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Abstract

Quality assurance is one the most important challenges
in crowdsourcing. Assigning tasks to several workers
to increase quality through redundant answers can be
expensive if asking homogeneous sources. This limi-
tation has been overlooked by current crowdsourcing
platforms resulting therefore in costly solutions. In order
to achieve desirable cost-quality tradeoffs it is essential
to apply efficient crowd access optimization techniques.
Our work argues that optimization needs to be aware of
diversity and correlation of information within groups
of individuals so that crowdsourcing redundancy can
be adequately planned beforehand. Based on this intu-
itive idea, we introduce the Access Path Model (APM),
a novel crowd model that leverages the notion of ac-
cess paths as an alternative way of retrieving informa-
tion. APM aggregates answers ensuring high quality and
meaningful confidence. Moreover, we devise a greedy
optimization algorithm for this model that finds a prov-
ably good approximate plan to access the crowd. We
evaluate our approach on three crowdsourced datasets
that illustrate various aspects of the problem. Our results
show that the Access Path Model combined with greedy
optimization is cost-efficient and practical to overcome
common difficulties in large-scale crowdsourcing like
data sparsity and anonymity.

Introduction
Crowdsourcing has attracted the interest of many research
communities such as database systems, machine learning,
and human computer interaction because it allows humans
to collaboratively solve problems that are difficult to handle
with machines only. Two crucial challenges in crowdsourcing
independent of the field of application are (i) quality assur-
ance and (ii) crowd access optimization. Quality assurance
provides strategies that proactively plan and ensure the qual-
ity of algorithms run on top of crowdsourced data. Crowd
access optimization then supports quality assurance by care-
fully selecting from a large pool the crowd members to ask
under limited budget or quality constraints. In current crowd-
sourcing platforms, redundancy (i.e. assigning the same task
to multiple workers) is the most common and straightfor-
ward way to guarantee quality (Karger, Oh, and Shah 2011).
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Access Path Error rate Cost

Pediatricians 10% $20
Logopedists 15% $15
Other parents 25% $10

Table 1: Access path configuration for Example 1

Simple as it is, redundancy can be expensive if used with-
out any target-oriented approach, especially if the errors of
workers show dependencies or are correlated. Asking people
whose answers are expected to converge to the same opinion
is neither efficient nor insightful. For example, in a sentiment
analysis task, one would prefer to consider opinions from
different non-related groups of interests before forming a de-
cision. This is the basis of the diversity principle introduced
by (Surowiecki 2005). The principle states that the best an-
swers are achieved from discussion and contradiction rather
than agreement and consensus.

In this work, we incorporate the diversity principle in
a novel crowd model, named Access Path Model (APM),
which seamlessly tackles quality assurance and crowd access
optimization. It explores crowd diversity not on the individ-
ual worker level but on the common dependencies of workers
while performing a task. In this context, an access path is a
way of retrieving a piece of information from the crowd. The
configuration of access paths can be based on various criteria
depending on the task: (i) workers’ demographics (e.g. pro-
fession, group of interest, age) (ii) the source of information
or the tool that is used to find the answer (e.g. phone call
vs. web page, Bing vs. Google) (iii) task design (e.g. time of
completion, user interface) (iv) task decomposition (e.g. part
of the answers, features).

Example 1. Peter and Aanya natively speak two different
languages which they would like to teach to their young
children. At the same time, they are concerned how this mul-
tilingual environment affects the learning abilities of their
children. More specifically, they want to answer the question

“Does raising children bilingually cause language delay?”. To
resolve their problem, they can ask three different groups of
people (access paths):

Figure 1 illustrates the given situation with respect to the
Access Path Model. In this example, each of the groups ap-
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LogopedistsPediatricians Parents

. . . . . . . . .

Does raising children
bilingually cause
language delay?

?
?

?

Figure 1: APM for crowdsourcing a medical question

proaches the problem from a different perspective and has
different associated error rates and costs. Considering that
Peter and Aanya have a limited budget to spend and can ask
more than one person on the same access path, they are inter-
ested in finding the optimal combination of access paths that
will give them the most insightful information for their budget
constraints. Throughout this paper, a combination of access
paths will be referred to as an access plan and it defines how
many different people to ask on each available access path.
Our model aims at helping general requesters in crowdsourc-
ing platforms to find optimal access plans and appropriately
aggregate the collected data. Results from experiments on
real-world crowdsourcing show that a pre-planned combina-
tion of diverse access paths indeed overperforms pure (i.e.
single access path) access plans, random selection, and equal
distribution of budget across access paths.

Contributions
Previous work on quality assurance and crowd access opti-
mization focuses on two different approaches: majority-based
strategies and individual models. Majority voting is oblivious
to personal characteristics of crowd workers and is therefore
limited in terms of optimization. Individual models instead
base their decisions on the respective performance of each
worker targeting those with the best accuracy (Dawid and
Skene 1979; Whitehill et al. 2009). These models are useful
for spam detection and pricing schemes but do not guarantee
answer diversity and might fall into partial consensus traps.

