How to rank with few errors

Claire Kenyon-Mathieu Warren Schudy
Brown University Computer Science
{claire,ws}@cs.brown.edu

October 16, 2006

Abstract

Suppose you ran a chess tournament, everybody played everybody, and you wanted to use the results to rank everybody. Unless you were really lucky, the results would not be acyclic, so you could not just sort the players by who beat whom. A natural objective is to find a ranking that minimizes the number of upsets, where an upset is a pair of players where the player ranked lower on the ranking beats the player ranked higher. This problem is the NP-hard minimum feedback arc set problem on tournaments. We give a polynomial time approximation scheme (PTAS) for this problem. A simple weighted generalization gives a PTAS for Kemeny-Young rank aggregation.

1 Introduction

Suppose you ran a chess tournament, everybody played everybody, and you wanted to use the results to rank everybody. Unless you were really lucky, the results would not be acyclic, so you could not just sort the players by who beat whom. A natural objective is to find a ranking that minimizes the number of upsets, where an upset is a pair of players where the player ranked lower on the ranking beats the player ranked higher. This problem is the minimum feedback arc set (FAS) problem on tournaments.

For a general directed graph, the minimum feedback arc set (FAS) problem consists of removing or reversing the fewest number of edges to make it acyclic. One of the original NP-complete problems by reduction from vertex cover [39], it is NP-hard to approximate better than 1.36... [20]. A special case is to restrict the input to be a tournament graph, i.e. a directed graph where every pair of points is connected by exactly one of the two possible directed edges (undirected version is the complete graph).

Problem 1 (FAS Tournament). [49, 57, 51] Input: A tournament with n vertices given by V and edge relation E(x, y). Output: A total order R(x, y) minimizing the number of disagreements \(\sum_{(x,y) \in V} 1 \left(R(x, y) \neq E(x, y) \right) \).

Unfortunately, even with this restriction, it was recently shown by Alon, building on work by Ailon, Charikar and Newman, that FAS is still NP-hard [1, 2] (see also [14]).

The following generalization of the minimum FAS problem is useful for many applications.
Min FAS for tournaments

C. Kenyon-Mathieu and W. Schudy

Problem 2 (Weighted FAS Tournament). Input: A positive integer n, set V and weights $w_{ij} \geq 0$ satisfying $0 < b \leq w_{ij} + w_{ji} \leq 1$ for some constant b. Output: A total order $R(x, y)$ minimizing $C_R \equiv \sum_{(x,y) \in V} w_{xy}R(x, y) + w_{yx}R(y, x)$.

The FAS tournament problem is the special case of the weighted FAS tournament problem in which we define $w_{ij} = \mathbb{1}(\neg E(i,j))$.

In [1], the variant of weighted FAS tournament such that $b = 1$ is called weighted FAS tournament with probability constraints.

The operations research community has also been interested in the problem. The integer programming formulation of the minimum feedback arc set problem is due to Tucker [56]. Given a directed graph, linear relaxations of the linear ordering polytope provide useful lower bounds to the value of the minimum feedback arc set. This has been the focus of interest in mathematical programming [29, 30, 35, 42] and such lower bounds were essential in the approximation algorithms designed in [1].

Applications include scheduling [27] and graph layout [54, 18] (see also [44, 5, 35]).

A related problem is rank aggregation. Frequently, one has access to several rankings of objects of some sort, such as search engine outputs, and desires to aggregate the input rankings into a single output ranking that is similar to all of the input rankings. This problem has an even longer history, since it was already studied in the context of voting by Borda [10] and Condorcet [13]. Rank aggregation is usually done by finding a ranking with the minimum average distance from the input rankings, for some notion of distance. There are three classic objective functions for quantifying the distance between two rankings. Each objective function provides the maximum likelihood estimator for a naïve Bayesian assumption about how the input rankings are generated from an assumed real ranking. (See [15] for a discussion).

The first distance function, Spearman’s foot rule, is the sum over candidates of the absolute value of the difference between the rank of the candidate in the two rankings. Spearman’s foot rule assumes exponentially distributed noise of the ranks. With this measure, rank aggregation reduces to minimum cost perfect matching [21]. If each candidate has a unique median rank in the input rankings, then the foot rule optimal ranking can be obtained by sorting by the median rank [25].

The second distance function, Spearman’s rank correlation, replaces absolute value by squaring. It assumes normally (Gaussian) distributed noise of the ranks. Rank aggregation can then be solved by Borda count [10] (breaking ties arbitrarily) [38], which is equivalent to sorting the vertices by weighted in degree.

The third distance function, the Kendall tau distance, which is the one studied here, is the number of pairs of candidates that are in a different order in the two rankings. It assumes that

\[1\]The lower bound of b on the sum of weights is required to make this problem a generalization of FAS on tournaments but not so general as to be equivalent to FAS on general graphs. This lower bound appears in our analysis in the proof of Claim 5. There may be other assumptions that would also support our analysis.
there is a constant probability that any pair of candidates will be reversed. Rank aggregation with a Kendall tau metric is called Kemeny-Young rank aggregation [40, 41]. It is a special case of weighted FAS-tournament where the weight on an edge is the fraction of the input rankings that prefer that order for its endpoints [1], and is also NP hard [21]. The Kemeny Young rank aggregation can be approximated by using the other objective functions. Spearman’s rank correlation gives a 5-approximation [16], and the foot rule gives a 2-approximation [1].

