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NIPS 2017 just wrapped up yesterday — what an outstanding conference. My head is absolutely
packed with new ideas, methods, and papers to read. This document contains notes I took during
the events I managed to make it to. Please feel free to distribute it and shoot me an email at
david_abel@brown.edu if you find any typos.

1 Conference Summary and Highlights

My personal highlights were:
1. John Platt’s talk on the next 100 years of human civilizationT]
2. Kate Crawford’s talk on AT and biasP]

3. Ali Rahimi’s test of time talkE] This had lots of conversation buzzing throughout the confer-
ence. In the second half, he presented some thoughts on the current state of machine learning
research, calling for more rigor in our methods. This was heavily discussed throughout the
conference, (most) folks supporting Ali’s point (at least those I talked to), and a few others
saying that his point isn’t grounded since some of the methods he seemed to be targeting
(primarily deep learning) work so well in practice. My personal take is that he wasn’t nec-
essarily calling for theory to back up our methods so much as rigor. I take the call for rigor
to be a poignant one. I think it’s uncontroversial to say that effective experimentation is a
good thing for the ML community. What exactly that entails is of course up for debate (see
next bullet).

4. Joelle Pineau’s talk on Reproducibility in Deep RL. One experiment showed that two ap-
proaches, let’s call them A and B, dominated one another on the exact same task depending
on the random seed chosen. That is, A achieved statistically significant superior performance
over B with one random seed, while this dominance was flipped with a different random seed.
I really like this work, and again take it to be at just the right time. Particularly in Deep
RL, where most results are of the form: “our algorithm did better on tasks X and Y.

Overall my sense is that the Deep Learning hype has settled to an appropriate level. There’s of
course loads of excitement about new methods and applications, but we’re no longer seeing the over
saturation of papers tackling the same thing (except perhaps GAN and Deep RL architectures).
The Deep Learning work has found its role in the broader context of ML.

A few papers I'm excited about reading, most from this NIPS but a few that popped up from
conversation:

e Dijk et al. [16]: Information theory and RL.
e Solway et al. [48]: Bayesian model selection for learning good /optimal hierarchies.

e Teh et al. [50]: Robust multitask RL.

Tncludes opening remarks: https://www.youtube.com/watch?v=L1jLpkvKPhO
Zhttps://www.youtube.com/watch?v=fMym_BKWQzk
Shttps://youtu.be/QilYry33TQE
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e Harutyunyan et al. [31]: Best paper from the Hierarchical RL workshop. Looks at finding
terminal conditions for options that are off policy and prove this enables the right kind of
trade offs.

e Hadfield-Menell et al. [30]: Attacks the problem of how to specify reward functions that elicit
the right kind of behavior.

e Dann et al. [I4]: Presents a unifying framework for the PAC-MDP criterion and regret in
RL. Basically each of these methods of evaluation have some issues, so they introduce the
“uniform-PAC” criterion which overcomes some of these issues (an algorithm is uniform PAC
if it holds for all €).

e Kaufmann and Koolen [32]: Focuses on a problem that sits in between full RL and bandits.
e Finn et al. [21]: Some of the Meta-Learning (for RL) work from Chelsea Finn and colleagues.

e Swaminathan et al. [49]: Off policy evaluation for contextual bandits with a structural as-
sumption on the arms (each arm is an ordered set of preferences).

e Andrychowicz et al. [3]: The Hindsight Experience Replay (HER) paper. Looks at how to
make the most of previous data in RL to be more sample efficient.

e Amin et al. [2]: Looks at a repeated variation of Inverse RL.

e Nagarajan and Zico Kolter [38]: Advances new theory on the stability of training GANs.

2 Monday

First, tutorials.

2.1 Tutorial: Deep Probablistic Modeling w/ Gaussian Processes
The speaker is Neil LawrenceE]

Big question: How do we approximate the full Gaussian Process (GP) problem?

Some references to take a look at for more on GPs:
e Deep Gaussian Processes and Variational Propagataion of uncertainty Damianou [13].
e A GP review [12].

A nice observation: GPs are extraordinarily mathematical elegant but algorithmically inefficient.
Conversely, neural networks are not mathematically elegant but are algorithmically efficient. So
how about a hybrid that takes the nice parts of each?

He actually suggested a method to integrate out all of the input/outputs of a deep neural network
that then translates a neural network into a Gaussian Process. This is the idea of a deep GP. We

“https://www.youtube.com/watch?v=NHTGY8VCinY
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form our distribution over the functions implemented by the network.

Mathematically, then, a Deep GP is just a composite multivariate function:

g(x) = f5(fa(f3(f2(f1(2)))))- (1)

So why write this down? His point was that its important that we express the process we'’re
interested in as a composite one consisting of smaller, more tractable processes.
So, why deep?

e GPs give priors over functions

e Elegant: derivatives of process are also Gaussian distributed

e For some covariance functions they are universal approximators
e Gaussian derivatives might ring alarm bells

e q priori They don’t believe in function ‘jumps’.

Question: how deep are deep GPs? Why? The paper here [19] takes a stab at answering them.
Some application of these techniques [43].

Takeaway: Deep Learning already does supervised learning for text/vision very well. GPs
shouldn’t try to do those. They should do other things, like Uncertainty Quantification.

2.2 Tutorial: Reverse Engineering Intelligence

Next up, Josh Tenenbaum is giving a talk on reverse engineering intelligence from human behaviorE]

Paper from Warneken and Tomasello [55] on emergent helping behavior in infants. He showed a
video where a baby comes over and helps an adult without being told to do so. Cute!

Goal: Reverse-engineering common sense.

Tool: probabilistic programs. Models that can generate next states of the worlds that act as an
approximate “game engine in your head” is really powerful. Potentially the piece missing. A mix-
ture of intuitive physics and intuitive psychology.

Engineering common sense with probabilistic programs:
e What? Modeling programs (game engine in your head).

e How? Meta-programs for inference and model building, working at multiple timescales, trad-
ing off speed, reliability, and flexibility.

Shttps://www.youtube.com/watch?v=g1BfXFx61Ss
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Lots of different systems working over different time scales: Perception, Thinking, Learning, De-
velopment, Evolution (from milliseconds to minutes to lifetimes).

Paper: The intuitive physics engine [7]. The idea is to use Monte Carlo like simulations from a
probabilistic intuitive physics engine to make inferences about properties of the world. For instance,
we particular tower of blocks might more often lead to the tower falling in simulation, we ascribe
the property of “unstable” to the tower.

A separate paper focuses on a similar problem but tries to use a CNN to learn the intuitive physics
engine (“PhysNet”). Training (on 200,000 images!) on simulated data it was able to transfer to
real colored blocks.

Conversely, the intuitive physics engine can answer questions about complex compositional predi-
cates in scenes. Can transfer language directly into simulations.

Task: What if a table is bumped hard enough to knock blocks off a table? There are two types of
blocks, red and yellow. We saw different configurations of blocks and answered which type might
fall off. Really cool demo!

Question: How might neural networks come in to the intuitive physics paradigm? Some of his
papers that focus on this: Neural Scene De-rendering [58], De-animation [57]. Uses these to do
some really cool physics predictions. Can also answer questions like “what if X happened?”.

