

Overview

Goal: Motion estimation, segmentation, and occlusion detection

Benefits of Layered Models:

- Within-layer motion can be described more simply
- Motion boundaries estimated separately from smooth flow
- Reasoning about occlusion relationships is easier
- Layers provide a segmentation of scene motion

Problem:

- None of the current top performing optical flow methods use a layered approach - The most accurate approaches are single-layered, use robust functions to cope with flow discontinuities, but usually make mistakes in occlusion regions

Contributions of Our Approach:

- New probabilistic generative model of motion in layers
- True "layered" model of depth ordered occlusions
- Non-rigidly enforce temporal consistency of layer support
- Robust flow priors allow "roughness in layers"
- Spatial layer support modeled via an image-dependent Gaussian field prior
- Lowest average endpoint and angular error in Middlebury evaluation

A Unified Generative Model

"Roughness in Layers"

What is an appropriate model for the flow within each layer? **MRF models [2]:** locally smooth but globally complex $p(\boldsymbol{u}_{tk}) \propto \exp\{-E_{\mathrm{mrf}}(\boldsymbol{u}_{tk})\} = \exp\left\{-\frac{1}{2}\sum_{(i,j)}\sum_{(i',j')\in\Gamma_{(i,j)}}\rho_s(u_{tk}^{ij} - u_{tk}^{i'j'})\right\}$

Parametric (affine) models: globally coherent but too restrictive $u_{\mathbf{\theta}_{tk}}^{\ lJ} = \theta_{tk1} + \theta_{tk2} \cdot i + \theta_{tk3} \cdot j, \qquad v_{\mathbf{\theta}_{tk}}^{\ lJ} = \theta_{tk4} + \theta_{tk5} \cdot i + \theta_{tk6} \cdot j$

Affine + deformation: our approach is globally coherent but locally complex

 $E_{\text{aff}}(\boldsymbol{u}_{tk}) = \frac{1}{2} \sum_{(i,j)} \sum_{(i',j') \in \Gamma_{(i,j)}} \rho_s \left((u_{tk}^{ij} - u_{\boldsymbol{\theta}_{tk}}^{ij}) - (u_{tk}^{i'j'} - u_{\boldsymbol{\theta}_{tk}}^{i'j'}) \right)$

Acknowledgements: DS and MJB were supported in part by the NSF Collaborative Research in Computational Neuroscience Program (IIS-0904875) and a gift from Intel Corporation.

Layered Image Motion with Explicit Occlusions, Temporal Consistency, and Depth Ordering

Deging Sun, Erik B. Sudderth, and Michael J. Black

Department of Computer Science, Brown University, Providence, RI, USA {dqsun, sudderth, black}@cs.brown.edu

Wang & Adelson 1994

Average endpoint		Army (Hidden texture)			Mequon (Hidden texture		
rror	avg.	GT	im0	<u>im1</u>	<u>GT</u>	im0	im
	rank	all	disc	<u>untext</u>	all	disc	<u>u</u>
/IDP-Flow2 [40]	3.9	0.094	0.23	2 0.07 2	0.16 1	0.52	10
ayers++ [38]	4.9	0.08 1	0.21	1 0.07 <u>2</u>	0.194	0.56	3 O.
.SM [41]	7.4	<u>0.08</u> 1	0.23	2 0.07 <mark>2</mark>	<u>0.22</u> 12	0.73 13	3 O .
Classic+NL [31]	8.0	<u>0.08</u> 1	0.23	2 0.07 <mark>2</mark>	<u>0.22</u> 12	0.74 14	1 0.
IDP-Flow [26]	9.1	<u>0.09</u> 4	0.25	6 0.08 <mark>8</mark>	<u>0.19</u> 4	0.54	2 0.

Layer Support and Depth Ordering

Ising & Potts MRFs favor unnatural segmentations, and do not model relationships between regions:

> Samples from Potts model

Thresholded continuous layer support functions better match the statistics of natural scenes [3]:

 $k_{t}^{U} = \min(\{k | 1 \le k \le K - 1, g_{tk}(i, j) \ge 0\} \cup \{K\})$

Spatial and Temporal Layer Consistency

 $E_{\text{space}}(\boldsymbol{g}_{tk}) =$

 $E_{\text{time}}(\boldsymbol{g}_{tk}, \boldsymbol{g}_{t+1,k}, \boldsymbol{u}_{tk}, \boldsymbol{v}_{tk}) =$

Occlusion Reasoning

For pixel (*i*, *j*), if its corresponding pixel at the next frame is visible

 $p\left(\mathbf{I}_{t}^{S}(i,j)|\mathbf{I}_{t+1}^{S}(i+u_{tk}^{ij},j+v_{tk}^{ij})\right) \propto \exp\left\{-\rho_{d}\left(\mathbf{I}_{t}^{S}(i,j)-\mathbf{I}_{t+1}^{S}(i+u_{tk}^{ij},j+v_{tk}^{ij})\right)\right\}$

 $p\left(\mathbf{I}_{t}^{S}(i,j)|\mathbf{I}_{t+1}^{S}(i+u_{tk}^{ij},j+v_{tk}^{ij})\right) = \text{Uniform}(0,Z)$

flow fields that are more accurate and more probable (lower energy)

2009.

Experimental Results on Middlebury Optical Flow Benchmark

Middlebury Optical Flow Benchmark: Screen shot of public table (Dec. 2010)

Energy:

-1.786 x 10⁶

References

[1] Wang & Adelson, Representing Moving Images with Layers. IEEE Trans. on Image Proc., 1994. [2] Weiss, Smoothness in Layers: Motion Segmentation Using Nonparametric Mixture Estimation. CVPR, 1997 [3] Sudderth & Jordan, Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes. NIPS,

[4] Sun, Roth, & Black, Secrets of Optical Flow Estimation and Their Principles. CVPR, 2010. [5] Xu, Jia, & Matsushita. Motion Detail Preserving Optical Flow Estimation. Submitted to PAMI 2010.