More recently, the machine learning community has been interested in rank aggregation and minimum feedback arc sets. Cohen, Shapire and Singer [12] model the aggregation of several ranking experts such as search engines as weighted Kemeny Young rank aggregation. Kamishima and Akaho [37] and Brinker [11], given training data which consists of (attribute, ranking) pairs, want to learn a function from attributes to rankings. For example, attributes might be the age, race, and gender of a movie renter, with rankings indicating what new releases a person likes best; they learn a function for each pair of movies from attributes to a value in [0,1] that indicates the probability that each movie should be ranked first; this is a variant of rank aggregation. Hüllermeier and Fürnkranz [33] study a related problem, where the training data gives pairwise information that a particular attributes has one label in front of another. They also learn a function giving the probability that one label is in front of the other.

Dwork, Kumar, Naor, and Sivakumar [21, 22] describes a connection between the Kemeny Young objective function and the Condorcet criterion beloved in voting theory. Their work implies that the orderings which we construct satisfy the generalized Condorcet criterion. However, using Kemeny Young rank aggregation for a voting system has serious weaknesses: see [6, 7, 43] for examples.

The best previously known approximation algorithms for weighted or unweighted feedback arc set on tournaments achieve constant factor approximations [1, 16, 58], with best factors at 2.5 in the randomized setting for both problems [1]. The best factors for a deterministic setting are 3 and 5 for the unweighted and weighted cases respectively by Ailon, Charikar and Newman [1] and van Zuylen [58]. Prior algorithms and heuristics can be found in [24, 27, 50, 31, 36, 55, 44, 5, 8, 9, 32, 45, 48] for example. The best-known factors for rank aggregation are 4/3 for randomized algorithms [1] and 2 for deterministic algorithms [1, 58]. On the other hand, Arora, Frieze and Kaplan [4] and Frieze and Kannan [28] give polynomial-time approximation schemes for the complementary maximization problem.

In this paper, we prove the following result.

Theorem 1 (PTAS). There is a randomized Polynomial-Time Approximation Scheme for weighted Minimum Feedback Arc Set on tournaments with probability constraints and for Kemeny Young rank aggregation. Given $\epsilon, \delta > 0$, the algorithm outputs an ordering whose cost, with probability at least $1 - \delta$, is less than $(1 + O(\epsilon)/b)OPT$. The running time is $\tilde{O}\left(n^{8/(b\epsilon)} + n^{6/(b\epsilon)}2^{O(1/\epsilon)}\right)$. The algorithm can be derandomized at the cost of increasing the running time by a factor of $n^{O(1/\epsilon^2)}$.

Indeed, the only source of randomness in our randomized algorithm comes from the algorithm in [4, 28]. The algorithm in [28] can be derandomized in polynomial time, so our algorithm can also be derandomized (at the cost of a $n^{O((1/\epsilon)^2)}$ factor increase in runtime) yielding the claimed deterministic running time.
Our analysis uses an interesting and, as far as the authors are aware, novel technique. Although the core of our algorithm is deterministic, its analysis uses a randomly generated tree that is analogous to a recursion tree.\footnote{In early versions of our algorithm, it was a recursion tree.} We associate an upper bound with each tree and prove that the expected upper bound is less than \((1 + \epsilon)OPT\). Since the actual cost of the algorithm is less than the minimum of the random upper bounds which we construct, it is also less than the expectation, hence the result.

We note that Amit Agarwal has informed us that he recently obtained similar results independently of this work.

Algorithm

One technique to construct a good ordering consists in ordering a small random sample of the vertices, and using that order as a hint to decide where to place all the other vertices. This approach was the one taken in \([4, 28]\) and leads to a PTAS for the complementary maximization problem, i.e. to an algorithm with small additive error.

Theorem 2 (Small additive error). \([4, 28]\) Let OPT denote the cost of an optimal ordering. For any fixed \(\beta, \eta > 0\), there exists a randomized polynomial time algorithm AddApprox that outputs an ordering whose cost, with probability at least \(1 - \eta\), is less than \(OPT + \beta n^2\). The best-known running time is \(n^2 + 2^{O(1/\beta^2)} \log n\) in \([28]\). The algorithm in \([28]\) can be derandomized by exhaustively considering all possibilities for the random choices, yielding a deterministic PTAS.

Our algorithm implicitly uses that technique, since it iteratively improves its current ordering by applying the algorithm from \([4, 28]\) to subsets of vertices which are consecutive in the current ordering.

Another natural and elementary technique to iteratively improve the current ordering consists of taking a vertex out of the ordering and moving it back at a different position. Any total order \(R\) can equivalently be defined by an ordering \(\sigma : V \to \{1, \ldots, n\}\) such that \(\sigma(x)\) is the position of vertex \(x\): \(\sigma(x) < \sigma(y)\) iff \(R(x, y)\).\footnote{One could instead arbitrarily number the vertices and use permutations instead of orderings. We choose not to do this to make it clear that we do not use a total order on \(V\).}

Definition 3. A single vertex move, given a ordering \(\pi\), a vertex \(x\) and a position \(i\), consists of taking \(x\) out of \(\pi\) and putting it back in in position \(i\).

We are now ready to describe the PTAS. Assume that we are given an error parameter \(\epsilon > 0\) and probability of failure \(\delta > 0\). Recall from Problem 2 that \(b\) is a lower bound on \(w_{xy} + w_{yx}\) for every pair \(\{x, y\}\).

Algorithm 1. Input: A weighted tournament with probability constraints.

Preprocessing: Round each weight to the nearest integer multiple of \(\epsilon b/n^2\).

Initialization: Start from an arbitrary ordering \(\pi\).

While there exists a cost-decreasing move, do that move. The two types of moves are:
1. **Single vertex moves.** Choose a vertex x and a rank j, take x out of the ordering π and insert it back in so that its rank is j.

2. **Additive approximation.** Choose two integers $i < j$; let U be the set of vertices whose current ranks are in $[i, j]$. Execute algorithm AddApprox on U, with $\beta = \alpha_{\text{min}} \epsilon^3$ and $\eta = \delta/n^4$, where $\alpha_{\text{min}} = 9^{-\log_3(1/\epsilon^2)} = \epsilon^{O(1/\epsilon)}$. Let π'_U denote the result. Replace the restriction π_U of π to U by π'_U.

