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“Roughness in Layers”!

Experimental Results on Middlebury Optical Flow Benchmark!

MRF models [2]: locally smooth but globally complex!

Parametric (affine) models: globally coherent but too restrictive!

Affine + deformation: our approach is globally coherent but locally complex!
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Middlebury Optical Flow Benchmark: Screen shot of public table (Dec. 2010)!
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!"#$"%#&' Ising & Potts MRFs favor unnatural segmentations, and 
do not model relationships between regions:!

Thresholded continuous layer support functions better 
match the statistics of natural scenes [3]:!
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Layer Support and Depth Ordering!

Occlusion Reasoning!
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Goal: Motion estimation, segmentation, and occlusion detection!

Benefits of Layered Models:"
 - Within-layer motion can be described more simply"
 - Motion boundaries estimated separately from smooth flow "
 - Reasoning about occlusion relationships is easier"
 - Layers provide a segmentation of scene motion!

Problem:"
  - None of the current top performing optical flow methods use a layered approach"
  - The most accurate approaches are single-layered, use robust functions to cope 
with flow discontinuities, but usually make mistakes in occlusion regions!

Contributions of Our Approach: "
  - New probabilistic generative model of motion in layers "
  - True "layered" model of depth ordered occlusions "
  - Non-rigidly enforce temporal consistency of layer support "
  - Robust flow priors allow “roughness in layers”"
  - Spatial layer support modeled via an image-dependent Gaussian field prior"
  - Lowest average endpoint and angular error in Middlebury evaluation!

Wang & Adelson 1994!

What is an appropriate model for the flow within each layer?!
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Temporal consistency!

Spatial prior uses layer-specific 
Gaussian conditional random fields:!

Temporal prior uses flow field to 
ensure consistency of support:!

Spatial and Temporal Layer Consistency!

Layer 1 flow!

Layer 2 flow!

Background flow!

Layer 1 support! Layer 1!

Layer 2 support! Layer 2!

Composite flow! Occlusions!

MDP-Flow2!
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The correct layer 
ordering produces 
flow fields that are 
more accurate and 

more probable 
(lower energy)!