As outlined in Table 2, the APM is a middle-ground solu-
tion between these two choices and offers several advantages.
First, it is aware of answer diversity which is particularly
important for requests without an established ground truth.
Second, since it manages group-based answer correlations
and dependencies, it facilitates efficient optimization of re-
dundancy. Third, the APM is a practical model for current
crowdsourcing marketplaces where due to competition the
availability of a particular person is never guaranteed or au-
thorships may be hidden for privacy reasons. Last, its predic-
tions are mapped to meaningful confidence levels which can
simplify the interpretation of results.

In summary, this work makes the following contributions:
• Modeling the crowd for quality assurance. We design

the Access Path Model as a Bayesian Network that through
the usage of latent variables is able to capture and utilize
crowd diversity from a non-individual point of view. The
APM can be applied even if the data is sparse and crowd
workers are anonymous.

Majority Individual Access Path
Voting Models Model

Diversity
awareness 7 3 3

Cost-efficient
optimization 7 7 3

Sparsity
Anonymity 3 7 3

Meaningful
confidence 3 7 3

Table 2: Comparison of APM with current approaches.

• Crowd access optimization. We use an information-
theoretic objective for crowd access optimization. We prove
that our objective is submodular, allowing us to adopt effi-
cient greedy algorithms with strong guarantees.

• Real-world experiments. Our extensive experiments
cover three different domains: Answering medical ques-
tions, sport events prediction and bird species classification.
We compare our model and optimization scheme with state
of the art techniques and show that it makes robust predic-
tions with lower cost.

Problem Statement
In this work, we identify and address two closely related
problems: (1) modeling and aggregating diverse crowd an-
swers which we call the crowdsourced predictions problem,
and (2) optimizing the budget distribution for better quality
referred to as access path selection problem.

Problem 1 (CROWDSOURCED PREDICTIONS). Given a
task represented by a random variable Y , and a set of an-
swers from W workers represented by random variables
X1, . . . , XW , the crowdsourced prediction problem is to find
a high-quality prediction of the outcome of task Y by aggre-
gating these votes.

Quality criteria. A high-quality prediction is not only ac-
curate but should also be linked to a meaningful confidence
score which is formally defined as the likelihood of the predic-
tion to be correct. This property simplifies the interpretation
of predictions coming from a probabilistic model. For exam-
ple, if a doctor wants to know whether a particular medicine
can positively affect the improvement of a disease condition,
providing a raw yes/no result answer is not sufficiently in-
formative. Instead, it is much more useful to associate the
answer with a trustable confidence score.
Requirements and challenges. To provide high quality pre-
dictions, it is essential to precisely represent the crowd. The
main aspects to be represented are (i) the conditional de-
pendence of worker answers within access paths given the
task and (ii) the conditional independence of worker answers
across access paths. As we will show in this paper, modeling
such dependencies is also crucial for efficient optimization.
Another realistic requirement concerns the support for data
sparsity and anonymity. Data sparsity is common in crowd-
sourcing (Venanzi et al. 2014) and occurs when the number
of tasks that workers solve is not sufficient to estimate their
errors which can negatively affect quality. In other cases, the
identity of workers may not available for privacy reasons.
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Problem 2 (ACCESS PATH SELECTION). Given a task rep-
resented by a random variable Y , that can be solved by the
crowd following N different access paths denoted with the
random variables Z1, . . . , ZN , using a maximum budget B,
the access path selection problem is to find the best possible
access plan Sbest that leads to a high-quality prediction of
the outcome of task Y .

An access plan defines how many different people are cho-
sen to complete the task from each access path. In Example 1,
we will ask one pediatrician, two logopedists and three dif-
ferent parents if the access plan is S = [1, 2, 3]. Each access
plan is associated with a cost c(S) and quality q(S). For ex-
ample, c(S) =

∑3
i=1 ci · S[i] = $80 where ci is the cost of

getting one single answer through access path Zi. In these
terms, the access path selection problem can be generally
formulated as:

Sbest = argmax
S∈S

q(S) s.t.
N∑
i=1

ci · S[i] ≤ B (1)

This knapsack maximization problem is NP-Hard even
for submodular functions (Feige 1998). Hence, designing
bounded and efficient approximation schemes is useful for
realistic crowd access optimization.

Access Path Model
The crowd model presented in this section aims at fulfilling
the requirements specified in the definition of Problem 1
(CROWDSOURCED PREDICTION) and enables our method to
learn the error rates from historical data and then accordingly
aggregate worker votes.

Access Path Design
Due to the variety of problems possible to crowdsource, an
important step concerns the design of access paths. The ac-
cess path notion is a broad concept that can accommodate
various situations and may take different shapes depending
on the task. Below we describe a list of viable configurations
that can be easily applied in current platforms.
• Demographic groups. Common demographic characteris-

tics (location, gender, age) can establish strong statistical
dependencies of workers’ answers (Kazai, Kamps, and
Milic-Frayling 2012). Such groups are particularly diverse
for problems like sentiment analysis or product evaluation
and can be retrieved from crowdsourcing platforms as part
of the task, worker information, or qualification tests.

• Information sources. For data collection and integration
tasks, the data source being used to deduplicate or match
records (addresses, business names etc.) is the primary
cause of error or accuracy (Pochampally et al. 2014).