Output π.

Commentary

The doubly exponential behavior of the runtime of this algorithm with respect to $1/\epsilon$ is prohibitive in practice. The main algorithmic idea is to do a local search where one of the moves is running the be additive approximation algorithm on an interval of vertices in the current order. This idea may give reasonable heuristics in practice.

3 Analysis

3.1 Running time

The preprocessing step ensures that the edge weights are integer multiples of $b\epsilon/n^2$, so the cost decreases by at least $b\epsilon/n^2$ at each iteration. Since the cost is always between n^2 and zero, the total number of iterations is bounded by $n^4/(b\epsilon)$. Each iteration consists of $O(n^2)$ calls to the additive error and single vertex move algorithms. Thus the runtime is $O(n^6/(b\epsilon) f(n, (1/\epsilon)^{O(1/\epsilon)} \log(n^4/\delta)))$, where $f(n, \beta)$ is the time required for the additive approximation algorithm to run on the problem of size n with error parameter β. The best-known additive approximation run time $f(n, \beta)$ is $n^2 + 2^{O(1/\beta^2)}$ in [28].

3.2 Quality of approximation

We first prove a reduction to the rounded problem: the rounding is a minor issue.

Lemma 4 (Rounding). Let C denote the cost function with the original weights and \tilde{C} denote the cost function with the rounded weights, and $\tilde{OPT} = \min_\rho \tilde{C}(\rho)$ denote the value of the optimal solution to the problem with rounded weights. Assume that $\tilde{C}(\pi) \leq (1 + \epsilon)\tilde{OPT}$. Then $C(\pi) \leq (1 + 3\epsilon)OPT$.

Proof. Appendix. □

Thanks to Lemma 4, we can analyze the rounded weights as if they were the original weights. For the remainder of the paper we analyze the operation of the algorithm on the rounded graph as if it were the original graph.\(^4\)

\(^4\)Put another way, without loss of generality we can assume that the input weights are integer multiples of ϵ/n^2.
3.2.1 Proof of Theorem 1: outline

Intuition. Here is the intuitive story behind that algorithm. It is at least as good as a divide-and-conquer algorithm that starts with an ordering which is a local optimum with respect to moving single vertices, and repeatedly cuts it up using divide-and-conquer, until the intervals are small enough that the algorithm with small additive error is helpful.

The interesting case is when the cost of the optimal ordering σ is quite low. Assume that you start with an ordering π whose cost is within a constant factor of optimal. Then σ and π cannot be very different: Typical possibilities would be that they differ perhaps by a few long displacements, or perhaps by many short displacements. Moreover, by local optimality, π cannot be improved by moving a vertex x from position $\pi(x)$ to position $\sigma(x)$, and σ cannot be improved by moving x from position $\sigma(x)$ to position $\pi(x)$: this seems to almost require $\sigma(x)$ and $\pi(x)$ to be close. So, assume that all displacements are short. Then divide-and-conquer makes sense, since intuitively, getting a few vertices on the wrong side will not hurt much. The base case of this divide-and-conquer approach would be when the interval size is not much more than the average vertex displacement, and then one can just apply the maximization PTAS.

One flaw of the intuitive reasoning arguing that x should have similar positions in ρ and in σ is that complications occur when the vertices positioned between $\pi(x)$ and $\sigma(x)$ are not the same in the π ordering as in the σ ordering. Such complications occur when some vertex y has $\sigma(y)$, but not $\pi(y)$, between $\sigma(x)$ and $\pi(x)$. In such situations we say that x and y “cross”, and analyzing such crossings is a big part of our work.

Let σ be an optimal ordering of the vertices. (Notice that, once restricted to a proper subset of the vertices, σ need not be the optimal ordering for that subset). Let π denote the output ordering. We will construct a certain random hierarchical decomposition of V into subsets. Let $(\alpha, B = (\zeta_u))$ be the set of random numbers used in the construction. Each subset in the decomposition is of the form $V_{k,\ell} = \{x : k \leq \pi(x) \leq \ell\}$. The hierarchical decomposition yields a certain upper bound on the cost of π. We will prove that in expectation (where the expectation is over B and α), this upper bound is less than $C(\sigma)(1 + O(\epsilon))$. This implies that $C(\pi) \leq C(\sigma)(1 + O(\epsilon))$, hence the Theorem.

Here is the construction of the decomposition. We use the following quantity, based on the foot rule distance between two orderings: for any set of vertices u let $F_u = \sum_{x \in u} |\pi(x) - \sigma(x)|$. The following claim allow us to bound the extra cost $C_V(\pi) - C_V(\sigma)$ by ϵF_V instead of $\epsilon C_V(\sigma)$.

Claim 5 (Displacements). If σ and π are two orderings, then $F_V = \sum_x |\pi(x) - \sigma(x)|$ is less than $(2/b)(C_V(\sigma) + C_V(\pi))$.

Proof. Appendix

Algorithm 2. Input: orderings π, σ
Output: a hierarchical decomposition of V
Initialization:

1. Let $\alpha = 9^{-r}$, where r is an integer uniformly distributed in $\{0, 1, \ldots, \log_{3/2}(1/\epsilon^2)/\epsilon\}$.
2. Return the tree built by Process(1, n)
Min FAS for tournaments

C. Kenyon-Mathieu and W. Schudy

Let \(\text{Process}(i,j) = \text{begin} \)

Let \(V_{i,j} = \{x : i \leq \pi(x) \leq j\} \)

if \(F_{V_{i,j}} < \alpha e^2 |V_{i,j}|^2 \) and \(i < j \).

Let \(\zeta \) be a random real number from \([1/3, 2/3]\).