Another paper that explores something similar, but evaluates an agent planning Baker et al. [5].
Presented some follow up work (in prep) where we try to infer what an agent is doing based on a
snapshot of behavior.

At the end, Josh talked about learning for a bit and how it fits into this picture. When Josh says
“learning”, he means “program learning programs”. He showcased a cool testbed of handwritten
omniglot characters based on MNIST [35], and described a probabilistic program technique for
learning compositional programs that learn to recognize and write characters. Ultimately this is
just Bayesian Inference: find the program that would have generated these characters.

Ultimate Learning Goal: Rapid Learning of rich concepts (like language, tools, cultural symbols,
skills).

Big picture, cogsci/psych tell us that learning is much more about modeling the world, and acquiring
commonsense understanding. Program synthesis gives us a path to study these.

[ Takeaway: Learning can/is/should be cast as programming the game engine of your life. }




2.2.1 Part Two: Implementing These Ideas

Vikash Mansinghka is giving a talk that follows up on Josh’s with an emphasis on how we can
actually implement a lot of the core principles introduced.

Probabilistic Programming can be boiled down to two technical ideas:

1. Probabilistic models can be represented using programs that make stochastic choices

2. Operations on models such as learning and inference can be represented as meta-programs
that find probable executions of model programs given constraints on their execution traces.

He’s basically going over how to write probabilistic programs. Summary of languages:

Language Specialty

BLOG, ProbLog Logic and Probability
Figaro Infer NET Embedded

Stan, LibBi, PyMC Bayesian Stats
Church WebPPL Automatic Inference

Edward Pyro ProbTorch Deep Learning Support

Choosing the right inference strategy is really important; sometimes the wrong inference strategy
will do poorly even with a big computational budget.

This work culminated in the Automatic Statistician [25], which tackles the problem of going from
data to a probabilistic program that generates the data.

The code is actually pretty simple. He showed two blocks of code, each of which was about 5 or
so lines, that carry out the simulation and prediction. Really cool! In a table he showed that the
core of the code was 70 lines, compared to 4000 lines in a non-probabilistic program implementation.

Next up: inferring goals from action via inverse planning [5]. Had some cool examples where prob-
abilistic programs infer goals based on behavior.

Now we’re looking at how to get to full on scene understanding from 2d images. These techniques
are explored by their 2015 paper [33].

Future directions:

1. Integration of probabilistic programming and deep learning.
2. Optimized platforms for scene understanding

3. Scaling up from perception to thinking, learning, and development.
Question: What techniques can get us there?

e Meta-languages: might allow composition or transfer across inference strategies or models.

e Monte Carlo Techniques: fast run time for MC.



Takeaway: Probabilistic programs are a really powerful (but simple!) tool for complex infer-
ence and prediction tasks.

2.3 NIPS 2017 Welcome
General Chairs: Icabelle Guyon and Ulrike von Luxburg

New this year: competition track. Five tracks and the art contest:
1. Conversational Intelligence
2. Human-computer Quiz Bowl

Learning to run

- W

Personalized medicine
5. Adversarial attacks and defense
6. DeepArt context

Best Papers:

1. Safe and nested subgoal solving for imperfect-information Games by Noam Brown and Tuomas
Sandholm

2. A Linear-Time Kernel Goodness of Fit-Test by Jitkrittum, Xu, Szabo, Fukumizu, Gretton.
3. Variance-Bases Regularization with Convex Objectives by Namkoong, Ducci.

Test of time award:Random Features for Large-Scale Kernel Machines by Ali Rahimi and Benjamin
Recht (NIPS 2007).

2.3.1 Statistics about the Conference

Used a mixed-integer linear program to assign papers to reviewers, and reviewers to area chairs.
Reviewer Constraints:

e No conflicts of interest
e Maximize positive bids and minimize negative bids

e No more than 2 reviewers from any institution on any paper

No more than 6 papers per reviewer

No more than 18 papers per area chair

No more than 8 area chairs per senior area chair



Total Registration 8000 (vs. 5000 last year)

Tracks 2

Submissions 3240 (vs. 2500 last year)
Subject Areas 156 (150% increase)

Top Area: Algorithms (900), Deep Learning (600), Applications (600)
Unique Authors 7,844

Author demographics 90% men, 10% women

More Industry 12%, 88% Academic
Reviewers 2093

Area Chairs 183

Reviews 9847

Acceptances 679

Acceptance Rate 21%

Orals 40

Spotlights 112

Posters 527

Paper on arXiv? 43% Yes

Reviewer saw on arXiv? 10% Yes

Not Posted Acceptance? If not online, 15% accepted
Posted Acceptance? If online, 29% accepted
Reviewer saw online If reviewer saw, 35%

2.4 Keynote: John Platt on the next 100 years of Human Civilization

Goal: Want to live in a world in which every person on earth can use as much energy as a US
resident does today. Because energy is a necessary condition for a high standard of living.

Total power consumed has increased 2.2% per year throughout human history. If we extrapolate,
we’ll be using 113 TW, which is the US power rate for 11.2 billion people.

Point: Human civilization requires tremendous power. In 2017, Human civilization uses 1 Mount
St. Helens’ eruption every 93 minutes. By 2100, we’ll use 1 Mount St. Helen’s every 15 minutes.

We’ll need 0.2 YottaJoule, which is “alotta Joules”. It’s enough energy to boil off the Great Lakes
3.4 times over. 0.2 YJ is the amount of energy consumed by humans so far.

Point: Wow we need a lot of energy.

Question: Can we use existing technology to cover 0.2 YJ? Maybe. How about any of our existing
methods, like:

e Fossil fuels? Nope! They won’t scale. Rise in global mean temp is too high, so, we can only
supply 8% of next 100 years of energy, max.



e How about solar? wind? fission? carbon?

The point: Zero-carbon energy is electricity. Electricity has a particular economic structure:

— Capacity costs: building the plant, salaries, and so on. These are measured in terms of
$ per peak power.

— Output costs: fuel costs, maintenance, and so on. Cost here is $ per unit energy out.

— So: the utilization of the plant gives you:

Capacity costs
—————————— + Output Cost 2
Utilization + Dutput Losts 2)

— So it’s less expensive to run your plant all the time. If you run it less often, you amortize
the cost of your capital across many Joules.

— You can also waste the output of a plant. This happens with variable of sources like
wind/solar. Trouble is: gap between solar generation and demand. Maybe you triple
capacity of solar. Sometimes this will result in wasted energy.

Conclusion: Utilization is critical, and must take into account all sources of energy, like
variable sources (solar, hydro, natural gas, etc.). As you increase the amount of variable
generalization, you get lower utilization, and so you increase the cost of your energy.

So we have to evaluate these techniques in a holistic way, as in Platt et al. [40].
Assumptions about the future (from the paper above):

e Solar power cost decreases by 60%

e Storage cost goes down by 30%

e Natural gas goes up 120%

e High voltage DC lines to ship renewable energy across US

Question for the model: compute marginal system cost for renewables.
Natural gas: 4 cents / kW hour. If you've already built the plant, then it’s only 2 cents / kW hour.