• Task design. In other cases, the answer of a worker may be
psychologically affected by the user interface design. For
instance, in crowdsourced sorting, a worker may rate the
same product differently depending on the scaling system
(stars, 1-10 etc.) or other products that are part of the same
batch (Parameswaran et al. 2014).

• Task decomposition. Often, complicated problems are de-
composed into smaller ones. Each subtask type can serve

as an access path. For instance, in the bird classification
task that we study later in our experiments, workers can
resolve separate features of the bird (i.e. color, beak shape
etc.) rather than its category.

In these scenarios, the access path definition natively comes
with the problem or the task design. However, there are sce-
narios where the structure is not as evident or more than one
grouping is applicable. Helpful tools in this regard include
graphical model structure learning based on conditional inde-
pendence tests (De Campos 2006) and information-theoretic
group selection (Li, Zhao, and Fuxman 2014).
Architectural implications. We envision access path design
as part of the quality assurance and control module for new
crowdsourcing frameworks or, in our case, as part of the query
engine in a crowdsourced database (Franklin et al. 2011). In
the latter context, the notion of access paths is one of the
main pillars in query optimization for traditional databases
(Selinger et al. 1979) where access path selection (e.g. se-
quential scan or index) has significant impact on the query
response time. In addition, in a crowdsourced database the
access path selection also affects the quality of query results.
In such an architecture, the query optimizer is responsible for
(i) determining the optimal combination of access paths as
shown in the following section, and (ii) forwarding the design
to the UI creation. The query executor then collects the data
from the crowd and aggregates it through the probabilistic
inference over the APM.

Alternative models
Before describing the structure of the Access Path Model,
we first have a look at other alternative models and their
behavior with respect to quality assurance. Table 3 specifies
the meaning of each symbol as used throughout this paper.
Majority Vote (MV). Being the simplest of the models and
also the most popular one, majority voting is able to produce
fairly good results if the crowdsourcing redundancy is suf-
ficient. Nevertheless, majority voting considers all votes as
equal with respect to quality and can not be integrated with
any optimization scheme other than random selection.
Naı̈ve Bayes Individual (NBI). This model assigns individ-
ual error rates to each worker and uses them to weigh the
incoming votes and form a decision (Figure 2). In cases
when the ground truth is unknown, the error estimation
is carried out through an EM Algorithm as proposed by
(Dawid and Skene 1979). Aggregation (i.e. selecting the best
prediction) is then performed through Bayesian inference.
For example, for a set of votes xt coming from W differ-
ent workers X1, . . . , XW the most likely outcome among
all candidate outcomes yc is computed as prediction =
argmaxyc∈Y p(yc|xt), whereas the joint probability of a can-
didate answer yc and the votes xt is:

p(yc, xt) = p(y)
W∏
w=1

p(xwt|yc) (2)

The quality of predictions for this model highly depends on
the assumption that each worker has solved a fairly sufficient
number of tasks. This assumption generally does not hold for
open crowdsourcing markets where stable participation of
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Symbol Description
Y random variable of the crowdsourced task
Xw random variable of worker w
W number of workers
Zi latent random variable of access path i
Xij random variable of worker j in access path i
N number of access paths
B budget constraint
S access plan
S[i] no. of votes from access path i in plan S
ci cost of access path i
D training dataset
s < y, x > instance of task sample in a dataset
θ parameters of the Access Path Model

Table 3: Symbol description

Y

Xw

. . . . . .
X2X1 XW−1 XW

Figure 2: Naı̈ve Bayes Individual - NBI.

workers is not guaranteed. As we show in the experimental
evaluation, this is harmful not only for estimating the error
rates but also for crowd access optimization because access
plans might not be imlplementable or have a high response
time. Furthermore, even in cases of fully committed work-
ers, NBI does not provide the proper logistics to optimize
the budget distribution since it does not capture the shared
dependencies between the workers. Last, due to the Naı̈ve
Bayes inference which assumes conditional independence
between each pair of workers, predictions of this model are
generally overconfident.

Access Path based models
Access Path based models group the answers of the crowd
according to the access path they originate from. We first
describe a simple Naı̈ve Bayes version of such a model and
then elaborate on the final design of the APM.
Naı̈ve Bayes for Access Paths (NBAP). For correcting the
effects of non-stable participation of individual workers we
first consider another alternative, similar to our original
model, presented in Figure 3. The votes of the workers here
are grouped according to the access path. For inference pur-
poses then, each vote xij is weighed with the average error
rate θi of the access path it comes from. In other words, it is
assumed that all workers within the same access path share
the same error rate. This simplification enables the model
to support highly sparse data. Yet, due to the similarity with
NBI and all Naı̈ve Bayes classifiers, NBAP cannot make pre-
dictions with meaningful confidence especially when there
exists a large number of access paths.
Access Path Model overview. Based on the analysis of previ-
ous models, we propose the Access Path Model as presented
in Figure 4, which shows an instantiation for three access
paths. We design the triple <task, access path, worker> as a
hierarchical Bayesian Network in three layers.
Layer 1. Variable Y in the root of the model represents the

Y

. . .
X21 X2S[2]X1S[1]

. . .
X11 X31

. . .
X3S[3]

θ2θ1 θ3

Figure 3: Naı̈ve Bayes Model for Access Paths - NBAP.