Let \(k \) be such that \(|V_{i,k}| = \lfloor |V_{i,j}| \rfloor \).

Put the subsets \(V_{i,k} \) and \(V_{k+1,j} \) in the decomposition, and define them as the left child and right child of the node labelled \(V_{i,j} \).

left child \(\leftarrow \) Process\((i,k)\) and right child \(\leftarrow \) Process\((k+1,j)\).

end

Note that \(\alpha \in [\alpha_{min}, 1] \) with \(\alpha_{min} = 9^{-\log_{3/2}(1/e^2)/\epsilon} \). The choice of \(\alpha \) and of the random \(\zeta \)'s determines the decomposition. Let \(B = (\zeta_u) \) be a family of random variables, indexed by nodes of an infinite binary tree: here \(u \) is a word in the language \(\{\text{left child}, \text{right child}\}^* \). The \(\zeta_u \) are i.i.d.r.v's drawn from the uniform distribution over \([1/3, 2/3]\). Thus, for a given \(\pi \), the tree decomposition is determined by \((B, \alpha) \). Given any ordering \(\pi \), let \(w_e(\pi) \) denote the cost of edge \(e \) under ordering \(\pi \): for an edge \(e = \{x,y\} \), either \(w_{xy} \) if \(\pi(x) < \pi(y) \) or \(w_{yx} \) otherwise. The optimal ordering minimizes \(C_V(\pi) \), where for a subset of vertices \(u \), we write \(C_u(\pi) = \sum_{\{x,y\} \subseteq u} w_{xy}(\pi) \).

Consider the event \(E_0 \) stating that “During execution of the algorithm, every call to algorithm AddApprox yields a result within the stated bounds.” Each call fails with probability at most \(\eta = \delta/n^4 \); there are at most \(n^4 \) such calls, so event \(E_0 \) has probability at least \(1 - \delta \) all succeed. We hereafter assume that event \(E_0 \) holds and do our analysis conditionial on \(E_0 \). The following claim motivates the stopping condition of algorithm 2.

Claim 6 (Leaf nodes). Let \(\sigma \) be an optimal ordering. Let \(v \) be a leaf of the recursion tree. If event \(E_0 \) holds, then \(C_v(\pi) - C_v(\sigma) \leq \epsilon F_v \).

Proof. If \(|v| = 1 \) then the claim is trivial. Otherwise, using Theorem 2 and the definition of tree leaves:

\[
C_v(\pi) - C_v(\sigma) \leq C_V(\pi) - \text{OPT}_v \leq \alpha_{min} \epsilon^3 |v|^2 \leq (\alpha_{min} \epsilon / \alpha) F_v \leq \epsilon F_v,
\]

where the last inequality follows from \(\alpha \geq \alpha_{min} \).

We will bound the mistakes made between the leaves and the root by splitting the mistakes into two parts and bounding each separately. Let \(f_\pi(e) = w_e(\pi^R) - w_e(\pi) \). Here \(\pi^R \) denote the reverse ordering of \(\pi \), such that \(\pi^R(x) = n - \pi(x) \). Thus \(f_\pi(e) \) denotes the cost, for edge \(e = \{x,y\} \) of switching the relative order of \(x \) and \(y \). For any subset \(u \) of the vertices, let \(g_u^\pi(x, i) \) denote the cost due to edges between \(x \) and vertices in \(u \) and incurred by removing \(x \) from the ordering, and putting it back in so that its rank is \(i \):

\[
g_u^\pi(x, i) = \begin{cases}
\sum_{z \in u: \pi(x) < \pi(z) \leq i} f_\pi(z) & \text{ if } \pi(x) < i \\
\sum_{z \in u: i \leq \pi(z) < \pi(x)} f_\pi(z) & \text{ if } \pi(x) \geq i,
\end{cases}
\]

Note that an ordering \(\pi \) is locally minimal with respect to single vertex moves iff for every vertex \(x \) and position \(i \), we have \(g_u^\pi(x, i) \geq 0 \). Given a subset \(u \) of the vertices, let \(T_u = \sum_{x \in u} g_u^\pi(x, \sigma(x)) \).
To each vertex \(x \), associate the interval \(I_x = [\min(\pi(x), \sigma(x)), \max(\pi(x), \sigma(x))] \). Say that a pair of vertices \(x \) and \(y \) are crossing if the two intervals \(I_x \) and \(I_y \) intersect but neither is contained in the other interval.

Lemma 7 (Local). We have: \(C_V(\pi) - C_V(\sigma) = T_V + \Phi_V \), where \(\Phi_V = \sum_{x,y} \text{crossing pair} \delta_{xy} f_\pi(x, y) \), and

\[
\delta_{xy} = \begin{cases}
-1 & \text{if } \min(\pi(x), \pi(y)) < \sigma(x), \sigma(y) < \max(\pi(x), \pi(y)) \\
+1 & \text{otherwise.}
\end{cases}
\]

Proof. First note that \(C(\pi) - C(\sigma) = \sum_{x,y : \pi(x) < \pi(y) \text{ and } \sigma(x) > \sigma(y)} f_\pi(x, y) \). By definition, we have \(T_V = \sum_x \sum_y \pi(x) \text{ between } \pi(x) \text{ and } \sigma(x) f_\pi(x, y) \). Note that if \(I_x \) and \(I_y \) are disjoint then the pair \(\{x, y\} \) does not appear in either sum. If one of \(I_x, I_y \) is contained in the other interval, then the pair \(\{x, y\} \) appears exactly once in both sums. Thus

\[
C_V(\pi) - C_V(\sigma) - T_V = \sum_{x,y \text{ crossing pair}} \delta_{xy} f_\pi(x, y),
\]

where \(\delta_{xy} \) depends on the relative order of \(\pi(x), \pi(y), \sigma(x) \) and \(\sigma(y) \). A short case-by-case analysis concludes the proof.

