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ABSTRACT

Typically, fault-tolerance in parallel database systems is handled by
restarting a query completely when a node failure happens. How-
ever, when deploying a parallel database on a cluster of commodity
machines or on laaS offerings such as Amazon’s Spot Instances,
node failures are a common case. This requires a more fine-granular
fault-tolerance scheme. Therefore, most recent parallel data man-
agement platforms such as Hadoop or Shark use a fine-grained
fault-tolerance scheme, which materializes all intermediate results
in order to be able to recover from mid-query faults. While such
a fine-grained fault-tolerance scheme is able to efficiently handle
node failures for complex and long-running queries, it is not opti-
mal for short-running latency-sensitive queries since the additional
costs for materialization often outweigh the costs for actually exe-
cuting the query.

In this demo, we showcase our novel cost-based fault-tolerance
scheme in XDB. It selects, which intermediate results to materialize
such that the overall query runtime is minimized in the presence of
node failures. For the demonstration, we present a computer game
called DoomDB. DoomDB is designed as an ego-shooter game with
the goal of killing nodes in an XDB database cluster and thus pre-
vent a given query to produce its final result in a given time frame.
One interesting use-case of DoomDB is to use it for (crowdsourcing)
the testing activities of XDB.

1. INTRODUCTION

Modern parallel database systems such as SAP HANA [1], Green-
plum [6] and Terradata [4] are major platforms for analyzing large

amounts of structured data efficiently. Most existing parallel database

systems have been designed to run on clusters with highly available
hardware components where node failures can be ignored. Thus,
fault-tolerance is typically handled in a coarse-grained manner by
restarting a query completely when a node failure occurs.

Today, there is a growing trend to build systems for analyzing
large amounts of data that run on clusters of commodity machines
or on laaS offerings such as Amazon’s Spot Instances where node
failures are a common case. Therefore, more recent parallel data
management platforms such as Hadoop [7], Impala [3] or Shark [8]
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use a fine-grained fault-tolerance scheme, which materializes inter-
mediate results to being able to recover from mid-query faults. For
example, many of these systems compile queries into MapReduce-
based execution plans and typically materialize the output of each
map and reduce function (either in memory or on disk).

While such a fine-grained fault-tolerance scheme is able to effi-
ciently handle node failures for complex and long-running queries,
such a scheme is not efficient for short-running latency-sensitive
queries since the additional costs for materialization often outweigh
the costs for actually executing the query. Moreover, adding the
materialization costs to the runtime of short-running queries has an
additional negative effect since this increases the probability that a
node failure occurs during the execution time.

In order to address this problem, we are currently building an
open source parallel database system, called XDB.! XDB is imple-
mented using a middleware approach on top of an existing single
node database system (MySQL in our case) and offers a cost-based
fault-tolerance scheme to restart queries from mid-query faults. Com-
pared to existing systems like Hadoop, XDB does not materialize
all intermediate results but selects a subset of intermediate results
to be materialized (called materialization configuration further on).
The main goal of the cost model is to find an optimal materializa-
tion configuration for a given query, such that the run-time of a
given query is minimized under the presence of node failures.

In this demo, we present our novel cost-based fault-tolerance
scheme in XDB by showcasing a computer game called DoomDB.
DoomDB is designed as an ego-shooter game and the goal is to kill
nodes in an XDB database cluster before a given analytical SQL
query can produce its complete final result in a given time frame.
In the game, database nodes are represented as boxes that need to
be destroyed by the user. If a box is destroyed, a node failure is in-
troduced (i.e., the database node is forced to stop working), which
triggers XDB to redeploy sub-plans executed on that node. The
progress of the query execution is displayed in DoomDB while the
game is running. If XDB can not finish the query in a given time
frame, the user wins the game. For showcasing different scenarios
DoomDB takes different input parameters such as a pre-partitioned
database and a user-defined SQL query. One interesting use-case
of DoomDB is to use it for (crowdsourcing) the testing activities of
our distributed and parallel database system XDB.

2. XDB OVERVIEW

XDB is built using a middleware approach, which leverages an
existing single node database for query processing. While the mid-
dleware implements our novel concept for the cost-based fault-
tolerance scheme (amongst other concepts for data partitioning and
parallel query execution), the single node database systems are used

"https://code.google.com/p/xdb/
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Figure 1: System Architecture of XDB

to efficiently store and query the data.

Figure 1 shows the system architecture of XDB. An XDB cluster
consists of one Master Node, which accepts analytical SQL queries
from clients, several Query Coordinators, which are responsible
to coordinate and monitor the query execution and finally a huge
number of Compute Nodes, which actually execute sub-plans of the
given query over the partitioned data. In the following, we briefly
discuss the tasks of each node type. Details about XDB are given in
the technical report [2].

