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Abstract

We develop a rigorous approach for using a set
of arbitrarily correlated weak supervision sources
in order to solve a multiclass classification task
when only a very small set of labeled data is avail-
able. Our learning algorithm provably converges
to a model that has minimum empirical risk with
respect to an adversarial choice over feasible label-
ings for a set of unlabeled data, where the feasibil-
ity of a labeling is computed through constraints
defined by rigorously estimated statistics of the
weak supervision sources. We show theoretical
guarantees for this approach that depend on the
information provided by the weak supervision
sources. Notably, this method does not require
the weak supervision sources to have the same
labeling space as the multiclass classification task.
We demonstrate the effectiveness of our approach
with experiments on various image classification
tasks.

1. Introduction

In the last decade, deep neural networks have been applied
to accurately solve a wide range of classification tasks in dif-
ferent domains, but the supervised learning of these models
requires a considerable amount of labeled data. An alterna-
tive strategy is to learn from weak supervision, i.e., sources
of labels that are noisy or heuristic. Examples include hand-
written rules (Ratner et al., 2017; Wu et al., 2018; Safranchik
et al., 2020) and classifiers trained for related tasks (Varma
et al., 2017; Bach et al., 2019; Chen et al., 2019). Even if
these sources of information are noisy, results show that
they can lead to high-quality models, particularly when the
outputs from many weak sources are combined.

A key technical challenge in such work is how to com-
bine multiple sources of weak supervision, since they might
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conflict with one another. We assume access to only a
small amount of ground-truth labeled data. Much prior
work on aggregating noisy labels (Dawid & Skene, 1979;
Zhang et al., 2016; Gao & Zhou, 2013; Karger et al., 2014;
Ghosh et al., 2011; Dalvi et al., 2013; Ratner et al., 2016;
2019) assumes that the sources make independent errors,
which is a very strong assumption. Some recent work (Bach
et al., 2017; Varma et al., 2019) attempts to learn more
sophisticated distributions, but still relies on parametric
assumptions that make conditional independence assump-
tions. Such independence assumptions in models of weak
supervision sources are hard to verify and limiting in prac-
tice. Furthermore, many useful weak supervision sources,
particularly ones learned from related datasets, can be ar-
bitrarily correlated, as there may be systematic differences
between the target classification task and the mildly related
tasks used to learn them. For example, if all the labelers are
fine-tuned from the same pretrained model, they are likely
to inherit some of the same biases.

Recent work has addressed the problem of combining weak
labelers without distributional assumptions by taking an
adversarial approach. For binary classification, Balsubra-
mani & Freund (2015) formulate the problem as minimax
optimization, where the goal is to find the labels of an un-
labeled dataset that minimize the error with respect to the
worst-case assignment to the unknown ground-truth labels,
while satisfying statistical constraints on the individual er-
ror of the weak labelers. This minimax problem can be
optimally solved for a large family of loss functions (Bal-
subramani & Freund, 2016). The adversarial label learning
(ALL) framework (Arachie & Huang, 2019) uses a similar
minimax optimization to learn a model that minimizes risk
using the worst-case assignment to the unknown ground-
truth labels, and was later extended to the multiclass setting
(Arachie & Huang, 2021), but it does not optimally solve
the minimax optimization problem, and provides no gener-
alization guarantees for the models it learns.

Another recent work, performance guaranteed majority vote
(PGMV) (Mazzetto et al., 2021), takes an alternative ap-
proach for the binary hard classification setting. Instead of
working with an adversarial choice of the ground-truth la-
bels, it uses both a small amount of labeled data and a large
amount of unlabeled data to empirically estimate properties
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of the labelers which are then used to constraint their joinpartial information for target tasks likspecies identi cation
output distribution. However, this approach is inherently(84.3).

limited to hard binary classi cation, as it exploits the fact g \ye conduct experiments demonstrating the effectiveness
that when two labelers disagree, one must be correct. ¢ oy novel approach for multiclass classi cation tasks.

In this paper, we address the limitations of previous workOur experiments show that our method compares favorably
by providing a framework for multiclass classi cation with With the recently-published ALL and PGMV algorithms for
weak supervision, with rigorousomputational ef ciency  (binary classi cation) from weak supervision sources (85).
andgeneralization erroguarantees. Similar to ALL, we

formulate the search for ground truth as a search over the set Related \Work

of feasible labelings that satisfy statistical constraints on the

weak supervision sources. However, ALL lacks theoreticallhe problem of learning from multiple, possibly con ict-
guarantees, and we show using techniques fronvex op-  ing, weak labelers with little to no ground-truth data has
timizationthat our training algorithm rapidly converges to received considerable attention recently (Ratner et al., 2016;
the optimal solution of the minimax optimization problem. Bach et al., 2017; Ratner et al., 2017; Varma et al., 2019;
Furthermore, we provide generalization bounds thraugjh ~ Arachie & Huang, 2019; Mazzetto et al., 2021).This setting
form convergence theoffgr the learned model, in terms of is distinct from much work on ensemble learning (Zhang
the information provided by the weak supervision source Ma, 2012), such as boosting (Schapire, 1990; Freund,