Lemma 7 allows us to analyze the increase from the leaves to the root of \(T \) and \(\Phi \) separately. The following two lemmas are proved later.

Lemma 8. For any \(\sigma \) and \(\pi \) locally optimal with respect to single vertex moves, for a random tree construction defined by a random choice of \((B, \alpha)\), we have

\[
T_V \leq 11\epsilon F_V + E_{B,\alpha} \left[\sum_{v \text{ leaf}} T_v \right].
\]

Lemma 9. Let \(\gamma = \sqrt{5}/3 \). For any \(\pi, \sigma \) and for any \(\alpha \), for a random tree construction defined by a random choice of \((B)\), we have

\[
\Phi_V \leq 72 \frac{\gamma}{1 - \gamma} \epsilon F_V + E_B \left[\sum_{v \text{ leaf}} \Phi_v \right].
\]

Now we can prove Theorem 1: Recall that \(\sigma \) is an optimal ordering of the vertices and \(\pi \) is the ordering output by Algorithm 1. Since Lemma 9 is true for every \(\alpha \), it is also true in expectation over \(\alpha \). Adding to Lemma 8 yields:

\[
T_V + \Phi_V \leq (11 + 72 \frac{\gamma}{1 - \gamma})\epsilon F_V + E_{B,\alpha} \left[\sum_{v \text{ leaf}} (T_v + \Phi_v) \right].
\]
Apply Lemma 7 to both sides, yielding:

$$C_V(\pi) - C_V(\sigma) \leq (11 + 72\frac{\gamma}{1 - \gamma})\epsilon F_V + E_{B,\alpha} \left[\sum_{v \text{ leaf}} (C_v(\pi) - C_v(\sigma)) \right]$$

By Claim 6, whenever event E_0 holds, the expectation on the right-hand side is bounded above by $\sum v \text{ leaf } \epsilon F_v = \epsilon F_V$, which is independent of B, α so the expectation can be dropped. Therefore (conditioned on event E_0 being true):

$$C_V(\pi) - C_V(\sigma) \leq (11 + 72\frac{\gamma}{1 - \gamma} + 1)\epsilon F_V$$

Using Claim 5:

$$C_V(\pi) - C_V(\sigma) \leq (72\frac{\gamma}{1 - \gamma} + 12)e \frac{2}{b}(C_V(\pi) + C_V(\sigma)).$$

Solving for $C_V(\pi)$ and remembering that $\gamma = \sqrt{5}/3 = 0.745...$

$$C_V(\pi) \leq 1 + (72\frac{\gamma}{1 - \gamma} + 12)e C_V(\sigma) = (1 + O(\epsilon))C_V(\sigma),$$

which concludes the proof.

It only remains to prove Lemmas 9 and 8.

3.2.2 Proof of Lemma 9

Notation 10. $\psi_u(k)$ (resp. $\psi^R_u(k)$) denote the number of vertices in u that are strictly after (resp. before) position k in the π ordering but before (resp. strictly after) position k in the σ ordering: $\psi_u = |\{ x \in u | (\sigma(x) \leq k < \pi(x) \}|.$

Lemma 11 (Core). Given a set of vertices $S = \{x, \pi(x) \in [\ell, r]\}$, let ζ be a random number from $[1/3, 2/3]$ and $k = [\ell + \zeta(1/3)(r - \ell)]$. Let $L = \{x \in S, \pi(x) \leq k\}$ and $R = S \setminus L$. Then:

$$\Phi_S \leq E_{\zeta}[\Phi_L + \Phi_R] + \frac{24}{|S|} \sum_{x \in S} |\sigma(x) - \pi(x)|\psi^*_S.$$

where $\psi^*_S = \max_{k \in S} \max(\psi_S(k), \psi^R_S(k))$

Proof.

$$\Phi_S = \sum_{x,y \in S, x,y \text{ crossing pair}} \delta_{xy} f_\pi(x,y).$$

$$\Phi_L = \sum_{x,y \in L, x,y \text{ crossing pair}} \delta_{xy} f_\pi(x,y).$$

$$\Phi_R = \sum_{x,y \in R, x,y \text{ crossing pair}} \delta_{xy} f_\pi(x,y).$$
where we write L_i.

Proof Sketch.

For any $\alpha \in [\alpha_{\text{min}}, 1]$, $\Phi_V \leq E_B \left[\sum_v \text{leaf} \left(\frac{\gamma}{12} F_v + \Phi_v \right) \right]$ given α.

Proof. Let $\alpha \in [\alpha_{\text{min}}, 1]$ be fixed. Given α, we first prove by induction that

$$\Phi_V \leq E_B \left[\sum_v \text{external} \frac{24 F_v^{3/2}}{|v|} + \sum_v \Phi_v \right].$$

(1)

If V is a leaf, then the statement is true. Else, let ζ be the random variable used at the root to decompose V into V_1 and V_2. Let $X_\zeta = \Phi_V - \Phi_{V_1} - \Phi_{V_2}$. Let B_1 be the random sequence used to construct the decomposition of the left child, and B_2 be the random sequence used to construct the decomposition of the right child, so that $B = (\zeta, B_1, B_2)$. Since X_ζ is independent of $B_1, B_2,$
the decomposition of V_1 is independent of B_2, and the decomposition of V_2 is independent of B_1, we have:

$$
\Phi_{V} = E_B(X_\zeta + \Phi_{V_1} + \Phi_{V_2}) = E_\zeta(X_\zeta) + E_\zeta(E_{B_1}(\Phi_{V_1})) + E_\zeta(E_{B_2}(\Phi_{V_2})).
$$

By Lemma 11 and Lemma 12 we have $E_\zeta(X_\zeta) \leq 24F_3^3/|V|$. For each value of ζ, we can apply induction to V_1 and V_2. Summing proves Equation 1.

