rection. Carefully choosing which kicks to practice allows
the agent to identify which ones require less practice and
which ones are more challenging, thus focusing on the as-
pects of the skill that can more readily be improved.

These observations are consistent with recent theories of
how human experts acquire professional levels of achieve-
ment, which propose that skill improvement involves de-
liberate efforts to change particular aspects of performance
(Ericsson, 2006). Indeed, thoughtful and deliberate prac-
tice is one of the defining characteristics of expert perfor-
mance in sports, arts and science: world-class athletes, for
instance, carefully construct training regimens to build on
their strengths and shore up their weaknesses.

We construct a non-parametric Bayesian model of skill per-
formance and derive analytical expressions for a novel ac-
quisition criterion capable of identifying tasks that max-
imize skill performance improvement over a given target
distribution. We also introduce a spatiotemporal kernel tai-
lored for modeling non-stationary skill performance func-
tions. The proposed method is agnostic to policy and skill
representation and scales independently of task dimension-
ality. We evaluate it on a non-linear simulated catapult con-
trol problem in which different launch profiles are required
depending on the target position and on the smoothness
characteristics of the terrain.

2. Active Learning of Parameterized Skills
Assume an agent presented with a sequence of tasks drawn
from some task distribution. Each task is modeled as a
Markov Decision Process (MDP). Furthermore, assume
that the MDPs have dynamics and reward functions similar
enough so that they can be considered variations of a same
task. The objective of a parameterized skill is to maximize
the expected reward over the distribution of MDPs:∫

P (τ)J
(
πθ, τ

)
dτ, (1)

where πθ is a policy with parameters θ ∈ RM , τ is a
task parameter vector drawn from a continuous space T ,
J(π, τ) is the expected return obtained when using policy
π to solve task τ (given an initial state distribution), and
P (τ) is a probability density function describing the prob-
ability of task τ occurring.

A parameterized skill is a function Θ : T → RM map-
ping task parameters to policy parameters. When using a
parameterized skill to solve a given task, the parameters of
the policy to be used are specified by Θ. An efficient pa-

rameterized skill maximizes the expected performance of
the policies it specifies over the entire distribution of possi-
ble tasks: ∫

P (τ)J
(
πΘ(τ), τ

)
dτ. (2)

A parameterized skill can be learned via a set of training
tasks and their corresponding policies. The simplest strat-
egy for constructing this set is to select tasks uniformly at
random or to draw them from the task distribution P . These
strategies, however, ignore how a carefully-chosen task can
improve performance not only on that task, but over a wider
range of related tasks.

We introduce a general framework for active task selec-
tion with arbitrary parameterized skill representations. The
framework uses a Bayesian model of skill performance and
a specially tailored acquisition function designed to select
training tasks that maximize expected skill performance
improvement. The process of actively selecting training
tasks consists of the following steps: 1) identify, by means
of a model of expected skill performance, the most promis-
ing task τ to practice; 2) practice the task and learn a cor-
responding policy π∗θ ; 3) update the parameterized skill; 4)
evaluate the performance J(τ) of the updated skill at that
task; and 5) update the model of expected skill performance
with the observed performance. These steps are repeated
until the skill cannot be further improved or a maximum
number of practicing episodes is reached. This training
process is depicted in Figure 1.
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Figure 1. The process of actively learning a parameterized skill.

3. A Bayesian Model of Skill Performance
Let J

(
πΘ(τ), τ

)
be the performance achieved by a param-

eterized skill Θ on task τ . To simplify notation we sup-
press the dependence on Θ and write simply J(τ). We
propose creating a Bayesian model capable of predicting
the expected skill performance over a given set of tasks.
This model allows the agent to predict performance—even
at tasks which were never directly experienced—without
incurring the costs of executing the skill. As will be shown
in Section 4, this is particularly useful when estimating
how different training tasks may contribute to improving
the performance of a skill over a distribution of tasks. Let
µ(τ) be the mean predicted performance and σ2(τ) the cor-