Y

Z2Z1 Z3

. . .
X11 X1S[1]

. . .
X21 X2S[2]

. . .
X31 X3S[3]
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L
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2

L
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Figure 4: Bayesian Network Model for Access Paths - APM.

random variable modeling the real outcome of the task.
Layer 2. This layer contains the random variables modeling
the access paths Z1, Z2, Z3. Each access path is represented
as a latent variable, since its values are not observable. Due to
the tree structure, every pair of access paths is conditionally
independent given Y while the workers that belong to the
same access path are not. The conditional independence is
the key of representing diversity by implementing therefore
various probabilistic channels. Their purpose is to distinguish
the information that can be obtained from the workers from
the one that comes from the access path.

Such enhanced expressiveness of this auxiliary layer over
the previously described NBAP model avoids overconfident
predictions as follows. Whenever a new prediction is made,
the amount of confidence that identical answers from differ-
ent workers in the same access path can bring is first blocked
by the access path usage (i.e. the latent variable). If the num-
ber of agreeing workers within the same access path increases,
confidence increases as well but not at the same rate as it
happens with NBI. Additional workers contribute only with
their own signal, while the access path signal has already
been taken into consideration. In terms of optimization, this
property of the APM makes a good motivation for combining
various access paths within the same plan.
Layer 3. The lowest layer contains the random variables X
modeling the votes of the workers grouped by the access path
they are following. For example, Xij is the j-th worker on
the i-th access path. The incoming edges represent the error
rates of workers conditioned by their access paths.
Parameter learning. The purpose of the training stage is
to learn the parameters of the model, i.e. the conditional
probability of each variable with respect to its parents that
are graphically represented by the network edges in Figure 4.
We will refer to the set of all model parameters as θ. More
specifically, θZi|Y represents the table of conditional error
probabilities for the i-th access path given the task Y , and
θXij |Zi represents the table of conditional error probabilities
for the j-th worker given the i-th access path.

For a datasetD with historical data of the same type of task,
the parameter learning stage finds the maximum likelihood
estimate θMLE = argmaxθ p(D|θ). According to our model,
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the joint probability of a sample sk factorizes as:

p(sk|θ) = p(yk|θ)
N∏
i=1

(
p(zik|yk, θ)

Sk[i]∏
j=1

p(xijk|zik, θ)
)
(3)

where Sk[i] is the number of votes in access path Zi for
the sample. As the access path variables Zi are not observ-
able, we apply an Expectation Maximization (EM) algorithm
(Dempster, Laird, and Rubin 1977) to find the best param-
eters. Notice that applying EM for the network model in
Figure 4 will learn the parameters for each worker in the
crowd. This scheme works if the set of workers involved in
the task is sufficiently stable to provide enough samples for
computing their error rates (i.e. θXij |Zi) and if the worker
id is not hidden. As in many of the crowdsourcing applica-
tions (as well as in our experiments) this is not always the
case, we share the parameters of all workers within an ac-
cess path. This enables us to later apply on the model an
optimization scheme agnostic about the identity of workers.
The generalization is optional for the APM and obligatory
for NBAP.
Training cost analysis. The amount of data needed to train
the APM is significantly lower than what individual models
require which results in a faster learning process. The reason
is that the APM can benefit even from infrequent participation
of individuals Xij to estimate accurate error rates for access
paths Zi. Moreover, sharing the parameters of workers in the
same access path reduces the number of parameters to learn
from W for individual models to 2N for the APM which is
typically several orders of magnitude lower.
Inference. After parameter learning, the model is used to
infer the outcome of a task using the available votes on each
access path. As in previous models, the inference step com-
putes the likelihood of each candidate outcome yc ∈ Y given
the votes in the test sample xt and chooses the most likely
candidate as prediction = argmaxyc∈Y p(yc|xt). As the test
samples contain only the values for the variables X , the joint
probability between the candidate outcome and the test sam-
ple is computed by marginalizing over all possible values of
Zi (Eq. 4). For a fixed cardinality of Zi, the complexity of
inferring the most likely prediction is O(NM).

p(yc, xt) = p(yc)
N∏
i=1

( ∑
z∈{0,1}

p(z|yc)
St[i]∏
j=1

p(xijt|z)
)

(4)

The confidence of the prediction maps to the likelihood that
the prediction is accurate p(prediction|xt). Marginalization
in Equation 4 is the technical step that avoids overconfidence
by smoothly blocking the confidence increase when similar
answers from the same access path are observed.

Crowd Access Optimization
Crowd access optimization is crucial for both paid and non-
paid of crowdsourcing. While in paid platforms the goal is to
acquire the best quality for the given monetary budget, in non-
paid applications the necessity for optimization comes from
the fact that highly redundant accesses might decrease user
satisfaction and increase latency. In this section, we describe

how to estimate the quality of access plans and how to choose
the plan with the best expected quality.