Master Node: The Master Node hosts two components, a Com-
piler+Optimizer and a Master Tracker. The Compiler+Optimizer
component takes a SQL query as input and produces a compile plan
using the catalog (which holds the table metadata as well statistics).
The compile plan is then optimized using rule-based and cost-based
optimizations for join-reordering and predicate push-down. The
second component, the Master Tracker, has different tasks: First, it
monitors the cluster resources (Query Coordinators and Compute
Nodes) and restarts them when these nodes fail. Second, the Mas-
ter Tracker assigns a compile plan to a Query Coordinator, which
is responsible for coordinating and monitoring its execution.

Query Coordinator: A Query Coordinator hosts two compo-
nents: a Query Scheduler and a Query Tracker. The Query Sched-
uler takes a compile plan from the Master Node and splits it into
multiple partial execution plans and sends those plans to different
Compute Nodes for parallel execution. The result of each par-
tial execution plan is materialized to a fault-tolerant shared disk.
Materialization is thus used for implementing our cost-based fault-
tolerance scheme, but also for other reasons such as repartition-
ing data for parallel query processing. The second component, the
Query Tracker, is responsible for monitoring and redeploying a par-
tial execution plan in case of a Compute Node failure. We separate
the Query Coordinator from the Master Tracker to be able to scale
the number of Query Coordinators independently from the load in
the system.

Compute Node: As discussed before, a Compute Node receives
a partial execution plan (represented as SQL-queries) from the Query
Coordinator and the Executor component then runs these plans.
Moreover, the Executor signals the Query Coordinator once a par-
tial execution plan has finished.
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Figure 2: Compilation Process in XDB

3. COST-BASED FAULT-TOLERANCE

In this section, we first present the strategy of how XDB enumer-
ates different materialization configurations for a given analytical
SQL query. We then present the cost function, which is used to
estimate the total runtime resulting for a given query and a materi-
alization configuration.

3.1 Plan Enumeration

XDB uses a two-step approach for enumerating different mate-
rialization configurations. It first compiles an optimized parallel
compile plan for a given analytical SQL query and then enumerates
all possible materialization configurations for the compile plan.

Figure 2 represents an overview of the compilation process: (1)
A given analytical SQL query is first compiled and optimized. The
result is a left-deep Compile Plan, which consists of relational op-
erators. (2) For parallelization, the compile plan is annotated with
additional repartition operations that are required when executing
the query over a horizontally partitioned database. The result is
called a Parallelized Compile Plan.

For the resulting Parallelized Compile Plan, all the different ma-
terialization configurations are enumerated. A materialization con-
figuration defines for each intermediate result whether it should be
materialized or not.

For example, in Figure 2 it defines for each of the intermediate
results 1 —7 whether it should be materialized. XDB currently uses
an exhaustive search to enumerate all possible materialization com-
binations. In general this results in 2" different combinations for n
intermediate results. In its current version, the repartitioning oper-
ator of XDB always materializes its result. Thus, in our example,
we only need to enumerate 2° different materialization configura-
tions since the intermediate result 6 is materialized in all cases due
to repartitioning.

For each materialization configuration, XDB invokes its cost func-
tion (described in the next section) to estimate the total runtime un-
der failures and selects the materialization configuration with the
minimal estimated total runtime.

3.2 Cost Function

The goal of the cost function is to estimate the runtime for a
given Parallelized Compile Plan and a given materialization con-
figuration.

Input: For estimating the total runtime under failures, the cost
function takes the following parameters as input (1) an Abstract
Execution Plan, which is derived from the Parallelized Compile
Plan, (2) the runtime of each operator for a given materialization
configuration (3) the mean-time-between-failures (MTBF) of the
Compute Nodes, and (4) the mean-time-to-repair (MTTR).2

2We assume all Compute Nodes have the same MTBF and MTTR.
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Figure 3: Parallel Execution Plans in XDB

The first input (1) is an Abstract Execution Plan, which is an ab-
stract version of the actual Parallel Execution Plan in XDB. The
actual Parallel Execution Plan results from the Parallel Compile
Plan and the selected materialization configuration. Each opera-
tor in a Parallel Execution Plan represents a sub-plan of the Paral-
lel Compile Plan that is executed over the horizontally partitioned
database (i.e., one node is used to represent the sub-plan over each
partition). Figure 3 (left hand side) shows a Parallel Execution Plan
for the Parallel Compile Plan in Figure 3. This Parallel Execution
Plan has two levels whereas the first level materializes the output of
the repartition operator (i.e., intermediate result 6); i.e., the nodes
1.1 to 1.3 of the Parallel Execution Plan execute the same sub-plan
over different partitions of the database (i.e., 3 partitions in the ex-
ample), which materialize the intermediate result 6 of the Parallel
Compile Plan.