(with respect to the target classi cation), geometrically rep1995), where abundant labeled examples are used to learn
resented as the diameter of the set of feasible labelings. to combine ensemble members. Other ensemble methods,

o ) such as bagging (Breiman, 1996), take an unweighted vote
Contributions. We introduce a novel method to use the ut ansemple members, but rely on the assumption that each
information provided by a set of arbitrarily correlated weak e mper s trained on labeled data sampled from the target
supervision sources to learn a classi er for a given targejisyripytion. Unlike these methods, in weak supervision, the
task. Inspired by previous work, we use a small amount ofq | is to use other statistical properties of the labelers, such
labeled data to compute statistics of the weak SUPervisiofg thejr agreements and disagreements, to learn to combine
sources, and we formulate an optimization problem to ndyem | this way, the combination of the labelers can be

the prediction model that achieves the lowest empirical risk, ,tontia|ly improved without increasing the need for labeled
with respect to an adversarial choice of a labeling of Araining data.

unlabeled dataset that agrees with those statistics. Our main
contributions are as follows. This work has its roots in crowdsourcing, where the “label-

ers” are people with varying unknown levels of reliability.

1. We develop the rst method with theoretical guaranteesPawid and Skene's (1979) seminal work showed how the
for learning multiclass classi ers from weak supervision accuracy of each labeler can be estimated with expecta-

sources without any prior assumptions on the joint distribution maximization by assuming a naive Bayes distribution
tion of their outputs and the true label (§4). over the labelers' votes and the latent ground truth. Since

then, much work has provided theoretically guaranteed al-
orithms for learning under these assumptions (Zhang et al.,
016; Gao & Zhou, 2013; Karger et al., 2014; Ghosh et al.,
2011; Dalvi et al., 2013). When the labelers are humans
3. We provide generalization bounds for the solution proworking without coordination, the independence assumption
vided by our method using a geometrical quantity that repis a reasonable one.

resents the aggregate information provided by the weak

supervision sources with respect to the target classi cationxecently, frameworks for weakly supervised machine learn-
task (84.2). ing like Snorkel (Ratner et al., 2016; Bach et al., 2017; Rat-

i ] ) ner et al., 2017) have used and extended these learning tech-

4. While the presentation of our method is general, wepjgues to the setting in which the labelers are programmed
demonstrate the applicability of our approach through tWoyjes; weak classi ers, or other heuristics. As described in
practical instances of prediction model and loss functionge introduction, learned and programmed labelers can have
convex combinationf the weak supervision sources and peayily correlated errors because of common elements in the
multinomial logistic regressio(84.1). heuristics they use. This potential problem has motivated
5. We show how to extend our method to use weak superviattempts to relax the independence assumption. One line
sion sources with different labeling spaces from the targeof work (Bach et al., 2017; Varma et al., 2019) has tried to
task. This is useful, e.g., when learning with attributes. Inlearn more sophisticated parametric models of the labelers,
many weak supervision tasks, related classi cations, suclut they are still limited by how correct their assumptions
as whether a classi er detedfripeson an animal, yields are, which are hard to verify in practice. In this work, we

2. We provide theoretical analysis of our method, proving
approximation guarantees on the quality of our solution, an
time complexity bounds for the training algorithm (84).
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therefore focus on methods for learning from weak superviimages as eithdigersor lions. Moreover, we add no fur-
sion that do not make such assumptions on the distributiother assumptions on the properties of those classi ers, and

of labeler outputs and ground truth. their output could be arbitrarily correlated. We also assume
access tan unlabeled data points = fx1;:::;XmQgsam-

3. Preliminaries pled independently from the marginal distributipg, and
our method uses the weak supervision sourcgs::;

We denote scalar and generic items as lowercase letters, veo-constrain the space of possible labels that can be given
tors as lowercase bold letters, and matrices as bold uppédo these unlabeled data points. We use the limited labeled
case letters. Thieth column of a matriA is denoted by the data to computetatisticsof the weak labelers, and then
corresponding lowercase symlagl, i.e.,A =[ai;:::;a,]. consider possible labelings of the unlabeled d&atéhat

Due to space constraints, all proofs are deferred to the apatisfy feasibility constraints derived from these statistics.