Information Gain as a measure of quality
The first step of crowd access optimization is estimating the
quality of access plans before they are executed. One attempt
might be to quantify the accuracy of individual access paths
in isolation, and choose an objective function that prefers
the selection of more accurate access paths. However, due to
statistical dependencies of responses within an access path
(e.g., correlated errors in the workers’ responses), there is di-
minishing returns in repeatedly selecting a single access path.
To counter this effect, an alternative would be to define the
quality of an access plan as a measure of diversity (Hui and Li
2015). For example, we might prefer to equally distribute the
budget across access paths. However, some access paths may
be very uninformative / inaccurate, and optimizing diversity
alone will waste budget. Instead, we use the joint information
gain IG(Y ;S) of the task variable Y in our model and an
access plan S as a measurement of plan quality as well as
an objective function for our optimization scheme. Formally,
this is is defined as:

IG(Y ;S) = H(Y )−H(Y |S) (5)

An access plan S determines how many variables X to
choose from each access path Zi. IG(Y ;S) measures the
entropy reduction (as measure of uncertainty) of the task vari-
able Y after an access plan S is observed. At the beginning,
selecting from the most accurate access paths provides the
highest uncertainty reduction. However, if better access paths
are exhausted (i.e., accessed relatively often), asking on less
accurate ones reduces the entropy more than continuing to
ask on previously explored paths. This situation reflects the
way how information gain explores diversity and increases
the prediction confidence if evidence is retrieved from inde-
pendent channels. Based on this analysis, information gain
naturally trades accuracy and diversity. While plans with high
information gain do exhibit diversity, this is only a means for
achieving high predictive performance.
Information gain computation. The computation of the
conditional entropy H(Y |S) as part of information gain in
Equation 5 is a difficult problem, as full calculation requires
enumerating all possible instantiations of the plan. Formally,
the conditional entropy can be computed as:

H(Y |S) =
∑

y∈Y,x∈XS

p(x, y) log
p(x)

p(x, y)
(6)

XS refers to all the possible assignments that votes can take
according to plan S. We choose to follow the sampling ap-
proach presented in (Krause and Guestrin 2005a) which ran-
domly generates samples satisfying the access plan according
to our Bayesian Network model. The final conditional entropy
will then be the average value of the conditional entropies
of the generated samples. This method is known to provide
absolute error guarantees for any desired level of confidence
if enough samples are generated. Moreover, it runs in polyno-
mial time if sampling and probabilistic inference can also be
done in polynomial time. Both conditions are satisfied by our
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model due to the tree-shaped configuration of the Bayesian
Network. They also hold for the Naı̈ve Bayes baselines as
simpler tree versions of the APM.
Submodularity of information gain. Next, we derive the
submodularity property of our objective function based on
information gain in Equation 5. The property will then be
leveraged by the greedy optimization scheme in proving con-
stant factor approximation bounds. A submodular function is
a function that satisfies the law of diminishing returns which
means that the marginal gain of the function decreases while
incrementally adding more elements to the input set.

Let V be a finite set. A set function F : 2V → R is sub-
modular if F (S ∪ {v}) − F (S) ≥ F (S′ ∪ {v}) − F (S′)
for all S ⊆ S′ ⊆ V , v 6∈ S′. For our model, this intuitively
means that collecting a new vote from the crowd adds more
information when few votes have been acquired rather than
when many of them have already been collected. While infor-
mation gain is non-decreasing and non-negative, it may not
be submodular for a general Bayesian Network. Information
gain can be shown to be submodular for the Naı̈ve Bayes
Model for Access Paths (NBAP) in Figure 3 by applying the
results from (Krause and Guestrin 2005a). Here, we prove
its submodularity property for the APM Bayesian Network
shown in Figure 4. Theorem 1 formally states the result and
below we describe a short sketch of the proof1.
Theorem 1. The objective function based on information
gain in Equation 5 for the Bayesian Network Model for Ac-
cess Paths (APM) is submodular.

Sketch of Theorem 1. For proving Theorem 1, we consider
a generic Bayesian Network with N access paths and M
possible worker votes on each access path. To prove the
submodularity of the objective function, we consider two sets
(plans) S ⊂ S′ where S′ = S ∪ {vj} , i.e., S′ contains one
additional vote from access path j compared to S. Then, we
consider adding a vote vi from access path i and we prove
the diminishing return property of adding vi to S′ compared
to adding to S. The proof considers two cases. When vi and
vj belong to different access paths, i.e., i 6= j, the proof
follows by using the property of conditional independence
of votes from different access paths given Y and using the
“information never hurts” principle (Cover and Thomas 2012).
For the case of vi and vj belonging to the same access path we
reduce the network to an equivalent network which contains
only one access path Zi and then use the “data processing
inequality” principle (Cover and Thomas 2012).

This theoretical result is of generic interest for other appli-
cations and a step forward in proving the submodularity of
information gain for more generic Bayesian networks.