The rest of the proof is deterministic. Fix a tree decomposition and analyze the right hand side of Equation 1. For every internal node v, by Claim 13 we have:

$$
F_3^3/|v| \leq \gamma\left(F_3^3/|v_1| + F_3^3/|v_2|\right).
$$

Summing over the recursion tree, we obtain:

$$
\sum_{u \text{ internal}} \frac{F_u^{3/2}}{|u|} \leq \sum_{u \text{ leaf}} \frac{F_u^{3/2}}{|u|}(\gamma + \gamma^2 + \cdots) \leq \frac{\gamma}{1-\gamma} \sum_{u \text{ leaf}} \frac{F_u^{3/2}}{|u|}.
$$

If u is a leaf, then let v be the parent of u.5 The parent is not a leaf, so by the stopping condition $\sqrt{F_v}/|v| \leq \alpha \epsilon \leq \epsilon$. Thus:

$$
\frac{F_u^{3/2}}{|u|} = F_u \sqrt{F_u} \leq F_u \sqrt{F_v} \frac{|v|}{|u|} \leq 3F_u \sqrt{F_v} \frac{|v|}{|u|} \leq 3\epsilon F_u.
$$

Summing yields the lemma. \hfill \Box

Combining lemma 14 with the simple fact that $\sum_{v \text{ leaf}} F_v = F_V$ proves lemma 9.

3.2.3 Proof of Lemma 8

In this part, we will prove that $T_V - E_{B,\alpha}(\sum_v T_v) \leq 11\epsilon F_V$, which implies Lemma 8. First we see that by definition of T_V and $\{T_v\}$,

$$
T_V - E_{B,\alpha}(\sum_{v \text{ leaf}} T_v) = E_{B,\alpha}\left[\sum_{y} \sum_{x : \pi(x) \text{ between } \pi(y) \text{ and } \sigma(y) \text{ and } x \notin \text{ leaf containing } y} f_\pi(x, y) \right].
$$

Let $s(y)$ be the size of the leaf containing y. We can split the sum into several parts.

Lemma 15 (Small Leaves). For any tree (determined by B and α), we have

$$
\sum_{y : |\sigma(y) - \pi(y)| > s(y)/\epsilon} \sum_{x : \pi(x) \text{ between } \pi(y) \text{ and } \sigma(y) \text{ and } x \notin \text{ leaf containing } y} -f_\pi(x, y) \leq \epsilon F_V. \tag{2}
$$

5If u is the root, no parent is available but in that case the lemma is trivially true anyway.
Min FAS for tournaments

C. Kenyon-Mathieu and W. Schudy

Proof. No single vertex move can improve π, so $\sum_{x: \pi(x)} f_\pi(x, y) \leq 0$. Thus the left hand side of Equation 2 can be bounded by

$$\sum_{y: \sigma(y) - \rho(y) > s(y)/\epsilon} \sum_{x: \pi(x) \text{ between } \pi(y) \text{ and } \sigma(y) \atop x \in \text{ leaf containing } y} f_\pi(x, y) \leq \sum_{y: \sigma(y) - \rho(y) > s(y)/\epsilon} s(y).$$

This is at most $\sum_y \epsilon |\sigma(y) - \pi(y)| = \epsilon F_V$. \hfill \square

Lemma 16 (Big Leaves). For any α and for a random B, we have:

$$E_B \left[\sum_{y: |\sigma(y) - \pi(y)| < \epsilon s(y)/\epsilon} \right. \sum_{x: \pi(x) \text{ between } \pi(y) \text{ and } \sigma(y) \atop x \notin \text{ leaf}(y)} -f_\pi(x, y) \text{ given } \alpha \left. \right] \leq 9\epsilon F_V.$$

Proof. Let α be fixed. If $\pi(x)$ is between $\pi(y)$ and $\sigma(y)$, but x is not in $\text{leaf}(y)$, then $\pi^{-1}(\sigma(y))$ is also not in $\text{leaf}(y)$. Thus we can bound the expression on the left hand side by the expectation (over the random tree construction) of

$$\sum_y |\sigma(y) - \pi(y)| \cdot \mathbb{1} (|\sigma(y) - \pi(y)| < \epsilon \cdot s(y) \text{ and } \pi^{-1}(\sigma(y)) \notin \text{ leaf}(y)).$$

We will now argue that for any vertex y, the event E_1 that “$|\sigma(y) - \pi(y)| < s(y)/\epsilon$ and $\pi^{-1}(\sigma(y)) \notin \text{ leaf}(y)$” has probability at most 9ϵ over the sequence B of random choices defining the decomposition. Indeed, fix a vertex y and let $\ell = |\sigma(y) - \pi(y)|$. Down the branch leading to the leaf of y, the random tree construction uses a certain sequence of random variables ζ_0, ζ_1, \ldots. Instead of stopping when the decomposition stopping condition is reached6, we conceptually extend the construction until the first time Z that the associated interval has size less than ℓ/ϵ. This defines a sequence of nested intervals $I_0 = [1, n], I_1, \ldots, I_Z$.