Point: So, if you use more and more renewables, you start to incur these extra costs (discussed
above). Particularly as you get to around 0.8 usage.

Bottom Line:
e Renewables are competitive up to 40% of electrical demand
e Renewables can’t compete with paid-off fossil fuel pants
e Renewables can’t replace industrial heat

So, we can use lots of renewables, but not all. Dave: [ want to hear/research more about this point.

10



2.4.1 Radical Research into Zero-Carbon Energy

One idea: Fusion Energy. Fusion is why the sun shines. At sun’s core, atoms become plasma.
Lots of temperature (15k Kelvin?) and lots of pressure (250 billion atmospheres). Under these
conditions, energy is released. If we can harness this process, we’d need 6 km? of ocean to get to
our 0.2YJ.

Fusion energy has been pursued for 70 years. Lots of ideas for fusion, but basically it’s insanely dif-
ficult. Google working with a company called TAE, specializes in a plasma architecture called FRC.

Metric for fusion success:
Eout

Q= 3

The goal is to get to breakeven, where Q > 1. The highest achieved so far is @) = 0.67. What we
really need is to do better than the renewable cost: this is when @ > 5.

Criterion for ) = 1. The triple product:
nTyonm > C (4)

Where n is the number of nuclei per unit volume, Tj,, is the temperature of nuclei, 7 is the con-
finement time, C is some constant that depends on fuel cycle, plasma, and so on.

This leads us to a scaling law, where 7 has to be long enough, and T has to be hot enough.
Preliminary data suggests that FRC scales really well: higher electron temperature, the lower your
heat loss rate.

2.4.2 Machine Learning for Fusion

Project one: Norma has thousands of parameters, like:
e How much plasma?
e What ionization voltage?
e Voltage and timings of coils?
e And more...

And, some parameter settings harm the machine. So it’s both a constrained optimization problem
and an exploration problem.

Innovation: MCMC with human preferences, where physicists and accept or reject and do new
exploration. This is all summarized in this paper: Baltz et al. [6].

Project Two: Debugging Plasma w/ Inference.

11



Experiments can go wrong! And they want to figure out why. they have some sensors available
like magnetic sensors, video camera, and so on.

Goal: Infer hidden state of the plasma (position, shape, and state), based on the sensor data. Use
a prior over plasma state. Then do variational inference! ELBO! Wowza. Cool.

John’s question for the audience: Are there other projects like this?

12



3 Tuesday

The test of time talk from Ali Rahimi was split in half: the second half entirely dedicated to
poignant commentary about the current state of ML, and deep learning in particular. This chunk
of the talk is available here[f]

Basically, Ali suggested that ML is the new alchemy. That is, we’re moving in a bad direction that
misses good, simple, explanatory models, experiments, and theory.

His main call was for simplicity: “Simple experiments and simple theorems are the building blocks
that help us understand complicated systems. Dave: Love it!

Next up: Kate Crawford!

3.1 Kate Crawford: The Trouble with Bias
Kate is amazing! Today she’s talking about bias in AI/ML.

Claim: The rise of machine learning might be as big as the rise of computers. Dave: Sure!

Lots of high profile news stories about bias. For instance, Google’s NLP service was labeling things
like ‘gay’ as negative, and “white power” as positive. Maps of Amazon fresh availability look eerily
similar to 1930s segregation maps.

One of the most famous articles was “Machine Bias: There’s software across the country to predict
future criminals, and it’s biased against blacks.’ﬂ

Mustafa S.: “Because of the scale of these systems, they can be hitting 1-2 billion users per day.
That means the costs of getting it wrong are very high.”

Kate: “When we consider bias as purely a technical problem, we are already missing a big part of
the picture”.

Talk today:
1. What is bias?
2. Harms of allocation (where we are now)
3. Harms of representation (what we’re missing)
4. Politics of classification (the big picture)

5. What can we do?

Shttps://youtu.be/QilYry33TQE?t=660
7ht‘t:ps ://wuw.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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So, what is bias? Bias means judgment based on preconceived notions or prejudices as opposed
to facts and evidence. This notion of bias is really hard to avoid in pure Machine Learning terms.
We can have an unbiased system producing a biased system in a legal/social sense.

Where does bias in ML come from? Lots of places! Sometimes the training data was constructed
poorly. For instance: Stop and frisk (from 2006). 4.5 million(ish) people were stopped on suspicion
of being criminals. 83% of people stopped were hispanic or black. The social scientists came in and
suggested that the practices of the police officers was itself highly biased.

The Problem with Bias: a main distinction in studies of bias is about allocation as opposed
to representational bias. Allocation is immediate and easily quantifiable, whereas representation is
long term and difficult to formalize. So, allocative harms have been focused on previously. A few
examples/types of these sorts of harms:

e Stereotype: Google translate: translate “O bir hemsire, O bir doktor” (from Turkish) into
English, they translate into “She is a nurse, He is a doctor”, even though the Turkish language
is gender neutral.

e Representational harms: Cameras mischaracterize asian faces as blinking, can’t recognize
people with darker skin colors.

e Denigration harms: if you type in “jews should” to Google, the auto-complete was “be wiped
out”.

From a paper by Kate and her colleagues, they suggest some technical responses, including im-
proving accuracy, blacklisting certain methods/data, scrubbing data sets to neutral, being aware
of demographics.

Aristotle: “natural classification”. Go out into the field, observe, and conclude.

John Wilkins, founding member of Royal Society, published a book that classified the universe into
40 categories during the enlightenment. Wilkins shows the popularity of language as a means of
classifying.

Kate: “The world of classification will always be a result of culture.” Follow up: “Data sets reflect
the hierarchy of the world in which they are collected...”.

Kate Q: What would it look like to make a visual /encyclopedia of machine learning? Her and her
colleagues made one (I'll add the image later). These systemic choices are often cultural, and more
importantly, arbitrary. Another example: Wang and Kosinsky paper detecting sexual orientation
from images [54].

In conclusion, we should do three things:
1. Need to start working on fairness forensics.

2. Really start taking interdisciplinary research seriously.

14
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Figure 1: A Snapshot from the Encyclopedia of Machine Learning

3. Think harder about the ethics of classification.

Trump is asking the ML community to write software to do screening at the border. So,
the question is: are there some things we shouldn’t build? And how should we answer that
question?

Takeaway: Bias is a highly complex issue that permeates every aspect of machine learning.
We have to ask: who is going to benefit from our work, and who might be harmed? To put
fairness first, we must ask this question.

3.2 Best Paper Talk: Safe and Nested Subgame Solving for Imperfect Informa-
tion Games [11]

Focus: Imperfect-Information games like poker where information is hidden. Poker is the variant
that has been established as the core baseline of the area. 10! decision points. Libratus:

e 120,000 hands over 20 days in January 2017
e Libratus beat top humans in this game. 147 mbb/hand.
e p-value of 0.0002

e FEach human lost a lot to Libratus.

15



Q: Why are imperfect information games so hard?
Answer: Because an optimal strategy for a subgame cannot be determined.