Optimization scheme
After having determined the joint information gain as an
appropriate quality measure for a plan, the crowd access
optimization problem is to compute:

Sbest = argmax
S∈S

IG(Y ;S) s.t.
N∑
i=1

ci · S[i] ≤ B (7)

1Full proofs available at http://arxiv.org/abs/1508.01951

ALGORITHM 1. GREEDY Crowd Access Optimization

1 Input: budget B
2 Output: best plan Sbest

3 Initialization: Sbest =∅, b = 0
4 while (∃i s.t. b ≤ ci) do
5 Ubest = 0
6 for i = 1 to N do
7 Spure = PurePlan(i)
8 if ci ≤ B − b then
9 ∆IG = IG(Y ;Sbest ∪ Spure)− IG(Y, Sbest)

10 if ∆IG
ci

> Ubest then
11 Ubest = ∆IG

ci

12 Smax = Sbest ∪ Spure

13 Sbest = Smax

14 b = cost(Sbest)

15 return Sbest

where S is the set of all plans. An exhaustive search would
consider |S| =

∏N
i=1

B
ci

plans out of which the ones that
are not feasible have to be eliminated. Nevertheless, efficient
approximation schemes can be constructed given that the
problem is an instance of submodular function maximization
under budget constraints (Krause and Guestrin 2005b; Sviri-
denko 2004). Based on the submodular and non-decreasing
properties of information gain we devise a greedy technique
in Algorithm 1 that incrementally finds a local approximation
for the best plan. In each step, the algorithm evaluates the
benefit-cost ratio U between the marginal information gain
and cost for all feasible access paths. The marginal informa-
tion gain is the improvement of information gain by adding
to the current best plan one pure vote from one access path.
In the worst case, when all access paths have unit cost, the
computational complexity of the algorithm is O(GN2MB),
where G is the number of generated samples for computing
information gain.
Theoretical bounds of greedy optimization. We now em-
ploy the submodularity of information gain in our Bayesian
network to prove theoretical bounds of the greedy optimiza-
tion scheme. For the simple case of unit cost access paths,
the greedy selection in Algorithm 1 guarantees a utility of at
least (1 − 1/e) (= 0.63) times the one obtained by optimal
selection denoted by OPT (Nemhauser, Wolsey, and Fisher
1978). However, the greedy selection scheme fails to provide
approximation guarantees for the general setting of varying
costs (Khuller, Moss, and Naor 1999).

Here, we exploit the following realistic property about the
costs of the access paths and allocated budget to prove strong
theoretical guarantees about our Algorithm 1. We assume
that the allocated budget is large enough compared to the
costs of the access paths. Formally stating, we assume that
the cost of any access path ci is bounded away from total
budget B by factor γ , i.e., ci ≤ γ · B ∀i ∈ {1, . . . , N},
where γ ∈ (0, 1). We state the theoretical guarantees of the
Algorithm 1 in Theorem 2 and below we show a brief sketch
of the proof1.
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Theorem 2. The GREEDY optimization in Algorithm 1
achieves a utility of at least

(
1− 1

e(1−γ)

)
times that obtained

by the optimal plan OPT, where γ = maxi∈{1,...,N}
ci
B .

For instance, Algorithm 1 achieves an approximation ratio
of at least 0.39 for γ = 0.5, and 0.59 for γ = 0.10.

Sketch of Theorem 2. We follow the structure of the proof
from (Khuller, Moss, and Naor 1999; Sviridenko 2004). The
key idea is to use the fact that the budget spent by the algo-
rithm at the end of execution when it can not add an element
to the solution is at least (B − maxi⊆[1,...,N ] ci), which is
lower-bounded by B(1− γ). This lower bound on the spent
budget, along with the fact that the elements are picked greed-
ily at every iteration leads to the desired bounds.

These results are of practical importance in many other
applications as the assumption of non-unit but bounded costs
with respect to budget often holds in realistic settings.

Experimental Evaluation
We evaluated our work on three real-world datasets. The main
goal of the experiments is to validate the proposed model and
the optimization technique. We compare our approach with
other state of the art alternatives and results show that leverag-
ing diversity through the Access Path Model combined with
the greedy crowd access optimization technique can indeed
improve the quality of predictions.
Metrics. The comparison is based on two main metrics: ac-
curacy and negative log-likelihood. Accuracy corresponds to
the percentage of correct predictions. Negative log-likelihood
is computed as the sum over all test samples of the negative
log-likelihood that the prediction is accurate. Hence, it mea-
sures not only the correctness of a model but also its ability
to output meaningful confidence.

-logLikelihood = −
∑
st

log p(prediction = yt|xt) (8)

The closer a prediction is to the real outcome the lower is its
negative log-likelihood. Thus, a desirable model should offer
low values of negative log-likelihood.

Dataset description
All the following datasets come from real crowdsourcing
tasks. For experiments with restricted budget, we repeat the
learning and prediction process via random vote selection
and k-fold cross-validation.
CUB-200. The dataset (Welinder et al. 2010) was built as a
large-scale data collection for attribute-based classification
of bird images on Amazon Mechanical Turk (AMT). Since
this is a difficult task even for experts, the crowd workers are
not directly asked to determine the bird category but whether
a certain attribute is present in the image. Each attribute (e.g.,
yellow beak) brings a piece of information for the problem
and we treat them as access paths. The dataset contains 5-10
answers for each of the 288 available attributes. We keep the
cost of all access paths equal as there was no clear evidence
of attributes that are more difficult to distinguish than others.
The total number of answers is approximately 7.5× 106.