Active Learning of Parameterized Skills

responding variance. One way to represent this model is
via a Gaussian Process (GP) prior (Rasmussen & Williams,
2006). A GP is a (possibly infinite) set of random vari-
ables, any finite set of which is jointly Gaussian distributed.
GPs extend Gaussian distributions to the case of infinite
dimensionality, and thus can be seen as distributions over
functions—in this case, predictive distributions over skill
performance functions. To fully specify a GP one must de-
fine a mean function m and a positive-definite kernel k:

m(τ) = E[J(τ)]

k(τp, τq) = E
[
(J(τp)−m(τp))(J(τq)−m(τq))

>].
A kernel specifies properties of J such as smoothness and
periodicity. In this section and the following we do not
make any assumptions about the form of k; in Section 5 we
introduce a kernel designed specifically for use with our
framework. We assume that the performance function J is
zero-mean, so that m can be dropped from the equations;
the extension for the non-zero mean case is straightforward.

Given k and a set of observations D =
{(τ1, J(τ1)), . . . , (τN , J(τN ))}, both the log likeli-
hood of the data conditioned on the model and the
Gaussian posterior over skill performance, P (J(τ)|τ,D),
can be computed easily for any tasks τ . Under a
Gaussian Process, the predictive posterior over skill
performance at a task τ is normally-distributed according
to J(τ) ∼ N (µ(τ), σ2(τ)), where

µ(τ) = k>
(
CD + σ2I

)−1
yD (3)

σ2(τ) = k(τ, τ) + σ2 − k>
(
CD + σ2I

)−1
k, (4)

with k = [k(τ, τ1) . . . k(τ, τN )]>, CD is an N ×N matrix
with entries (CD)ij = k(τi, τj), yD = [J(τ1) . . . J(τN )]>

and σ2 is the additive noise we assume affects measure-
ments of skill performance.

GPs are often used in Bayesian optimization to find the
maximum of unknown, expensive-to-sample functions. To
do so, a surrogate acquisition function is maximized. Ac-
quisition functions guide the search for the optimum of a
function by identifying the most promising points to sam-
ple. Standard acquisition functions include Lower Confi-
dence Bounds, Maximum Probability of Improvement and
Expected Improvement (Snoek et al., 2012). Although
these criteria may seem, at first, appropriate for selecting
training tasks, that is not the case: if applied to a skill per-
formance function, standard acquisition criteria would only
identify the tasks that can be solved with highest perfor-
mance. By contrast, our goal is to identify training tasks
which result in the highest expected improvement in skill
performance. This goal, formally defined in Equation 6,
measures how much skill performance may improve over

a target distribution of tasks if the skill is updated by the
practice of a selected task. A motivating principle behind
this objective is that since parameterized skills naturally
generalize policies to related tasks, an effective acquisition
criterion should focus not on improving the performance at
a single task, but on the performance gains that practicing
it may bring to the skill as a whole.

In the next section we introduce a novel acquisition crite-
rion specially tailored for parameterized skills. We also de-
rive closed-form expressions for this criterion and its gradi-
ent, thus obtaining analytical expressions for the two quan-
tities required for optimizing the process of selecting train-
ing tasks.

4. Active Selection of Training Tasks
An acquisition function to identify tasks that provide maxi-
mum expected improvement in skill performance should: 1)
take into account that tasks may occur with different prob-
abilities and prioritize training accordingly; and 2) model
how the practice of a single task may, due to the gener-
alization properties inherent to a parameterized skill, im-
prove performance not only at that task but also over related
tasks.