Their strategy emphasizes exploitability. AlphaGo and OpenAl’s Dota bot both suffer by leaving
open lots of paths to take advantage of the Al’s weaknesses. Conversely, exploitability is a theo-
retical property that ensures safe distance from a losing strategy.

They introduce several new results that lower exploitability by a huge factor:
1. Safe subgame solving
2. Reach subgame solving

3. Nested subgame solving

Takeaway: They beat humans at no-limit heads up poker. The innovation is to focus on
variants of subgame solving that lead to lower exploitability.

3.3 Theory Spotlights

3.3.1 Bandit Optimization

Problem: generalization of multi-armed bandits to a full on optimization problem.

You have an unknown convex function: L : AKX — R. Observe vector g, proxy of the gradient

such that w/ probability 1 — 4:
|9¢ — AiL(py)| < C (5)

New Algorithm: UCB Frank-Wolfe.

3.3.2 Computational Perspective on Shallow Learning

Paradigm: Empirical Risk Minimization. Can’t compute exact solution due to large dataset, so
instead approximate it with SGD/Neural Networks/Kernels. Need smooth functions, but most
functions aren’t smooth (non-smooth kernels lead to computational difficulty). They came up with
an eigen trick to enforce smoothness.

3.3.3 Monte-Carlo Tree Search by Best Arm Identification [32]

Claim: In between Bandits and Al

Problem: find best move at root from samples of leaves (of a game/min-max tree). Suppose coins
at leaf that determine payoff, but coin weights are unknown. How might you solve the game?

16



Can we guarantee that the learner uses a small number of samples to find the best policy?
When tree is depth one, it’s just the multi-armed bandit (LUCB, UGapE, and so on).

One idea is to put a learner at each node in the tree and solve it hierarchically. Doesn’t actually
work.

Their idea:

e Put conf. intervals at each of the leaves.
e Interpolate child intervals into the parent.

e Then, at the root, we do a typical bandit algorithm (best arm alg). Use an optimistic policy
to figure out how to sample.

Algorithm is: (1) Correct: that is, it’s (g,)-PAC and (2) has sample complexity of roughly:

0 (Z 6% log ;) (6)
lel

3.4 Deep Learning Spotlights

Now for some Deep Learning;:

3.4.1 Deep Mean-shift priors for image restoration [10]

Goal: Restore degraded images by removing blur or noise.
Challenges: ill posed, needs prior knowledge, generic.

Their idea: Use a deep mean-shift prior given a large database of images/patches. Focus on density
estimate using denoising autoencoders.

3.4.2 Deep voice-2: Text to Speech [26]

Goal: Text to speech.

Their idea:
e Neural TTS

e Trainable speaker embeddings

e Synthesize speech from multiple speakers, augment each model with a low-dimensional speaker
embedding.

e Speaker embeddings initialized randomly.

e Majority of parameters shared between speakers.

This combination of things seemed to work! Neat.
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3.4.3 Graph Matching via MWU

Problem: GraphMatch! Find some entities in two images that match.

They have a new result that under the MWU update, the Lagrangian is monotonically increasing.
Also, the converged solution is KKT optimal.

That is: KKT = Karush-Kuhn-Tucker conditions. Dave: Worth looking at!

3.4.4 Dynamic Routing in Capsules [45]
Idea: Capsule Network.

New way of doing classification. Take each hidden layer and turn it into a capsule. Each capsule is
responsible for various entities in the data.

Claim: Capsules enable networks to be equivariant.

Dave: Also, Intel hosted a party tonight at a bar near the venue with Flo Rida. We drove by it on
the way to dinner and the line was around the block. Puzzling times!
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4 Wednesday

I had some meetings so I missed the morning session.

4.1 Speaker: Pieter Abbeel on Deep RL for Robots

Played a video of a PR1 doing some household chores from the 80s(?). But! It’s teleoperated. Far
more time consuming than just doing the chores yourself. However: the mechanical engineering is
there. We just need to fill in the Al piece.

This talk: the unsolved pieces to the Al robotics puzzle:
1. Sample efficient RL
2. Long horizon reasoning
3. Taskability (Imitation Learning)
4. Lifelong Learning
5. Leverage Simulation

6. Maximize Signal Extracted from Real World Experience

4.1.1 Sample Efficient Reinforcement Learning

Compared to supervised learning, RL has some more challenges:
e Credit assignment
e Stability
e Exploration

Deep RL has done lots of cool things: Atari, Go, Chess, Learning to Walk (all from high dimen-
sional inputs). One cool example I hadn’t seen: the superball robot [44}@

Q: How good is the learning, actually?
Answer. One main weakness: huge gap in learning efficiency (between Al/people).

Q: Can we develop faster/more data efficient algorithms that take advantage of the world’s struc-
ture?

Pieter’s suggestion: Meta-Learning. Let’s learn the algorithm itself. Meta-RL! Learning to do RL.

Goal of Meta-RL is basically to search in agent space for a good agent that can solve environments
drawn from some distribution. They first try to explore this space in Multi-armed bandits and find

Shttps://www.youtube.com/watch?v=0eC4A2PXM-U
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their algorithm does as well as Gittins. Apply a similar technique to some 3d mazes that involve
vision as observation and it works. Algorithms are called RL?, MAML, SNAIL.

Idea, based on prior experiments: Can we do end-to-end learning for parameter vector 6 that is
good init for fine-tuning for many tasks? Yes! They do exactly this (paper at ICML this year).
Model called MAML[22]

New Theory: MAML is fully general.[20]

Dave: What does “general” mean? Will have to read that paper.

4.1.2 Hierarchies

At the low level, 107 time steps per day of low level control.

Pieter on how to think about hierarchies: Let’s formulate Hierarchical RL as meta learning: “Agent
has to solve a distribution of related long-horizon tasks, with the goal of learning to do well across
the distribution.”

4.1.3 Imitation Learning

Idea here: how can we learn from demonstrations?

Goal: one-shot imitator! How can we learn to solve a collection of related tasks from a single
demonstration? They do some block stacking variants in this paper: Duan et al. [18].

4.1.4 Lifelong Learning

Focus: continuous adaptation. That is, their formulation treats an agent to be good at dealing with
non-stationary environments. They do some Meta-Learning again and evaluate on a RoboSumo
task.

4.1.5 Leverage Simulation

A few approaches:
1. Use really accurate simulators.
2. Domain adaptation with approximate simulations.

3. Domain randomization: if the model sees enough simulated variation, the real world may
look like another simulation.

4.1.6 Yann LeCun’s Cake

Learning is a cake! Where:
e Reinforcement learning is a cherry

e Supervised learning is the frosting
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(a) Yann LeCun’s Cake (b) Pieter Abbeel’s Cake

e Unsupervised learning is the cake

Pieter Abbeel: I think it’s more like a cherry cake! Cherries everywhere! Claims that Hindsight
Experience Replay [3] is exactly this cherry cake.

Other Challenges:
e Safe Learning
e Value Alignment
e Planning and Learning

Meta-Learning: enables discovering algorithms that are powered by data/experience as opposed to
human ingenuity. This will require more compute, which is something we can definitely get.