Moreover, a Parallel Execution Plan always executes the same
sub-plan in one level /, however, over different partitions. In order
to simplify our cost model, we use an Abstract Execution Plan that
uses only one operator to represent each level (see right hand side of
Figure 3). The idea of an Abstract Execution Plan is that levels are
executed sequentially whereas each level materializes its interme-
diate result. Moreover, we assume that levels are independent from
each other (i.e., if one sub-plan in a level fails, it can recover from
the materialized result in the level below). In XDB, we achieve this
independence guarantee by materializing the intermediate results
of a sub-plan to a fault-tolerant shared disk (e.g., a shared disk such
Amazon EBS when running XDB on EC2 instances).

The second input (2) to the cost function is the time required to
execute a given sub-plan (which includes its materialization costs).
We define the runtime of a level as the maximum runtime of all sub-
plans in that level (e.g., the runtime of level / = 1 is the maximum
runtime of the sub-plans 1.1 to 1.3 in Figure 3). The runtime of
an individual sub-plan can be derived by using standard cost mod-
els found in databases. It is important to note that we include the
materialization costs for each sub-plan into the estimated runtime
(e.g., runtime #; | includes the costs to materialize its intermediate
result). Moreover, the network cost for transferring data between
Compute Nodes is also included in the consuming sub-plan (e.g.,
runtime #, | includes the costs to ship the data over the network).

The last input to the cost function is (3) the MTBF and (4) the
MTTR of the Compute Nodes, which can be derived from cluster
statistics.

Wasted Time: For the given input, the cost function then enu-
merates all possible failure scenarios in order to estimate the av-
erage wasted time W (i.e., the execution time that is lost due to
potential node failures). For a Abstract Execution Plan with L lev-
els, we enumerate L different failure scenarios whereas a individual
scenario / represents the case where a node executing a sub-plan in
level [ fails. For example, Figure 4 shows all possible failure sce-
narios for the Abstract Execution Plan of Figure 3 with two levels:
Scenario (1) represents the case where one or more sub-plans in
level I =1 fail, and Scenario (2) represents the case where one or
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Figure 4: Wasted Time Model in XDB

more sub-plans in level / = 2 fail.

The x-axis in each scenario represents the point in time when
the node failure(s) happen during query execution, whereas the y-
axis represents the wasted time. Intuitively for Scenario 1, this
means the following: if a node in level 1 fails while level 2 is being
executed (i.e., a failure happens in the range of (¢1,#; +#,] on the x-
axis), we do not waste any time. However, if a node in level 1 fails
while level 1 is being executed (i.e., a failure happens somewhere
in the range of [0,7,]), we waste the time spend in level 1.

For each scenario /, the average wasted time wy is thus given by
0.5 -1; whereas #; is the runtime of level /. In a two-level plan (as in
our example), the average wasted time for each three scenarios is
thus defined as follows: wi = (0.5-#1) and wp = (0.5-1).

Figure 3 shows that each level consists of one or more sub-
plans. The probability that one sub-plan in level / fails is denoted
by f;, and can be derived for a given MTBF as follows: f; =
(1 —e(~1/MTBE) \where 1, represents the runtime of that level. It is
worth noting that probability f; increases with increasing runtime
1; of that level. Consequently, the probability that one sub-plan in
level [ succeeds is s; =1 — fj.

To this end, the failure scenarios above are not equally likely
to happen. For a scenario /, we can calculate its probability p; as
follows. We therefore define p; = F;, whereas F; represents the
probability that at least one node in level / fails. Moreover, S; =
1 — F; is the probability that all nodes in level / succeed, which
means that S; = (s;)" where n represents the number of parallel
sub-plans in that level (for example, n = 3 for both levels in Figure
3).

Finally, based on these findings, we define the average wasted
time for a two level plan as W = Z[L:I pr-wy, which is W = py -
w1 + p2 - wo in the example above.

Estimated Total Runtime: In order to estimate the total runtime
T under the presence of node failures for the given input parame-
ters, the idea is to sum up the estimated runtime R of a given query
(without a node failure) and the additional runtime resulting from
node failures. The additional runtime resulting from node failures
is the wasted time W and the mean-time-to-repair multiplied by the
number of attempts a needed to achieve a certain success rate for
finishing the query (i.e., until the query produces its final result).
The runtime R includes the materialization costs for a given mate-
rialization configuration.