Let us assume we have practiced N tasks, τ1, . . . , τN , and
used the corresponding (optimal or near-optimal) learned
policies to construct a parameterized skill. Assume that
we annotate each task τi with the time ti it was practiced,
which we denote by τ tii . Here, time refers to the order
in which tasks are practiced, so that the i-th task to have
been practiced is annotated with time t = i. Assume
that we have evaluated the efficiency of the skill on tasks
τ1, . . . , τN and observed performances J(τ1), . . . , J(τN ).
Let D be a training set of tuples {τ tii , J(τi)}, for i ∈
{1 . . . N}. Given this training set, Equations 3 and 4 can be
used to compute a posterior distribution over skill perfor-
mance, P (J(τ)|τ,D), for any tasks τ . Let Jt be the poste-
rior distribution obtained when conditioning the Gaussian
Process on all tasks practiced up to time t, and let µt(τ)
and σ2

t (τ) be its mean and variance, respectively. We de-
fine Skill Performance (SP) as the expected performance of
the skill with respect to an arbitrary distribution P of tasks:

SPt =

∫
P (τ)µt(τ)dτ. (5)

Furthermore, let the Expected Improvement in Skill Perfor-
mance (EISP), given task τ , be the expected increase in
skill performance resulting from an agent practicing τ and
observing subsequent skill performance j(τ). Here, j(τ)
is an optimistic upper bound on the skill performance at
τ , computed with respect to the current posterior distribu-
tion Jt. To compute the EISP of a task τ we consider the



Active Learning of Parameterized Skills

Gaussian posterior, Ĵt+1, that would result if Jt were to be
updated with a new observation {(τ, j(τ))}. Let µ̂t+1(τ)
and σ̂2

t+1(τ) be the mean and variance of Ĵt+1. The EISP
of a task τ is defined as

EISPt(τ) =

∫
P (τ ′)(µ̂t+1(τ ′)− µt(τ ′))dτ ′. (6)

EISP can be understood intuitively as a quantitative way
of comparing tasks based on their likely contributions to
improving the overall quality of the skill. Tasks whose
practice may improve skill performance on a wide range
of related tasks have higher EISP; conversely, tasks whose
solutions are already well-modeled by the skill have lower
EISP. Computing the EISP is similar to executing a mental
evaluation of possible training outcomes: the agent uses its
model of expected skill performance to estimate—without
ever executing the skill—the effects that different training
tasks may have on its competence across a distribution of
problems.

The maximum of Equation 6 identifies the task τ∗ which, if
used to update the parameterized skill, results in the highest
expected improvement in overall performance. This cor-
responds to an acquisition function which selects training
tasks according to:

τ∗ = arg max
τ

EISPt(τ). (7)

One way of evaluating Equation 7 is to use a gradient-based
method. This requires an analytic expression for (or good
approximation of) the gradient of EISPt(τ) with respect to
arbitrary tasks. To make notation less cluttered, we focus
on the case of 1-dimensional task parameters; the extension
to higher-dimensions is straightforward. Assume, without
loss of generality, that the parameter describing a task is
drawn from a bounded, continuous interval [A,B]. To de-
rive the expression for the gradient of EISP, we first observe
that µt(τ ′) in Equation 6 does not depend on τ and can be
removed from the maximization. It is possible to show that
the function to be maximized in Equation 7 is equivalent
to:

EISPt(τ) = Gt(τ)>
((

Ct(τ) + σ2I
)−1

y(τ)

)
, (8)

where

Gt(τ) = [gt(τ
t1
1 ) . . . g(τ tNN ) g(τ t+1)]>, (9)

gt(τ
ti
i ) =

∫ B

A

P (r)k(rt+1, τ tii )dr, (10)

y(τ) = [J(τ1) . . . J(τN ) j(τ)]>, (11)

and where Ct(τ) is the covariance matrix of the extended

training set D ∪ {(τ t+1, j(τ))}:

Ct(τ) =


k(τ t11 , τ

t1
1 ) . . . k(τ t11 , τ

t+1)
...