Takeaway: The mechanical aspect of Al driven robots has been around for awhile. What
we need is to address some central challenges of RL (like sample efficient RL, lifelong and
hierarchical RL). Pieter’s group uses a Meta-Learning approach for most of these problems.

4.2 RL Session

Now for the general RL session.

4.2.1 ELF: Framework for RL 4+ Game Research [51]

RL involves lots of design choices:
e CPU, GPU?
e Simulation?
e Replays?
e Concurrency?

Goal: make a flexible but efficient RL framework for experimenting:
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e Extensive (any games with C++ interface can be used)
e Lightweight (Fast, minimal resource usage, fast training)
e Flexible (choice of different RL methods, environment-actor topology)

Available at: https://github.com/facebookresearch/ELF.

4.2.2 Imagination-Augmented Agents for Deep RL [56]
Dave: The title seems unjustified to me. It’s a new architecture for model-based RL.
Advances in Deep RL, however, they’re data inefficient and limited generalization.

Solution: model-based RL. Enables planning so we can explore and generalize more effectively.
Sadly, no model-based RL methods have worked yet.

Imagination Augments Agents: a model combining model-free and model-based aspects. The learns
a model of the world and queries it for information and learns to interpret the predictions in order
to act.

High Level:

e Environment Model: recurrent model that makes environment prediction at every time step.

Simulation Policy: policy used for simulated rollouts.

Rollout encoder: recurrent model which extracts information from the rollout.

They compute an imagination-augmented code from the rollout encoder, and a model-
free code.

e They then combine these two codes and use them to compute a policy.

Tested on Sokoban from images. Their thing does better than A2C, and an augmentation of A2C
with more parameters.

The coolest result is that they do well even when the model used is bad:
Someone asked a good question: what does the rollout encoder actually produce? The author said:
I don’t know.

During Q&A, Tom Dietterich said (roughly): yesterday we heard a call for the rigor police, I'm
here on behalf of the hype police. Retract the term imagination from this paper. This is just
model-based RL. Dave: I agree!

Next, 5 minute spotlights.
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Figure 2: Even with a bad model the approach seems to work well.

4.2.3 Simple module for relational reasoning [46]

Relational reasoning is important! They introduce the relational network:

RN(O) = f, 290(01;,03') (7)

Where g is a function that operates on pairs of objects, and o; and o; are objects. Tested on some
data sets, including CLEVR, which is about question answering from visual data. Achieved human
level performance on the task.

4.2.4 Scalable TRPO w/ Kronecker Approximation [59]

They build on TRPO by focusing on removing some expensive computation at its core.

Their key insight is the Kronecker-Factored Approximation. Main insight: approximate the I-th
Fisher matrix block using a Kronecker product of two small matrices. As a result, they reduce the
computational burden by inducing compact matrix representations.

4.2.5 Off-Policy evaluation for slate recommendation [49]

Adith presents! Motivated by tasks that call for an ordered ranking of items. They introduce a new
estimator for evaluating policies and show that under certain conditions, the policy is unbiased,
and experimentally requires much less data than previous estimators of this form.

4.2.6 Transfer learning with HIP-MDPs [15]
Motvation: Real world tasks are often repeated, but not exactly.
Define a new class of MDPs that includes a parameter 6 which defines a parameterized transition

function. Then, learning is done in the parameterized space; if the agent effectively learns the
parameter, it can transfer knowledge to any MDP in the class.
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4.2.7 Inverse Reward Design [30]

Motivating Question: At best, (deep) RL reduces the problem of generating useful behavior to that
of designing a good reward function.

Observation: Reward engineering is hard.

Problem: When you write down pieces of the reward function, you effect the value structure of the
rest of the world! So, it makes it really hard.

Goal: Preferences over some state of the world that imply other preferences over other states in
the world. What we’d instead like to do is to move the other states to question marks.

Difficult question: which part of a reward function should be considered unspecified?
Key Idea: Rewarded behavior has high true utility in the training environments.

4.2.8 Safe Interruptibility [28]

Q: How can we safely interrupt RL agents?
Provide some new clarificatory definitions on this space, add some new theorems as a result.

4.2.9 Unifying PAC and Regret
New Framework: Uniform-PAC that unifies the PAC-MDP criterion and Regret.

Limitations:

e PAC: we don’t know how big the mistakes are. Also, algorithms aren’t incentivized to get
better than € optimal.

e Regret: doesn’t distinguish between a few severe mistakes and many small mistakes.

Since they capture different aspects, they can’t be translated to one another. If you have a PAC
bound, then you get a highly suboptimal regret bound, and a regret bound tells you nothing about
PAC bounds.

Uniform-PAC: bound mistakes for all settings of . This immediately guarantees strong PAC and
regret bounds.
For instance, a Uniform-PAC bound of:

o (SAH4> ®)

2

Gives you the same PAC bound, and a regret bound of:
9, (HQ\/SAT) 9)

Also use this to make a new algorithm.
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4.2.10 Repeated IRL [2]

Again, emphasis on difficulty of specifying a reward function.
IRL yields an unidentifiability problem: lots of reward functions consistent with same behavior.
The good news is that we don’t really need the reward; we can still leverage IRL tools to do quite

well. However: can’t generalize.

Their work: receive demonstrations in a bunch of tasks. Some unknown reward function 6,. Learn
0. from demonstrations on a few tasks and generalize to new ones.
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5 Thursday

First, Yael Niv on Learning State Representations!

5.1 Yael Niv on Learning State Representations

Main question: how do we learn from relatively little experience, a representation that facilitates

generalization and effective decision making across a variety of tasks?

The computational problem: the curse of dimensionality at the core of RL forces the statistical

burden to be extremely high. So, we need some dimensionality reduction.

We'll think about learning/generalization of representation as clustering. Specifically, Bayesian
inference with infinite capacity prior (Chinese restaurant prior). A generative model of the envi-

ronment. That is:
1. Observed events are caused by latent causes.
2. A prolific latent cause is more likely to cause the next observation.

3. The number of possible latent causes is unbounded.
N. . .
{t+ka if £ is old cause
e o/w

Main Hypothesis: People group experiences and generalize learning across them.

Yael and Sam Gershman ran some experiments with humans to evaluate this hypothesis.

points:
e “Inference about latent causes defines the boundaries of generalization.”
e “Real world learning learning as clustering with a growing set of clusters.”

e “Learning happens within a cluster, not across boundaries.”

(10)

A few

Takeaway: Goal for Al: see Al’s solve complex tasks with little data. Suggestion: transform

complex tasks to easy ones via abstraction.

5.2 Deep RL Symposium

First, David Silver on Go.
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Figure 3: The set of heuristics used in Stockfish.

5.2.1 David Silver: AlphaGo and AlphaZero

AlphaGo consists of:
(1) A policy network:
7 : Position — Pr(a) (11)

(2) A Value Network predicts likelihood of win/loss:
0 : position — [—1: 1] (12)

Main Idea: Use these two networks to avoid exhaustive search. Policy networks reduces breadth.
Value network reduces depth. Then, add MCTS. They beat the top human players with AlphaGo
Master 60-0.

