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Overview Principles

Median filtering leads to lower EPE, but higher energy solutions!

Improved model

Problem: Unweigthed non-local term (median filtering) destroys fine
structures that differ from the majority of neighbors

Solution: Weight neighbors adaptively according to color, flow, and
occlusion state information
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Goals: Secrets uncovered

* What makes modern optical flow techniques accurate and why?  Pre-processing: Some kind of image filtering is useful but simple gradient

constancy is as good as more sophisticated texture decomposition;

* How can we use such insights to improve flow techniques further? e .
overfitting is more severe for brightness constancy

Secrets: Quantitative analysis of current practices in optical flow

. . : : ) : * Interpolation and image derivatives: Bicubic interpolation is slightly
estimation starting from a simple, classical formulation

better than bilinear but not significantly; spline-based bicubic interpolation is
consistently better than convolution-based (MATLAB built-in); removing

temporal averaging of image derivatives, central difference filter, and 7-point \
derivative filter reduce accuracy, but not significantly

Principles: Formalization of the heuristic median filtering step as an
unweighted non-local term added to the original objective

With MF: Energy 502,387, EPE 0.093 Without MF: Energy 449,290, EPE 0.113 W, i € exp{—
Figure 2. Estimated flow fields on “Rubber\Whale” by Classic-C.

Improved model: Introduce weighted non-local term that uses color,
flow, and occlusion information to better preserve motion details

MATLAB code: http://www.cs.brown.edu/~dgsun/

» Coarse-to-fine estimation and GNC: Pyramid downsampling factor does
not matter for the convex penalty and 0.5 is fine; graduated non-convexity
(GNC) helps even the convex robust Charbonnier penalty

What is being minimized?

s i o Observation: Median filtering can be posed as L1 energy
minimization [1]. Replace median filter with minimization of this

* Penalty function: Less robust Charbonnier is better than .”
Lorentzian; a slightly more robust penalty (generalized "

objective function:
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