. . .
...

k(τ tNN , τ t11 ) . . . k(τ tNN , τ t+1)
k(τ t+1, τ t11 ) . . . k(τ t+1, τ t+1)

 . (12)

Furthermore, the gradient of EISPt(τ) with respect to any
given task τ is

∇τEISPt(τ) = ∇τGt(τ)>Wt(τ)y(τ)

− Gt(τ)>Wt(τ)∇τCt(τ)Wt(τ)y(τ)

+ Gt(τ)>Wt(τ)∇τy(τ), (13)

where

∇τGt(τ) =

[
0 . . . 0︸ ︷︷ ︸

N times

∇τgt(τ)

]>
, (14)

∇τy(τ) =

[
0 . . . 0︸ ︷︷ ︸

N times

∇τ j(τ)

]>
, (15)

and W (τ) =
(
C(τ) + σ2I

)−1
. Let j(τ) be the upper end-

point of the 95% confidence interval around the mean pre-
dicted performance at τ : j(τ) = µt(τ) + 1.96

√
σ2
t (τ).

Then,∇τ j(τ) = ∇τ
(
µt(τ)+1.96

√
σ2
t (τ)

)
. If we assume

that the variance σ2
t of the process is approximately con-

stant within infinitesimal neighborhoods of a given task,
then∇τ j(τ) = ∇τµt(τ), which can be rewritten as

∇τ j(τ) =

(
∇τ [k(τ t, τ t11 ) . . . k(τ t, τ tNN )]>

)
×(

CD + σ2I
)−1

yD. (16)

It can be shown that∇τEISPt(τ) can be expressed as a lin-
ear form φ1j(τ) + φ2yD, where both φ1 and φ2 depend
only on the kernel function k and on the task parameters
sampled so far. This reveals an interesting property: given
an arbitrary fixed set of training tasks, the gradient of EISP
can be linearly decomposed into one component that de-
pends solely on the performances yD that are achievable by
the skill, and another component that depends solely on the
optimistic assumptions made when defining j(·). This im-
plies that the direction of maximum improvement of EISP
is independently influenced by 1) the generalization capa-
bilities of the skill—specifically, the actual performances it
achieves on various tasks; and 2) the optimistic assump-
tions regarding how further practice of a particular task
may improve its performance.
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Note that some of the equations in this section depend di-
rectly or indirectly on the choice of kernel k. In Section 5
we introduce a novel spatiotemporal kernel specially de-
signed to better model skill performance functions, and
in Appendix A we derive analytical expressions for the
quantities involving it; namely, ∇τk(τ tii , ·), gt(τ tii ) and
∇τgt(τ tii ).

5. Modeling Non-Stationary Skill
Performance Functions

Kernels encode assumptions about the function being mod-
eled by a GP, such as its smoothness and periodicity.
An implicit assumption made by standard kernels is that
the underlying function is stationary—that is, it does not
change with time. Kernel functions also specify a measure
of similarity or correlation between input points, usually
defined in terms of the coordinates of the inputs. If dealing
with non-stationary functions, however, defining similari-
ties is harder: when a point is resampled, for instance, we
generally expect the similarity between its new and previ-
ous values to decrease with time. Note that the model of
expected performance introduced in Section 3 is intrinsi-
cally non-stationary, since skill performance naturally im-
proves with practice. If a standard kernel were to be used
to model this function, outdated performance observations
would contribute to the predicted mean, thus keeping the
GP from properly tracking the changing performance.

To address this issue we introduce a new spatiotempo-
ral kernel designed to better model non-stationary skill
performance functions. Let us assume an arbitrary ker-
nel kS(τ1, τ2) capable of measuring the similarity between
tasks based solely on their parameters τ1 and τ2. We ex-
pect kS to be higher if comparing related tasks, and close
to zero otherwise. Note that kS does not account for the ex-
pected decrease in the similarity between observations of a
task at very different times. To address this issue we con-
struct a composite spatiotemporal kernel kC , based on kS ,
capable of evaluating the similarity between tasks based on
their parameters and on the times they were sampled. Let
kC(τ t11 , τ