Now, AlphaGo Zero:
e No human data: learns solely by self-play reinforcement learning, starting from random.
e No human features: only takes board as input.

e Single neural network: policy and value networks are combined into on neural network

(ResNet).
e Simpler search: no randomized Monte-Carlo rollouts, only uses neural network to evaluate.

Timeline: after three days of training time, AGZ surpasses Alpha Go.

Most recent work: applying AlphaZero to Chess, Shogi, and Go. How does AlphaZero do across
games?

Existing Chess World Champion: Stockfish. Consists of a huge array of heuristics about chess:

Couple things that might make Go different from Chess/Shogi, like the presence of drawing as a
game outcome, board symmetry, action space, and so on.
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In four hours of training, AlphaZero beat Stockfish. In two hours, it surpassed Elmo (the computer
champion at Shogi). After eight hours, it beat AlphaGo Lee.

What next? Move AlphaZero like things beyond games.

Takeaway: Self play works extremely well, in part because the value of the data each round
gets better. Going forward we should make simple approaches to be more general (work on
multiple games).

5.2.2 Soft Actor Critic

Based on optimizing the MaxFEnt Objective:

(| st) = zaurg;:naxl&r Zr(st,at) +aH(n(- | st)) (13)

Does really well on a variety of cheetah and robotic domains, seems really robust to turbulence.
Dave: I'm feeling sick so I went home. I'll fill in some notes on the Joelle’s reproducibility talk
later when I watch the video

6 Friday

Dave: I missed the Friday workshops because I was feeling a bit sick.

7 Saturday: Hierarchical Reinforcement Learning Workshop

First up, David Silver on subgoals in HRL.

7.1 Invited Talk: David Silver on Subgoals and HRL

Subgoal Vector Space: Each subgoal parameterized by a vector g € R™. Could do it w.r.t. pixel
control or feature control (they try both with various deep RL agents).

UNREAL architecture: unsupervised RL w/ auxiliary tasks. A3C with subgoal-out for coordinate
pixel /feature control. Show some results: it does well.

What is the nature of subgoals? What does it mean to have good subgoals?

1. Abstraction! Been used in classical planning for decades. With abstraction, we can ignore
some dimensions (features).

2. Coordinated Subgoals: rich behavior requires coordination between representation of sub-
goals. Sutton calls this the “subgoal keyboard”.

28



So how can we achieve these ideas? We can specify the geometry of the subgoal space. Their idea:
“target subgoals”. That is, just get to state s,. The weakness of this approach is that you don’t
get abstraction. Instead, care about directed subgoals; pseudo-reward given when you get closer to
solving the subgoal pair.

Temporal Abstraction w/ Subgoals. Feudal RL as a framework for HRL [53]. Main idea is that
actions choose subgoals.

7.2 Contributed Talks

Now for the 10 minute talks.

7.2.1 Landmark Options via Reflection in Multi-task RL

Motivation: learn several goal states simultaneously that cover the state space. Learn from a vec-
tor of rewards, from multiple goal perspectives. When motivated to reach a given state, leverage
knowledge nearby landmark states. Example: what’s 12 x 137 Well, we know it’s close to 12 x 12.
That’s the intuition.

Multi-task Learning:

e Sequence of episodic, goal-based MDPs {M;}1_;

e Minimize lifelong reward

e Landmark states L C S, with accompanying options/value functions.
Two phases:

1. Phase 1 (pre-learning phase): agent explores environment and can learn some preliminary
things.

2. Phase 2: agent is assigned a sequence of episodic MDPs.

Restricted access to oy € O. Landmark options can only be accessed via reflection.

New results: The lifelong regret is at most T(2SAD), with D the diameter and T the horizon (I
think).

7.2.2 Cross Modal Skill Learner

Starts with speedrun of super meat boy. A key aspect is sound-based feedback to make decisions.

So: they use all available percepts to make decisions. Main challenge: how can we incorporate
multi-modal information in a sample efficient way?

New algorithm: Crossmodal attentive skill learner (CASL).
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7.3 Invited Talk: Jurgen Schmidhuber on HRL and Metalearning

True goal: build a general problem solver that can learn on its own.

First problem: how can we generate the right subgoals? Jurgen mentioned an old 1990 paper of
his that generates subgoals in a differentiable way. Now suggests that we ought to compress one
network into another (and adds that this is from a paper of his in 1991-92).

Now introduces PowerPlay [47]. Solves and continually invents problems; training an increasingly
general problem solver that searches over the simplest of all currently unsolved problems (I'd guess
a Solomonoff induction like inference over problem space).

7.4 Invited Talk: Pieter Abbeel on HRL

Pieter thinks HRL is crucial for success in RL. Dave: | agree!. Mostly focused on Feudal Networks
and the FuN paper from DeepMind that David Silver talked about.

Information Theoretic approaches:
1. Jurgen: formal theory of creativity
2. Shakir Mohamed: Variational info max for intrinsic motivation.
3. Karol Gregor: Variational intrinsic control.
Why HRL?
e Credit Assignment
e Exploration
e Generalization to new tasks

Their papers: Stochastic Neural Nets for HRL [23], RL? [17].

7.5 Best Paper Talk: Learning with options that terminate off policy [31]

Focus is on the termination conditions of options. Option length induces a tradeoff:
e Longer options yield more efficient learning
e But, since we commit to them, shorter options yield better solutions.

Key Problem: How to benefit from the efficiency of long options without suffering from their po-
tentially non-ideal quality?

Challenge is that the solution of planning with option is tied to the termination condition.

Their Contribution: Options that terminate off-policy, which extends the counterfactual off-policy
intuition to option termination and formulate an algorithm that achieves this. Present an algorithm
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for doing this

Off policy learning is the ability to disambiguate behaviors from targets. On-policy means you're
acting according to the target policy, while off-policy means the behavior policy is different from
the target policy. One idea is to use importance sampling.

Intuition for the Key Technical Idea:

e On a single step (s,s’), an option o, and a policy over options p. Consider the intra-option
TD error:

0t =Rs + ((1 — Bs)q(s,0) + BsEor [q(slv 0/)]) —q(s,) (14)

e Looks like off-policy corrected TD-error:
o = Ry +1E[q(s", 0')] — q(s, 0) (15)
e On-policy option-local TD-error:

ds = Rs +ymaxq(s’,0") — q(s,0) (16)
O/

e Key Idea: Instead of doing this implicitly, lets do it explicitly.

Summary: It’s useful to think of options and multi-step temporal differences in a unified way.

7.6 Posters
A few posters caught my eye during the spotlights:

e Recursive Markov Decision Processes: A new formulation of hierarchies by recursing on MDP
structure.

e Eigenoption Critic: An extension to Marlos’ work [36] to a new NN architecture.
e Hindsight Policy Gradients: use hindsight to improve sample efficiency of policy gradient.

e Empirical Evaluation of Optimisim with Option from Ronan Fruit (follow up to [24]): compare
UCRL, SUCRL, and FSUCRL.

e Intrinsic motivation + Hierarchical RL for human modeling: trying to address the question
about how humans create hierarchical representations.

e Option-critic + Proximal Policy Optimization: Goal is to achieve good options! How?