pendix. As an example, suppose that we userthelabeled data

In multiclass learning, we have a domafnand a classi er  points to compute thempirical riﬁkstatistic of each weak

function h that maps eaclk 2 X to one ofk possible supervision source, i.e)j = ﬁ jm;l TCi0%)yy), for

over thek classes, it is convenient to represent lab&l  order to prove generalization guarantees. If we were to as-
1;:::;k, as ak-dimensional vectoe;, with all components  sign a labeling to the unlabeled data poiXtsa reasonable
set to0, except for theé-th component, which is set tb  approach would be to nd a labeling such that the empirical
Thus,h : X 'Y = fes;:::;ex0. Aclassier (e.g., the risk of the weak supervision sourceomputed with respect
softmax layer of a neural network) may output a probability of those labels is equal to. However, this is a computa-
distribution vectoly 2 R, over thek classes, vlgheryec is  tionally hard problem, as we have to assign a discrete label
the probability that the item belongs to classnd  _y. = (from Y) to each item, and each label affects the empirical
1. WetakeY Y to be the set of all possible probability risk of all the weak supervision sources. Moreover, there
vectors. Aloss function : Y Y ! R gquantiesthe isnoguarantee that we can nd such a labeling for the un-
error of the classi er's outpuh(x) with respect to the true labeled data, and it is unclear which labeling to choose in
labely. Letpxy be the probability distribution oveX Y .  case there are multiple solutions.

Given a classi em, its risk is de ned as To address the computational issues with discrete label se-

E “(h():y) lection, we assign a probability vector fro¥h to each

v ' ' unlabeled data point. In other words, for each unlabeled
itemx; , we assign a probability vectgs , wherey;,. repre-
In standard supervised learning, we are gilaeled sam-  sents the probability that item) belongs to class. Given
plesfrom pxy , and we nd a classi er with low risk among  a classi erh, we de ne the loss of the classi er on item
a set of classi erd1, which is also called aypothesis class x 2 X with respect to the probability vectgr 2 Y as

The amount of labeled data required to guarantee that wghe expected lossAbusing notation, le¢  y denote that
can nd (ortrain) such a classi er is referred to as tkem- e = e, 2 Y with probabilityy.. We then de ne

ple complexitywhich is related to theizeor expressivityof v

H. For many classi cation tasks of interest, there could be . N N o N . .

low availability of labeled data, and this is a critical problem (h(x):y) _eEy (h(x);€) = -t Yo (h0x)i€c) = (1)
for a wide range of domains, where the most successful

hypothesis classes are very expressive (e.g., convolution¥Ye observe that this de nition of loss generalizes the one
neural networks for images). computed with respect to a discrete labeling, since for each

e 2Y,wehave (h(x);e) = " (h(x);e). Also, the losg1)
In this work, we assume accessrg i.i.d. labeled sam- s |inear with respect to the labeling. LetY 2 Rk ™ be
plesX = fx1;:0:%m, 0, Y =[¥1;::: ym, ] drawnfrom 5 matrix that describes a possible labeling of the unlabeled
Pxy , where the sample size, is insuf cient for the di-  gata points; in particular thieth column of the matrix/
rect supervised learning éf. To circumvent the lack of g y; 2 Y , and it denotes the probability vector of the
suf cient training data, we assume access to a set of weak lagpeling of the itemx; . Theempirical riskof a classi erh

R(h) =
() (xy) px

belers (classiers) 1;:::; n, also called weak supervision gn the unlabeled daté with labelingY is de ned as
sources. These labelers aveakin the sense that they can

be inaccurate with respect to the target classi cation task. R(h:X; Y) - ixn *(h(xi):yi)

For example, the weak labelers could be trained for classi - T m 1

. . j=1
cation tasks that are only tangentially related to the target .

classi cation task: we could train a labeler to detect stripesFinding a labelingy for whichR(h;X; Y) = 7, fori 2
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solving a linear system wit®(n + m) constraints (tha
constraints on the empirical risk equality amdconstraints
on probability vectors summing th andO(mk) variables.

However, there still could be multiple solutions to such anHence, it is easy to see that for a giver2

The optimization problem above has some nice properties.
The sety is speci ed by linear constraints i¥i . Moreover,
the objective of the minimag?) problem is also linear il .
, it is possible

underde ned linear system. The core idea of the methodo solve the maximization problem

presented in Section 4 is to nd a model that has the lowest
empirical risk with respect to an adversarial choice among a

related feasible set of labelings.

4. Learning Algorithm

LetH = fh 2 RYg be the hypothesis class that
we will use to nd the classi er for the classi cation task of
interest, where each classi ér2 H is parametrized by a
vector of weights .

LetY be the (unknown) true labeling of the unlabeled

dataX . For each weak supervision souiceve use the
labeled data to compute an interda such that, with high
probability, we have thaR( (x);X;Y )24 fori 2
1;:::;n. This is a crucial property that we will need to

show our theoretical bound (Theorem 8), and we constructt .

such intervals in Lemma 1.