t2
2 ) be such a kernel, where τ ti denotes a task τi

sampled at time t. For kC to be suitable for modeling non-
stationary functions, it should ensure the following prop-
erties: 1) related tasks have higher similarity if sampled at
similar times; that is, kC(τ t11 , τ

t2
2 ) > kC(τ t1+∆t

1 , τ t22 ), for
∆t > 0; 2) if related tasks are sampled at significantly dif-
ferent times, no temporal correlation can be inferred and
similarity is defined solely on their task parameters; that
is, kC(τ t11 , τ

t2
2 ) → kS(τ1, τ2) as |t1 − t2| → ∞; and 3)

the more unrelated tasks are, the smaller the correlation
between them, independently of when they were sampled;
that is, kC → 0 as kS → 0. The first property implies that if
tasks are related, closer sampling times suggest higher cor-

relation; the second property implies that nothing besides
similarity in task space can be inferred if tasks are sampled
at very different times; and the third property implies that
sampling times, on their own, carry no correlation informa-
tion if the tasks being compared are significantly different.
To define kC we introduce an isotropic exponential kernel
kT (t1, t2) for measuring the similarity between sampling
times:

kT (t1, t2) = 1 + (C − 1) exp

(
− ρ−1(t1 − t2)2

)
, (17)

for some C > 0. kT is such that kT → C as |t1 − t2| →
0, and kT → 1 as |t1 − t2| → ∞. The parameter ρ is
similar to the length-scale parameter in squared exponential
kernels and regulates our prior assumption regarding how
non-stationary the function is. We can now define kC as

kC(τ t11 , τ
t2
2 ) = kS(τ1, τ2)×(

1 + (C − 1)e−
(t1−t2)2

ρ

)
. (18)

Intuitively, kT boosts the correlation between tasks if they
were sampled at similar times and ensures that only spa-
tial correlation is taken into account as the difference be-
tween sampling times increases. Furthermore, note that
when C = 1 all temporal information is ignored and kC
degenerates to the purely-spatial kernel kS . Several meth-
ods, such as evidence maximization, are available to auto-
matically identify suitable parameters for kC and kS (Ras-
mussen & Williams, 2006).

Figure 2 depicts the predicted posterior mean and variance
of a process defined over a synthetic non-stationary func-
tion. Two curves are shown: one for the predicted mean
if using the purely-spatial kernel kS , which does not take
sampling time into account, and one for the improved pre-
dicted mean obtained if using the spatiotemporal kernel kC .
Note how the latter kernel allows the predicted mean to cor-
rectly track the non-stationary function.

6. The Catapult Domain
We evaluate our task selection method on a simulated cat-
apult control problem where the agent is tasked with learn-
ing a parameterized skill for hitting targets on mountainous
terrains (Figure 3)1. Targets can be placed anywhere on a
2-dimensional terrain with various elevations and slopes—
both of which are unknown to the agent. The task space T
consists of a single parameter describing the horizontal dis-
tance from the catapult to the target; note that this task pa-
rameterization does not convey any information about the

1Code will be made available at http://bitbucket.
org/bsilvapoa/active_paramskill.

http://bitbucket.org/bsilvapoa/active_paramskill
http://bitbucket.org/bsilvapoa/active_paramskill
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Figure 2. GP posteriors obtained when using a standard kernel
and a spatiotemporal kernel. Lighter-colored points indicate older
samples, while darker ones indicate more recent ones.

elevation of the target or the geometry of the terrain. Learn-
ing such a skill is difficult because it requires generalizing
over an ensemble of continuous-state, continuous-action
control problems. We learn the parameterized skill via
Gaussian Process regression. The skill maps target posi-
tions to continuous launch parameters—namely, angle and
velocity. Finally, we define performance of a policy as the
distance between where the projectile hits and the intended
target.

Figure 3. The Catapult Domain.