And a quick shameless plug for my own workshop paper, joint with Dilip Arumugam, Lucas Lehnert,
and Michael L. Littman [I]. We investigate which state abstractions are easy to construct that still
preserve reasonable near-optimality guarantees.
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7.7 Invited Talk: Jan Peters on imitation HRL for Robotics

Dave: I missed some of Jan’s talk from being at lunch

What are the big questions of HRL:

e Low-level execution policies: how do we continue to adapt to lower-level policies without
physics loss?

e Elementary task policies: How do we achieve generality?
e Supervisory Policy: How do we form the primitives?
Some answers from Jan’s group:

e Q: How do we parse demonstrations into sequences of primitives?

Solution: probabilistic parsing into primitive libraries (use EM at the core, end up with a
good task segmenter).

e QQ: How to improve primitive selection via RL?

Solution: relative entropy policy search (REPS) [39]. Showed a video of a robot playing ping
pong (pretty well)! Very cool. Then showed a video of a robot playing a game like curling.
Neat!

Q for Jan: What should we gain from deep RL, specifically in regard to policy-gradients and actor-
critic methods? Is there any new insight or is it all just incorporating better function approximators?

Jan: I haven’t seen much that’s very different from the classic approaches.

7.8 Contributed Talks
Next up we have the contributed talks, starting with Mel and the DAQN.

7.8.1 Deep Abstract Q-Networks

Motivation: DQN does really well for short horizon policies, but struggles on long horizon do-
mains [37].

How can we fix this? A couple folks have tried:
e Intrinsic motivation and pseudo-counts Bellemare et al. [§]
e Hierarchical Methods [34].
e Model-based methods like R-Max, but don’t really work in Atari.

Their approach: combine the benefits of model-based RL and DQN.

DAQN:

e Provide an abstraction function.
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e DQNs transition between abstract states.
e Expected to learn: Ty, 7, 7.
e Shortens horizon of low-level learners.

Evaluation: Toy Montezuma’s Revenge. Big discrete grid-world with traps/doors/keys.

Result: DAQN explores lots of rooms in the Toy MR. Previous methods (DQN; intrinsic motivation)
only explore a few rooms, but the DAQN explores everything.

7.8.2 Hierarchical Multi-Agent Deep RL

Motivation: Distributed planning, as in traffic control.

Task they consider: implement a dialog agent for scheduling a trip. That is, their doing ordered or
partially ordered planning. They propose a new architecture well tuned for this setting.

7.8.3 Master-Slave Communication for Multi-Agent Deep RL

Open Question in Multi-Agent RL: how to facilitate effective communication? How can we plan in
a globally optimal way?

Introduce a new Master-Slave architecture for addressing this issue, run it on some multi-agent
tasks, including a Starcraft micro task where two groups of marines fight against each other.

7.9 Invited Talk: Emma Brunskill on Sample Efficiency in Hierarchical RL
Goal: faster learning and better sample efficiency with hierarchy.

Emma thinks we really don’t have a sense of when/why/how hierarchies help. Yeah!

Today: when learning from the past. Neat!

Emma thinks a lot about RL systems that interact with people. One advantage of this setting for
RL is that there’s lots of prior data available! Education, healthcare, customers are all domains

that produce rich and large datasets. This also means we're doing Batch RL (entirely offline).

Scenario of interest: Interventions in classrooms. One major challenge here is generalizing to un-
tried policies.

Problem: batch data policy evaluation. Game called “refraction” developed by Zoran Popovic and
colleagues [41].

One solution: Per-Decision Importance Sampling (PDIS) [42]. It’s unbiased but high variance. To
overcome the high bias, let’s try using options to reduce variance: paper at NIPS this year [29].
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Theorem 7.1. (From Guo et al. [29].) Variance of PDIS is exponential in H in the worst case:
Var[PDIS(D)] = Q(2%) (17)

First idea: do PDIS for options policies. Given some data generated by m,, want to evaluate 7. In
this setting the importance weights are over the meta-policy (over options), not over the primitive
policy. We might also imagine that we only tweak some aspects of the options; in this setting,
the variance can only be effected by at most the horizon of the options that changed. Using these
insights they reduce the variance of PDIS. Cool!

Second idea: options and bottlenecks. Key insight is that there are many ways to get to the same
thing. Could have a variety of different options but the same set of terminal states. We can exploit
this structure to again get some benefits. They partition trajectories according to choke points, or
places where they know they have the same termination states. Allows for the PDIS estimate to
go from a huge product into a sum over smaller products. Again they see a huge reduction in the
variance of PDIS.

7.10 Invited Talk: Matt Botvonick on Information Bottleneck in HRL
Matt called this “A tale of two bottlenecks”.

Q: Can we score which options are best?

A: Yes! Let’s take a Bayesian model-selection perspective and do this [48].

Claim one: Bottlenecks structure action and structure relevant information.

The information piece is based on Dijk et al. [16]. From an information theoretic perspective: to

what extent does my initial action correlate with the goal I'm pursuing. That is, what’s the mutual
information between my action and the goal I'm pursuing, given state:

I(A;G | S) (18)

Takeaway: information theoretic quantities reveal bottlenecks.
Next Bottleneck is based on Tishby’s information bottleneck method [52].

Want to satisfy two desiderata.

1. First, maximize relevant info, minimize irrelevant info:

RIB(G):I(X7Ya0)_ﬂI(Z)X79) (19)

2. Penalize latent code for departing from the true distribution
JiB =Y Eepe) [~ 1084(n | f(zn,))] + BEL[p(Z | 2n), 7(Z)] (20)
i=1
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Figure 4: NIPS HRL Workshop in 1998

Bringing the two bottlenecks together. Let’s place a bound on the mutual information of relevance:
I(A;G[8) < I(Z;G | S) (21)

In practice: sample a goal, sample a trajectory of actions, penalize encoder for departures from
prior.

Some thoughts on neuro-science: all of this sounds a lot like automatic and controlled processing.
Did a quick demo of the Stroop Test Bench et al. [9], where you have to read the color of words
that differ from the color described by the word itself.

7.11 Invited Talk: Doina Precup on Progress in Deep Temporal RL

Started chatting about a workshop held in 1998 at NIPS on Hierarchical RL:
New Perspective: Think of an Option as a generic behavioral program. This suggests call-and-
return execution, recursion, variables, and so on.

Frontier: what is the right set of subgoals or options?

Their motivation: achieve continual lifelong learning.

Q: Is it possible to solve a problem and learn good options for transfer at the same time? Some of
their earlier work introduces the Option-Critic Architecture Bacon et al. [4]. The Option-Critic in-
troduces a new gradient update for learning options. It consists of two components: (1) Each option
should use primitive actions that are better, and (2) Find good termination conditions (lengthen
when the option is good, terminate when it’s bad). A third term also encourages the meta-policy
to take better options.

Sidenote: Doina said that initiation conditions are a bother and we should get rid of them anyways.

How about regularization? Might be useful to encourage diversity in the options:

e Length collapse: options dissolve into primitive actions over time
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e Assumption: Executing a policy is cheap, deciding what to do is expensive. Dave: Really?
I’d think the opposite. Real world action is expensive. Simulation/thinking is cheap.

e Deliberation is also expensive in animals due to energy costs and missed opportunity costs.

e So: Agent should be penalized for choosing among the options more-so than choosing among
primitive actions.