The probability of event E_1 is bounded by the probability that the last interval does not contain $\sigma(y)$, hence:

$$\Pr(E_1) \leq \sum_{i < Z} \Pr(\sigma(y) \notin I_{i+1} | \sigma(y) \in I_i).$$

The probability in the right hand side is that the random cutting point used by the construction falls between $\pi(y)$ and $\sigma(y)$. There are only ℓ possibilities, so the probability is at most $3\ell/|I_i|$. For $i = Z - 1$, by definition of Z we have $|I_i| > \ell/\epsilon$. For $i \leq Z - 1$, we can write

$$|I_i| = \frac{|I_1|}{|I_{i+1}| |I_{i+2}|} \cdots \frac{|I_{Z-2}|}{|I_{Z-1}|} |I_{Z-1}| \geq (3/2)^{Z-i-1}(\ell/\epsilon).$$

6That would introduce some conditioning.
Min FAS for tournaments

C. Kenyon-Mathieu and W. Schudy

So

\[\Pr(E_1) \leq \sum_{i=0}^{2^t-1} \frac{3^\ell}{(3/2)^{2^t-1}(\ell/\epsilon)} \leq 9\epsilon. \]

Summing yields the lemma.

\[\square \]

Lemma 17 (Intermediate Leaves). For any set \(B \) and for a random \(\alpha \), we have

\[
E_\alpha \left[\sum_{y: \pi(x) \leq |\pi(y) - \sigma(y)| \leq s(y)/\epsilon} x : \pi(x) \text { between } \pi(y) \text { and } \sigma(y) \sum_{x \notin \text{leaf}(y)} -f(x,y) \right] \leq \epsilon F_V.
\]

Proof. Let \(B = (\zeta_u) \) be fixed.

As in the beginning of the proof of Lemma 16, we can bound the expression on the left hand side by the expectation (over the random choice of \(\alpha \)) of

\[
\sum_{y} \begin{cases} 0 & \text{if } s(y) = n \\ \sum_{x : \pi(x) \text{ between } \pi(y) \text{ and } \sigma(y)} -f(x,y) & \text{if } s(y) = 1 \\ |\sigma(y) - \pi(y)| \cdot \mathbb{I} (\epsilon \cdot s(y) < |\sigma(y) - \pi(y)| < (1/\epsilon) \cdot s(y) \text{ and } \pi^{-1}(\sigma(y)) \notin \text{leaf}(y)) & \text{otherwise.} \end{cases}
\]

We will again argue that for any \(y \), the event \(E_2 \) that \(\epsilon \cdot s(y) \leq |\sigma(y) - \pi(y)| \leq (1/\epsilon) \cdot s(y) \) and \(\pi^{-1}(\sigma(y)) \notin \text{leaf}(y) \) has low probability; but here for the first time, the probabilistic space is over the random definition of \(\alpha \).

Recall that \(\alpha = 9^{-r} \), with \(r \) chosen uniformly at random in \(\{0, 1, \ldots, \log_{3/2}(1/\epsilon^2)/\epsilon\} \).

Fix a vertex \(y \) and let \(\ell = |\sigma(y) - \pi(y)| \). Go down the branch leading to \(y \). Let \(v_0, v_1, v_2, \ldots \) be the sequence of nodes on that branch, and let \(a_t = F_{\ell/|v_t|^2} \). Every time you go down from one node \(v_i \) to a child \(v_{i+1} \), since \(F_{\ell/|v_{i+1}|} \leq F_{\ell/|v_i|^2} \) and \(|v_{i+1}| \geq (1/3)|v_i| \), you have \(a_{i+1} \leq 9a_i \). By definition of the recursion tree, the leaf of \(y \) is the first node \(v_t \) along this branch where \(a_t \geq \alpha \epsilon^2 \) or which has size 1. Thus \(a_t \leq 9a_{t-1} < 9\alpha \epsilon^2 \), and so, for any \(\alpha' \geq 9\alpha, t \) is an internal node (if it has size greater than 1). Therefore a node \(t \) of size greater than 1 can be a leaf for only one value of \(\alpha = 9^{-r} \).

Consider the node \(u \) of size 1. Even if \(\ell < 1/\epsilon \), then whenever \(\alpha \) is such that \(u \) is the leaf of \(y \), by local optimality with respect to single vertex moves, \(y \) contributes \(\leq 0 \) to the sum.

Consider the nodes \(u \) of size strictly between 1 and \(n \), and such that \(\ell \epsilon < |u| < \ell/\epsilon \); there are at most \(\log_{3/2}(1/\epsilon^2) \) such nodes, hence event \(E_2 \) has probability at most \(\log_{3/2}(1/\epsilon^2)/(\log_{3/2}(1/\epsilon^2)/\epsilon) = \epsilon \).

Summing concludes the proof.

\[\square \]
4 Conclusions

We note that the actual definition of ordering π as being the output of Algorithm 1 only came into play in two places: in the proof of Claim 6, where we used the fact that Algorithm AddApprox has small additive error, and in the proof of Lemma 15, where we used the fact that π could not be improved by doing single vertex moves. The assumption of the graph is a tournament (actually weighted generalization thereof) occurs only in the proof of Claim 5.

Acknowledgements

The authors wish to thank Eli Upfal for useful discussions.

References

Min FAS for tournaments

C. Kenyon-Mathieu and W. Schudy

Min FAS for tournaments

C. Kenyon-Mathieu and W. Schudy

Min FAS for tournaments

C. Kenyon-Mathieu and W. Schudy

A Proofs and calculations

Proof of lemma 4

Proof. By definition of rounding, for every \(\rho \) we have:

\[
|\tilde{C}(\rho) - C(\rho)| \leq \left(\frac{n}{2} \right) eb/(2n^2) \leq eb/4. \tag{3}
\]

By definition of \(O\tilde{P}T \), for every \(\rho \) we have \(O\tilde{P}T \leq \tilde{C}(\rho) \leq C(\rho) + eb/4 \). Minimizing over \(\rho \) gives

\[
O\tilde{P}T \leq OPT + eb/4. \tag{4}
\]

We first analyze the case where \(OPT \geq b(1/2 - \epsilon) \). Using Equation 3, our assumption on the output ordering \(\pi \), and Equation 4, we get

\[
C(\pi) \leq \tilde{C}(\pi) + eb/4 \leq (1 + \epsilon)O\tilde{P}T + eb/4 \leq (1 + \epsilon)OPT + (1 + \epsilon)eb/4 + eb/4.
\]