Description Forums

(1) Answers from doctors www.webmd.com
www.medhelp.org

(2) Answers from patients www.patient.co.uk
www.ehealthforum.com

(3) General Q&A forum www.quora.com
www.wiki.answers.com

Table 4: Access Path Design for MedicalQA dataset.

MedicalQA. We gathered 100 medical questions and for-
warded them to AMT. Workers were asked to answer the
questions after reading in specific health forums categorized
as in Table 4 which we then design as access paths. 255 peo-
ple participated in our experiment. The origin of the answer
was checked via an explanation url provided along with the
answer as a sanity check. The tasks were paid equally to pre-
vent the price of the task to affect the quality of the answers.
For experimental purposes, we assign an integer cost of (3,
2, 1) based on the reasoning that in real life doctors are more
expensive to ask, followed by patients and common people.
ProbabilitySports. This data is based on a crowdsourced
betting competition (www.probabilitysports.com) on NFL
games. The participants voted on the question: “Is the home
team going to win?” for 250 events within a season. There are
5,930 players in the entire dataset contributing with 1,413,534
bets. We designed the access paths based on the accuracy of
each player in the training set which does not reveal informa-
tion about the testing set. Since the players’ accuracy in the
dataset follows a normal distribution, we divide this distri-
bution into three intervals where each interval corresponds
to one access path (worse than average, average, better than
average). As access paths have a decreasing error rate, we
assign them an increasing cost (2, 3, 4).

Model evaluation
For evaluating the Access Path Model independently of the
optimization, we first show experiments where the budget
is equally distributed across access paths. The question we
want to answer here is: “How robust are the APM predictions
in terms of accuracy and negative log-likelihood?”
Experiment 1: Constrained budget. Figure 5 illustrates the
effect of data sparsity on quality. We varied the budget and
equally distributed it across all access paths. We do not show
results from CUB-200 as the maximum number of votes per
access path in this dataset is 5-10.
MedicalQA. The participation of workers in this experiment
was stable, which allows for a better error estimation. Thus,
as shown in Figure 5(a), for high redundancy NBI reaches
comparable accuracy with the APM although the negative
log-likelihood dramatically increases. For lower budget and
high sparsity NBI cannot provide accurate results.
ProbabilitySports. Figure 5(b) shows that while the im-
provement of the APM accuracy over NBI and MV is stable,
NBAP starts facing the overconfidence problem while budget
increases. NBI exhibits low accuracy due to very high spar-
sity even for sufficient budget. Majority Vote fails to produce
accurate predictions as it is agnostic to error rates.
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Figure 5: Accuracy and negative log-likelihood for equally distributed budget across all access paths. The negative log-likelihood
of Naı̈ve Bayes models deteriorates for high budget while for the APM it stays stable. NBI is not competitive due to data sparsity.
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Figure 6: Information gain and budget distribution for Prob-
abilitySports (year=2002). As budget increases, GREEDY
access plans exploit more than one access path.

Optimization scheme evaluation

In these experiments, we evaluate the efficiency of the greedy
approximation scheme to choose high-quality plans. For a
fair comparison, we adapted the same scheme to NBI and
NBAP. We will use the following accronyms for the crowd
access strategies: OPT (optimal selection), GREEDY (greedy
approximation), RND (random selection), BEST (votes from
the most accurate access path), and EQUAL (equal distribu-
tion of votes across access paths).
Experiment 2: Greedy approximation and diversity. The
goal of this experiment is to answer the questions: “How
close is the greedy approximation to the theoretical optimal
solution?” and “How does information gain exploit diver-
sity?”. Figure 6 shows the development of information gain
for the optimal plan, the greedily approximated plan, the
equal distribution plan, and three pure plans that take votes
only from one access path. The quality of GREEDY is very
close to the optimal plan. The third access path in Proba-
bilitySports (containing better than average users) reaches
the highest information gain compared to the others. Nev-
ertheless, its quality is saturated for higher budget which
encourages the optimization scheme to select other access
paths as well. Also, we notice that the EQUAL plan does not
reach optimal values of information gain although it maxi-
mizes diversity. Next, we show that the quality of predictions
can be further improved if diversity is instead planned by

using information gain as an objective.
Experiment 3: Crowd access optimization. This experi-
ment combines together both the model and the optimization
technique. The main question we want to answer here is:

“What is the practical benefit of greedy optimization on the
APM w.r.t. accuracy and negative log-likelihood?”
CUB-200. For this dataset (Figure 7(a)) where the access
path design is based on attributes, the discrepancy between
NBAP and the APM is high and EQUAL plans exhibit low
quality as not all attributes are informative for all tasks.
ProbabilitySports. Access Path based models (APM and
NBAP) outperform MV and NBI. NBI plans target concrete
users in the competition. Hence, their accuracy for budget
values less than 10 is low as not all targeted users voted
for all events. Since access paths are designed based on the
accuracy of workers, EQUAL plans do not offer a clear im-
provement while NBAP is advantaged in terms of accuracy
by its preference to select the most accurate access paths.
Experiment 5: Diversity impact. This experiment is de-
signed to study the impact of diversity and conditional depen-
dence on crowd access optimization, and finally answer the
question: “How does greedy optimization on the APM handle
diversity?”. One form of such dependency is within access
path correlation. If this correlation holds, workers agree on
the same answer. We experimented by varying the shared de-
pendency within the access path as follows: Given a certain
probability p, we decide whether a vote should follow the
majority vote of existing answers in the same access path.
For example, for p = 0.4, 40% of the votes will follow the
majority vote decision of the previous workers and the other
60% will be withdrawn from the real crowd votes.