Determining which tasks to practice is challenging be-
cause irregular, non-smooth terrains may require signifi-
cantly different launch profiles for hitting neighboring tar-
gets. Figure 3 depicts how a change ∆τ in task parame-
ters may require significantly different launch parameters
depending on the region of the terrain. Figure 4 depicts
the policy manifold associated with launch parameters re-
quired for hitting various targets on a randomly-generated
terrain. The 1-dimensional task space is represented by the
red line, and gray lines mapping points in task space to
policy space indicate policy predictions made by the skill.
Discontinuities in this mapping indicate irregular regions of
the policy manifold in which generalization is difficult. Fi-
nally, note that identifying the target with maximum EISP

corresponds to optimizing a one-step look-ahead sampling
strategy to quickly uncover the structure of this manifold.

Velocity
Angle

Task Space

Figure 4. Policy manifold of the catapult domain. The red line
represents the task space. Gray lines connecting task to policy
space indicate predictions made by the skill. Discontinuities in the
mapping indicate task regions where generalization is difficult.

We compared the performance of our method with four
alternative approaches. Two of them are baseline, non-
adaptive sampling strategies: selecting tasks uniformly at
random, and probabilistically according to the task distri-
bution P . We also compare with two active acquisition cri-
teria commonly used in Bayesian optimization: Expected
Improvement (EI) and Lower Confidence Bound (LCB).
Figures 5 and 6 show skill performance as a function of
the number of tasks practiced, for different task-selection
methods. Skill performance was measured by evaluating
the skill on a set of novel tasks; the observed performances
were weighted by the task distribution P to reflect whether
the agent was competent at tasks of higher interest. To
report an absolute measure of skill quality we computed
the mean squared difference between performance of the
learned skill and the maximum performance that can be
achieved by the skill model. The lower the difference, the
better the skill is at solving tasks from the distribution of in-
terest. All curves are averages over 50 randomly generated
terrains.

Figure 5 shows how skill performance changes as the
agent practices more tasks, assuming a uniform target dis-
tribution P of tasks. Note that in this case both non-
adaptive sampling strategies—i.e., selecting tasks at ran-
dom or drawing them from P—are equivalent. Similarly,
Figure 6 shows skill performance as a function of tasks
practiced but for the case of a non-uniform target distri-
bution P—that is, an agent with stronger preference for
becoming competent at targets in particular regions of the
terrain. Here, P was defined as a Gaussian centered at the
midpoint of the terrain. Under both types of task distribu-
tion, EI performed worse than all other methods. EI selects
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Figure 5. Average skill performance as a function of the number
of sampled training tasks (uniform task distribution).

tasks whose individual performances are expected to im-
prove the most by practice. This criterion leads the agent
to repeatedly practice tasks that are already well-modeled
by the skill but which may be marginally improved. This
causes the agent to ignore regions of the task space in
which it is not yet competent. LCB suffers from a simi-
lar shortcoming; it selects tasks in which the skill has low-
est expected performance, thus focusing on improving the
agent’s weaknesses. This often leads the agent to obses-
sively practice tasks that it may be unable to solve well.
Finally, both random selection of tasks and selection ac-
cording to the target distribution P fail to account for the
varying difficulty of tasks. These criteria choose to prac-
tice problems independently of the skill’s current capabil-
ity of solving them; furthermore, they often practice tasks
that are irrelevant according to the target task distribution.
EISP, on the other hand, correctly identifies which tasks can
improve skill performance the most, and takes into account
both their relative difficulties and how well their solutions
generalize to related tasks.
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Figure 6. Average skill performance as a function of the number
of sampled training tasks (non-uniform task distribution).