Since \(OPT \geq b(1/2 - \epsilon) \), this implies

\[
C(\pi) \leq OPT \left[1 + \epsilon(1 + \frac{1+\epsilon/2}{1-2\epsilon}) \right] \leq OPT(1 + 3\epsilon).
\]

We next analyze the case where \(OPT < b(1/2 - \epsilon) \). Let \(\sigma \) be the cheapest ordering, such that \(C(\sigma) = OPT \). By definition of \(b \), for every pair \(\{x,y\} \) we have \(\max(w_{xy}, w_{yx}) \geq b/2 > OPT \), so \(\sigma \) must be exactly the ordering such that \(\sigma(x) < \sigma(y) \) iff \(w_{xy} < w_{yx} \), and has cost exactly \(\sum_{x,y} \text{min}(w_{xy}, w_{yx}) \), and for every pair we must have \(\text{min}(x, y) < b(1/2 - \epsilon) \). Consider any other ordering \(\rho \): for every pair, \(\rho \) costs at least as much as \(\sigma \), and since \(\rho \neq \sigma \), there must exist at least one pair \(\{x, y\} \) where \(\rho \) pays \(\max(w_{xy}, w_{yx}) > \min(w_{xy}, w_{yx}) + eb \), and so \(C(\rho) > C(\sigma) + eb \). From Equation 3, it follows that \(\tilde{C}(\rho) > \tilde{C}(\sigma) + eb/2 \). Since by Equation 4 we have \(O\tilde{P}T = \tilde{C}(\sigma) < b/2 \), this implies that \(\tilde{C}(\rho) > (1 + \epsilon)O\tilde{P}T \). But by assumption, the algorithm outputs a ordering \(\pi \) such that \(\tilde{C}(\pi) \leq (1 + \epsilon)O\tilde{P}T \). So it has no choice but to output \(\pi = \sigma \), the optimal ordering: the algorithm is optimal in this case.

Proof of Claim 5

Proof. By [19] Theorem 2 relating Spearman’s footrule and Kendall-Tau, we have:

\[
\sum_{j} |\pi(j) - \sigma(j)| \leq \frac{2}{b} \sum_{i,j} \mathbb{1}(\sigma(i) > \sigma(j)) \mathbb{1}(\pi(i) < \pi(j)) w_{ij}^\sigma + \mathbb{1}(\pi(i) < \pi(j)) w_{ij}^\pi,
\]

where the second inequality follows from the fact that if \(\sigma(i) > \sigma(j) \) and \(\pi(i) < \pi(j) \), then \(\frac{1}{b}(w_{ij}^\sigma + w_{ij}^\pi) = \frac{1}{b}(w_{ij} + w_{ji}) \geq 1 \).

\[\square\]
Proof of Claim 12

ψ^R_v is the same as ψ_v but with the roles of π and σ reversed, so we need only prove the claim for ψ_v.

The following intermediate claim is useful:

Claim 18. $\sum_{1 \leq i \leq |V|} \psi_v(i) \leq F_v$.

Proof.

\[
\psi_v(i) = \sum_{j \in v} \mathbb{1}(\pi(j) > i \text{ and } \sigma(j) \leq i)
\]

\[
\sum_{i} \psi_v(i) = \sum_{j \in v} \sum_{i} \mathbb{1}(\sigma(j) \leq i < \pi_j) = \sum_{j \in v : \pi(j) > \sigma(j)} (\pi(j) - \sigma(j)) \leq \sum_{j \in v} |\pi(j) - \sigma(j)| = F_v
\]

A second helper claim:

Claim 19. $\forall i, |\psi_v(i) - \psi_v(i + 1)| \leq 1$.

Proof.

\[
\psi_v(i) = |\{j \in v | \sigma(j) \leq i < \pi(j)\}|
\]

\[
\psi_v(i + 1) = |\{j \in v | \pi(j) > i + 1 \text{ and } \sigma(j) \leq i + 1\}|
\]

Both terms are either 0 or 1, so the difference is in $[-1, 1]$.

Now proof of claim 12:

Proof.

\[
\psi_v(n) = |\{j \in v | \pi(j) > n \text{ and } \sigma(j) \leq n\}| = 0 \text{ and } \psi_v(0) = |\{j \in v | \pi(j) > 0 \text{ and } \sigma(j) \leq 0\}| = 0
\]

Suppose, for a contradiction, that there exists k such that $\psi_v(k) > \sqrt{F_v}$. Using Claim 19,

\[
\sum_{i} \psi_v(i) \geq \psi_v(k) + 2 \sum_{i=1}^{\psi_v(k)-1} i = \frac{\psi_v(k)(\psi_v(k) + 1) + (\psi_v(k) - 1)\psi_v(k)}{2} = \psi_v(k)^2 > F_v.
\]

This contradicts Claim 18.
Proof of Claim 13.

Proof. Let \(f(F_1, s_1) = F_1^{3/2}/s_1 + (F - F_1)^{3/2}/(s - s_1) \). Differentiating yields a unique stationary point of \(F_1 = F/2, \ s_1 = s/2 \), with value \(\sqrt{2}F^{3/2}/s \). The minimum point along the boundary occurs when \(s_1 = s/3 \) and \(F_1 = F/5 \) with value \(\sqrt{9/5} \). This is smaller than the stationary point in the interior, so this is the global minimum over this set. Therefore \(\sqrt{9/5}F^{3/2}/s \leq f(F_1, s_1) \), so
\[
F^{3/2}/s \leq \sqrt{5/9} \left[F_1^{3/2}/s_1 + (F - F_1)^{3/2}/(s - s_1) \right] .
\]
\(\square \)