We first look into the definition of the success rate S(A < a) of
a query up to attempt a (where a = 0 for the first attempt). The
success rate of one attempt is § = S - S for a two-level plan (re-
member that S; is the success rate of a level /) and the failure rate of
an attempt is F = 1 —S. The success rate up to attempt a = 0 is thus
defined as S(A < 0) = S. In general, the success rate up to attempt
a(fora>0)is: SA<a)=S+S-F+S-F>+..+S-F% The
intuition is that S(A < a) defines the cumulative probability that the
query finishes in any of the attempts fromA =0to A = a.

The formula to calculate S(A < a) represents a geometric se-
ries. Thus, for a — oo the success rate of the query is §/(1—F) =



S/S = 1. For a given finite a, the success rate is S(A < a) =
S-(1—=F@tDy/(1 —F) = (1 —F@*D). That way, we can derive
the number of attempts a needed to achieve a given success rate S
(e.g., of 99%), which is a configuration knob in the cost model.

Based on the given number of attempts, we can now estimate
the total runtime 7 of a query (under node failures) as follows:
T=R+W -F+W-F2+W-F3+ ... +W- -F'+a-MTTR=R+
(WHW-F+W -F24. ... +W-F% —W+a-MTTR. MTTR is the
time to repair a sub-plan: i.e., to redeploy it to another node (in case
we replicated partitions) or the time until a failed node needs to be
restarted (if we do not replicate partitions). The second term of this
formula is again a geometric series. Thus, we can easily calculate
TasT=R+W-(1—Ft))/(1—F)—W +a-MTTR. If we set
F =0 and a = 0 in this formula (i.e., no node failure happens), then
T = R holds.

4. DOOMDB DEMO

In this demo, we showcase our novel cost-based fault-tolerance

scheme in XDB by presenting a visual computer game called DoomDB.

XDB will be deployed on a Amazon AWS cluster of 10 m1.medium
EC2 instances (representing weak commodity machines). The goal
of the game is that a user kills database nodes and thus prevents the
query from finishing in a given time frame. If XDB can not finish
the query in a given time, the user wins the game.

When a user starts the game, she can either choose to start a new
game or to join an existing game in multi-player mode. When start-
ing a new game, the user can enter the following input parameters:

e Database: A pre-partitioned TPC-H database (with 10 parti-
tions per table) of different scaling factors (i.e., SF = 10 for
short running games and SF' = 100 for long running games)
can be selected.

e SQL Query: A SQL query from a subset of the TPC-H
benchmark queries can be selected.

o MTBF: The mean-time-between-failures of Compute Nodes
can be given to influence the materialization configuration.

e MTTR: The mean-time-to-repair Compute Nodes can be given.

o Degree of difficulty (d > 2): One of these degrees can be
chosen by the player. The higher the degree d is, the more
time is given to XDB to finish the query (i.e., d - T is given to
the player to kill the query where T is the estimated runtime
with failures). Thus, for higher degrees the harder it is for
players to prevent XDB of finishing the query.

After entering the input parameters, the game is started and the
user can kill Compute Nodes represented as boxes (see Figure 5).
Boxes have guards, which protect the Compute Nodes. Once a
Compute Node is killed, its process is stopped. XDB then re-deploys
the aborted sub-plans of the killed Compute Node and restarts these
sub-plans after the Compute Node is repaired (i.e., after the given

MTTR). The progress of the query execution is displayed in DoomDB

while the game is running.

S. RELATED WORK

Two novel approaches, which tackle a similar problem as XDB
are FTOps [5] and Osprey [9].

FTOps presents a cost-based model for intra-query fault-tolerance
without blocking and an optimizer to find the best strategy for an
operator (nothing, check-pointing or materializing). Compared to
XDB, FTOps uses a cost model, which does not define the proba-
bility of a node failure based on the runtime of a query. Instead it
uses fixed constants for the failure probability.

Osprey is an approach, which is only working for analytical
queries over a star schema. It first splits the analytical queries into
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Figure 5: DoomDB Gaming Screen

sub-queries over partitions and then executes a final merge over
all intermediate results of sub-queries. If a sub-query fails, it is
restarted on a different replica. XDB extends the ideas presented
in Osprey to arbitrary schemata and queries. Moreover, XDB also
presents a cost model to find the best deployment under different
failure rates.

6. CONCLUSIONS AND OUTLOOK

In this demo paper we presented our parallel database system
called XDB, which is implemented using a middleware approach
over an existing database system. To showcase the cost-based fault-
tolerance scheme in XDB, we implemented an ego-shooter com-
puter game called DoomDB. The goal of the game is to kill an
analytical SQL query running in a fault-tolerant environment on
a cluster of database nodes. One important avenue of future work
is to extend our current cost model for bushy plans as well as for
arbitrary graph-based plans (instead of left-deep plans only).
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