Figure 7 depicts the regions of task space that each method

chooses to explore on a randomly-generated terrain. Ran-
dom sampling and sampling according to the task distribu-
tion P do not adapt their task-selection strategies accord-
ing to the problem. EI identifies two regions of the task
space in which the skill is effective and focuses on trying
to further improve those. LCB, on the contrary, samples
more densely regions that contain difficult tasks. However,
because it does not model whether skill performance is ex-
pected to improve, it often focuses on tasks that are too dif-
ficult. EISP prioritizes practice according to the target dis-
tribution P and selects problems according to how much
they are expected to contribute to improving skill perfor-
mance. In particular, note how it chooses to practice less
on tasks at the beginning of the task range, even though
those tasks have a high probability of occurring according
to P . This happens because EISP quickly realizes that so-
lutions to those tasks can be easily generalized and that no
further samples are required. Finally, the peak of samples
collect by EISP at the end of the task range corresponds
to a particularly difficult part of the terrain which requires
prolonged practice. Note how EISP devotes less attention
to that region than EI since it is capable of predicting when
no further skill improvement is expected.
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Figure 7. Density of samples collected by different training strate-
gies.

We can draw a few important conclusions from our results:
1) non-adaptive strategies implicitly assume that all tasks
can be equally well generalized by the skill—or, equiva-
lently, that the manifold has approximately uniform curva-
ture; this causes them to unnecessarily practice tasks that
may already be well-modeled by the skill; 2) the LCB cri-
terion always selects tasks with lowest predicted perfor-
mance, often repeatedly practicing poorly-performing tasks
as long as they can be infinitesimally improved; 3) EI fo-
cuses on further improving single tasks at which the agent
may already be competent, thus refraining from practicing
more difficult ones, or ones that are more important accord-
ing to the task distribution; and finally 4) because EISP
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uses a model of expected performance to infer the gener-
alization capabilities of a skill, it correctly identifies the
task regions in which practice leads to better generalization
across a wider range of tasks. Furthermore, the use of an
expected skill performance model allows for the identifica-
tion of tasks that are either too difficult to solve or whose
performance cannot yet be further improved, thus leading
the agent to focus on problems that are compatible with its
current level of competence.

7. Related Work
In Section 5 we introduced a spatiotemporal composite ker-
nel to model non-stationary skill performance functions.
Other methods have been proposed to allow GP regres-
sion of non-stationary functions. Rottmann and Burgard
(2010) manually assigned higher noise levels to older sam-
ples, causing them to contribute less to the predicted mean.
This approach, however, relies on domain-dependent cost
functions, which are difficult to design. Spatiotemporal
covariance functions, defined similarly to our composite
kernel kC , have been proposed to solve recursive least-
squares problems on non-stationary domains. These func-
tions, constructed by the product of a standard kernel and
an a Ornstein-Uhlenbeck temporal kernel, often require es-
timating a forgetting factor (Van Vaerenbergh et al., 2012).

Previous research has also addressed the problem of select-
ing training tasks to efficiently acquire a skill. Hausknecht
and Stone (2011) constructed a skill by solving a large
number of tasks uniformly drawn from the task space. They
exhaustively varied policy parameters and identified which
tasks were solved, thus implicitly acquiring the skill by
sampling all possible tasks. Kober, Wilhelm, Oztop, and
Peters (2012) proposed a Cost-regularized Kernel Regres-
sion method for learning a skill but did not address how to
select training tasks; in their experiments, tasks were sam-
pled uniformly at random from the task space. Similarly,
da Silva, Konidaris, and Barto (2012) proposed to acquire
a skill by analyzing the structure of the underlying policy
manifold, but assumed that tasks were selected uniformly
at random. Finally, Baranes and Oudeyer (2013) proposed
an active learning framework for acquiring parameterized
skills based on competence progress. Their approach is
similar to ours in that promising tasks are identified via
an adaptive mechanism based on expected performance.
However, their approach, unlike ours, requires a discrete
number of tasks and can only optimize the task-selection
problem over finite and discrete subsets of the task space.

8. Conclusions and Future Work
We have presented a general framework for actively learn-
ing parameterized skills. Our method uses a novel acqui-

sition criterion capable of identifying tasks that maximize
expected skill performance improvement. We have derived
the analytical expressions necessary for optimizing it and
proposed a new spatiotemporal kernel especially tailored
for non-stationary performance models. Our method is ag-
nostic to policy and skill representation and can be cou-
pled with any of the recently-proposed parameterized skill
learning algorithms (Kober et al., 2012; da Silva et al.,
2012; Neumann et al., 2013; Deisenroth et al., 2014).