Figure 8(a) shows that the overall quality drops when de-
pendency is high but the Access Path Model is more robust
to it. NBAP instead, due to overconfidence, accumulates all
votes into a single access path which dramatically penalizes
its quality. APM+BEST applies the APM to votes selected
from the access path with the best accuracy, in our case doc-
tors’ answers. Results show that for p > 0.2, it is preferable
to not only select from the best access path but to distribute
the budget according to the GREEDY scheme. Figure 8(b)
shows results from the same experiment for p = 0.4 and vary-
ing budget. APM+GREEDY outperforms all other methods
reaching a stable quality at B = 30.
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Figure 7: Crowd access optimization results for varying budget. Data sparsity and non-guaranteed votes are better handled by the
APM model also for optimization purposes, leading to improved accuracy and confidence.
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Figure 8: Diversity and dependence impact on optimization. As the common dependency of workers within access paths increases,
investing the whole budget on the best access path or randomly is not efficient.

Discussion
We presented experiments based on three different and chal-
lenging crowdsourcing tasks. The chosen datasets highlight
different yet all important insights on the problem. However,
our approach and results are of general purpose and are not
tailored to any of the datasets. The main findings are:
• In real-world crowdsourcing the unrealistic assumption of

pairwise worker independence poses limitations to quality
assurance and increases the cost of crowdsourced solutions
based on individual and majority vote models.

• Managing and exploiting diversity with the APM ensures
quality in terms of accuracy and more significantly negative
log-likelihood. Crowd access optimization schemes on top
of this perspective are practical and cost-efficient.

• Surprisingly, access plans that combine various access
paths make better predictions than plans which spend the
whole budget in a single access path.

Related Work
The reliability of crowdsourcing and relevant optimization
techniques are longstanding issues for human computation
platforms. The following directions are closest to our study:
Quality assurance and control. One of the central works
in this field is presented by (Dawid and Skene 1979). In an
experimental design with noisy observers, the authors use
an Expectation Maximization algorithm (Dempster, Laird,
and Rubin 1977) to obtain maximum likelihood estimates
for the observer variation when ground truth is missing or

partially available. This has served as a foundation for several
following contributions (Ipeirotis, Provost, and Wang 2010;
Raykar et al. 2010; Whitehill et al. 2009; Zhou et al. 2012),
placing David and Skene’s algorithm in a crowdsourcing
context and enriching it for building performance-sensitive
pricing schemes. The APM model enhances these quality
definitions by leveraging the fact that the error rates of work-
ers are directly affected by the access path that they follow,
which allows for efficient optimization.
Query and crowd access optimization. In crowdsourced
databases, quality assurance and crowd access optimization
are envisioned as part of the query optimizer, which needs to
estimate the query plans not only according to the cost but
also to their accuracy and latency. Previous work (Franklin
et al. 2011; Marcus et al. 2011; Parameswaran et al. 2012)
focuses on building declarative query languages with support
for processing crowdsourced data. The proposed optimiz-
ers define the execution order of operators in query plans
and map crowdsourcable operators to micro-tasks. In our
work, we propose a complementary approach by ensuring
the quality of each single operator executed by the crowd.

Crowd access optimization is similar to the expert se-
lection problem in decision-making. However, the assump-
tion that the selected individuals will answer may no
longer hold. Previous studies based on this assumption are
(Karger, Oh, and Shah 2011; Ho, Jabbari, and Vaughan 2013;
Jung and Lease 2013). The proposed methods are neverthe-
less effective for task recommendation, spam detection, and
performance evaluation.
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Diversity for quality. Relevant studies in management sci-
ence (Hong and Page 2004; Lamberson and Page 2012)
emphasize diversity and define the notion of types to refer
to highly correlated forecasters. Another work that targets
groups of workers is introduced by (Li, Zhao, and Fuxman
2014). This technique discards groups that do not prove to be
the best ones. (Venanzi et al. 2014) instead, refers to groups
as communities and all of them are used for aggregation but
not for optimization. Other systems like CrowdSearcher by
(Brambilla et al. 2014) and CrowdSTAR by (Nushi et al.
2015) support cross-community task allocation.

Conclusion
We introduced the Access Path Model, a novel crowd model
that captures and exploits diversity as an inherent property
of large-scale crowdsourcing. This model lends itself to effi-
cient greedy crowd access optimization. The resulting plan
has strong theoretical guarantees, since, as we prove, the in-
formation gain objective is submodular in our model. The
presented theoretical results are of general interest and appli-
cable to a wide range of variable selection and experimental
design problems. We evaluated our approach on three real-
world crowdsourcing datasets. Experiments demonstrate that
our approach can be used to seamlessly handle critical prob-
lems in crowdsourcing such as quality assurance and crowd
access optimization even in situations of anonymized and
sparse data.
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