They choose to add a deliberation cost to switching between options. This deliberation cost induces
a Value function (has a corresponding Bellman Equation). This presents a regularized objective
that doesn’t deliberate too long while still trying to maximize reward:

mgxIE [Qa(s,w) + TQ.(s,w)] (22)

Future work:
e More empirical work in option construction.
e Leveraging option models.
e Tighter integration with Neural Turing Machine [27] and similar models.

Challenge Question: Does deep HRL have a reproducibility issue? Is the work rigorous enough? Is
it reproducible enough? What steps forward can/should we take in this direction?

Doina Answer: It’s more difficult to reproduce results in HRL in some cases because the amount of
computation/resources we have makes it hard to reproduce. We have the potential for doing this
successfully because the code and domains are available. Those of us who are in a position to have
a large amount of computational infrastructure should make it available to others.

7.12 Panel: Doina, Jurgen, Matt, David, Jan, Marcos
Q: Why hierarchies?
e Jurgen — connected to all aspects of intelligence

e Matt — Looked at it from the perspective of neuroscience, seems essential to biological intel-
ligence

e Doina — optimistic that we’re making progress.
e Jan — It’s necessary! Can’t have intelligent robots without it.

e Marcos — works in industry applying the techniques of HRL, seems to work really well for a
lot of applications.

e David — Interested in building general purpose RL agents that can solve challenging problems.
If we care about solving challenging problems, we need hierarchies.

Q: What’s left in HRL?
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Matt — Craving an understanding of hierarchy that accommodates shared structure. Spreading
PB vs. Jam, but also waxing a floor, mustard on a hotdog. Wants to see something like a
smooth combination of Options.

Q: For David Silver — Is it surprising that Chess/Go algorithms don’t require hierarchies?

David — Well, the time horizon is pretty small in these games. It forms abstraction hierarchies
over state, but doing so over time probably wouldn’t matter.

Q: There’s a criticism that hierarchies are just another trick to make neural networks work (like
convolution) — is it a trick? Or is it something more?

Doina — hierarchical modeling of the world is quite different. We want models that take big
steps over time in order to do efficient planning. If you really want to solve problems with
many many steps, you need a good model. Right now, your model isn’t just a choice of
network hierarchy.

Jan — some problems come with explicit hierarchical structure, like robotics.

David — well, if you move to continuous time, you have to pick a time scale at which you
reason. In this regime it’s obvious this is necessary.

Jurgen — hierarchies are one of a million algorithmic types that can be relied on in your
learning. Ultimately about exploiting your algorithmic regularities.

Matt — I don’t know what “trick” means. Like convolution is just exploiting structure in the
world, so to is hierarchy making a similar structural assumption. Dave: Love this point!

Q: For Marcos, what do you see as real world problems that require HRL?

Marcos — In the short term, everything we do in the industrial setting.

Doina — I'm going to be bold. If we can induce behavioral programs from data, then we have
automated programs. If we can solve this problem, we have general purpose intelligence.

Jurgen — Responding to Doina. Well, LSTMs/RNNs can already do that. Really optimistic
we’ll solve lots of open problems relatively soon. At some point said: “Babies are less fragile
than robots”, which I think was in reference to a baby’s ability to adapt and recover from
mistakes.

Jann — Let me be more pessimistic. Our biggest limitation is our hardware. Robots are made
to be programmed and controlled. The more interesting question is what can we learn when
we have better robot learning algorithms.

Q: When we look at brains we look at plausibility. What kind of advice would you have for someone
coming to HRL from comp. meuro or cogsci. And second: which areas of neuroscience do you think
are ripe of translation to HRL?

Matt — Neuro has taken RL on board. Hierarchy only becomes relevant as problems become
complex. Thus, research question: we need to focus on complex problems. Some of the most
important problems questions in neuro are also about hierarchies.
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Q: Lots of paradigms for hierarchy. Any hope that we can get one that wins? Or one that maps
onto what humans do?

e Matt — Sure! Folks in neuro have done this, like Michael Frank at Brown. I think Hierarchy
in the wild faces us with challenges that we tend to avoid in AI. We tend to talk about tasks.
Humans/animals don’t have talks. Once we grow in which the agents live, we’ll get at the
question of what it means to decompose behavior.

Q: Do you think research in HRL will involve models/planners, or will be more model-free?

e David — We should be trying everything! We’d be really speculating about what things will
look like. We should not put all of our eggs in one basket.

e Doina — we should try tons of different things! Maybe we’re not doing modeling right? So
we need break throughs in how to learn models (with or without models). Maybe we need
partial or local models. We’ve all focused a lot on performance, but there’s another aspect
which is communication. We can quickly specify goals in the abstract.

e Marcos — communication can also provide transparency and insight into the decision making.

Q: In imitation learning, we don’t provide the hierarchy. How do you know that you have the right
hierarchy? How do you deal with providing the right demonstrations for hierarchies?

e Jan — In robotics we start bottom up. Move from motion controls to something higher. These
days, when we go a layer up, we actually try to learn grammars for behavior. When we can
get such grammars, and ones that make sense to a human being, we’ll be in a great position.

Q: What are some areas of research that are under explored? (that are relevant/related to HRL)

e Doina — exploration! And how to do model-learning in an efficient way. We don’t yet make
the distinction between models that predict agent behavior vs. models that predict world
behavior.

e Jurgen — here’s an idea from a paper in the late 90s. RL algorithms that compete with one
another (left brain and right brain). They cooperate on building an experimental protocol to
execute. However, they disagree on the outcomes. They bet against each other in a zero sum
game.

e Matt — also model-learning! And in particular, rapid model-learning.

e David — still a lot of inspiration we can draw from classical planning. Idea space is infinitely
large but infinitely dense; lots of great ideas out there!

e Marcos — reward specification.

Q: Benchmarks for HRL? What games exist?

e Doina — we shouldn’t make benchmarks specifically for HRL. We want to solve the real
problems out there, so let’s set our sights on those. Some already out there like Atari,
Starcraft, Robotic control.
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Edits

I’ve received some messages pointing out typos:

Thanks to Giovanni Saponaro for pointing out several typos, including “Yj” (YottaJoules)
should be “YJ”, and “Jan Pieters” should be “Jan Peters”.

Thanks to reddit user u/ukkoylijumala for providing the YouTube link to Kate Crawford’s
talk.

Thanks to reddit user u/yeeeeeee for identifying a broken sentence during Neil Lawrence’s
tutorial.

Thanks to Raman Chandrasekar for pointing out that that program chairs were each respon-
sible for at most 18 “papers”, not “pages”.

Thanks to James Proud for fixing “venu”, and “ALpha”.

Thanks to Nick Rance for the pointer to a video of Josh Tenenbaum and Vikash K Mans-
inghka’s excellent tutorial on probabilistic programs.

Thanks to Viktor Bachraty for catching a number of typos, including a few “we we” that
should have just been “we”.

Thanks to Sheila Canceres for catching “variational propgataion” on Page 4.
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