This work can be extended in several important directions.
The composite kernel kC can be used to compute a pos-
terior over expected future skill performance, which sug-
gests an extension of EISP to the case of multistep deci-
sions. This can be done by evaluating the predicted poste-
rior mean (Equation 3) over a set of test points {τi, T+∆},
where T is the current time and ∆ is a positive time incre-
ment. This is useful in domains where a one-step look-
ahead strategy, like the one optimized in Equation 7, is too
myopic. Secondly, our model uses a homoscedastic GP
prior, which assumes constant observation noise through-
out the input domain. This may be limiting if the agent has
sensors with variable accuracy depending on the task—for
instance, it may be unable to accurately identify the posi-
tion of distant targets. Heteroscedastic GP models (Kuin-
dersma et al., 2012) may be used to address this limitation.
Finally, taking advantage of human demonstrations may
help biasing EISP towards tasks which an expert deems
relevant, which suggests an integration with active learn-
ing from demonstration techniques (Silver et al., 2012).

A. Appendix
Analytical solutions to Equations 7 and 8 depend on the
choice of kernel. If we assume that P is a uniform distri-
bution over tasks and define kS as the squared exponential
kernel kS(τ1, τ2) = σ2

f exp(−L−1(τ1 − τ2)2), then:

∇τkC(τ t, τ tii ) = − 2

L
(τ − τi)kC(τ t, τ tii )

gt(τ
ti
i ) =

1

2

(
σ2
f

√
πL

)
kT (t+ 1, ti)×[

erf
(
τi −A√

L

)
− erf

(
τi −B√

L

)]
∇τgt(τ tii ) = σ2

fkT (t+ 1, ti)×[
exp

(
−(A− τi)2

L

)
−

exp

(
−(B − τi)2

L

)]
.

where erf(z) is the Gauss error function.
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B. Supplementary Material
B.1. The Catapult Domain

We simulate launches in the Catapult Domain using stan-
dard ballistic equations. We assumed Earth’s gravity. Let
us assume that the projectile is launched with velocity v
and angle θ, and that Cx and Cy are, respectively, the
horizontal and vertical coordinates of the catapult. We
can decompose the velocity vector of the projectile in its
horizontal and vertical components: vx = vcos(θ) and
vy = vsin(θ). The projectile follows a parabolic path
y(t) = ax(t)2 + bx(t) + c, where x(t) and y(t) are the
horizontal and vertical coordinates of the projectile at time
t, respectively, and a, b and c are parabola parameters:

a =
−9.8

2v2cos(θ)2

b =
vy
vx

+
9.8Cx
v2
x

c = Cy −
vyCx
vx
− 1

2

9.8C2
x

v2
x

The point of impact of the projectile is given by the point
where its parabolic path intersects the equation describing
the terrain. If using a piecewise-linear approximation of the
terrain surface, the impact point can be found by identify-
ing the coordinates where the parabolic path of the projec-
tile first intersects one of the line segments describing the
terrain.

B.2. Algorithms and Parameters

Our optimistic performance upper bound j(τ) is related to
Upper Confidence Bound (UCB) policies (Kroemer et al.,
2010). The latter, however, use UCB bounds to identify
single tasks with highest expected performance; we use
them as base values over which skill improvement on a task
distribution is computed.

As mentioned in Section 6, we learned the parameterized
skill via Gaussian Process (GP) regression. This is simi-
lar to the approach taken by Kober, Wilhelm, Oztop, and
Peters (2012) but with no cost regularization. The parame-
terized skill used a squared exponential kernel, as described
in the Appendix A. Its parameters were found by evidence
maximization. The expected skill performance model used
our spatiotemporal kernel (Equation 18).
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