LetY be the set of all possible labeling matricéssuch
that the empirical risk of ;, computed with respect to the
labelingY of the unlabeled datX , belongs to the cor-
responding intervad ; for each weak supervision source.
Formally, the se¥ is de ned as

Y 2fy 2Rk M
Yj
R( ;X Y)

2Y

24 ng :
We will refertoY as the set ofeasible labelingsThe next
lemma shows how to build the intervals to guarantee
that, with high probability, the true labeling is feasible.

Lemma 1 (Weak Labeler Risk Constraintspuppose that
the codomain of the loss functionis contained in the
""" n computed with respect to tme, labeled sam-
ples. Fix avalue 2 (0; 1) and take
s
(Mg + m)in 20

=B
2mgm

Ifwesetd; =] i ;i + ], then with probability at
leastl it holdsthaty 2Y .

We want to nd the classi er that achieves the lowest empir- _
ical risk among the feasible labelings of the unlabeled datdemma 4 (Subgradient

points. That is, we choose the classitex 2 H , where”
is the solution of the minimax problem

N - RV .
= argmin max R(h ;X;Y) : 2)

f()=max R(h ;X Y) ; 3)
through a linear program wit®(mk) variables an®D(m +
n) constraints.

In order to solve the minimax proble(®), we will intro-
duce a few assumptions on the loss function and the model
choiceH , which are satis ed by many classic machine learn-
ing settings. In particular, we would like the functibg )

to be convex, so that we can solve the minimization prob-
lemmin , f( ). Eveniff ( ) is convex, we may not be
able to apply a gradient-based optimization method,(a3
involves amaximizationhence it is not differentiable every-
where. To solve this issue, we use thébgradientwhich
generalizes the gradient. This will require the loss function
0 be Lipschitz continuous. A functiog: R% | R% is
said to bel -Lipschitz continuous if for any;y 2 R%, it
holds thafjg(x) g(y)iiz Liix VYiie.

De nition 2 (Subgradient) LetA R be the domain of a
functiong. A vectorv 2 R® is a subgradient for a function
gatx 2 A ifforanyy 2 A we have that

aly) 9g(x) v’ (y x):

For eachx 2 A, we de ne

@) = fvv is a subgradient oy atxg :

If a function isdifferentiableat a point, then its subgradient
with respect to that point is unique, and equals the gradient.
Furthermore, if the function isonvexthen there exists at
least one subgradient for each point of its domain.

The following intermediate result, which immediately fol-
lows from the de nition of* , will prove useful throughout
this discussion.

Lemma 3(Linear Loss Properties)let™ (h (x);e) be con-
vex andL -Lipschitz continuous with respect tofor any
(x;e) 2 X Y . Then, for any probability vector 2 Y ,
the function” (h (x);y) is also convex and -Lipschitz
continuous with respect to.

The next Lemma shows that under some conditions often
encountered in our adversarial learning framework, it is
possible to compute the subgradient of the function

of Adversarial Learn-
ing). Fix a value 2 interior() , let YO =
argmax, ,v R(h o;X; Y), and assume thath (x);e)

is convex with respect tofor anyx 2 X ande 2 Y. Then

& @Rh ;X YY) @ 9 :

0
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Algorithm 1 Subgradient Algorithm
Input: Number of iterationsT, step sizeh, H, X,

Output: Approxmate solution™ of (2) (See Theorem 5)
0 = ©  arbitrary point 2
fort2 1;:::;T do
- argmaxY2Y Rh « »;X;Y)
v arbitrary vector fron@(h « »;X; Y9
®  pC® D hy) (Pisprojectiononto )
= argminff (<t V);f( )g
end for
Return~T)

A subgradient-based optimization approach (Shor et al.,
1985) is similar to gradient descent, however at each itera-

Convex combination of the weak §uperV|S|0n sources
Let = f =( ;i 0)2RY 0 4, i =19 Our
prediction model is a convex combination of the output of
the weak classiers ;:::; ,.1In parﬂqylar given 2
the classierh isdenedash (x)= ., i i(x)for
anyx 2 X . Itis easy to see thatiameter() 2. Given

an arbitrary vector 2 R", the projection step to can

be done ef ciently by using for example the algorithm of
Wang & Carreira-Perpin (2013).

Let" be the Brier loss, de ned foranfx;e) 2 X Y as

X ,
“(h (x);e) =

c=1

= jih (x)ii3

h (X)e e

2h (x)T e+1 :

tion we use the subgradient instead of the gradient, and Wg s easy to see that the functidh (x);e) is convex,
memorize the best solution found among all the iterations gifferentiable with respect to, and has codomaii®; 2].

The subgradient-based optimization algorithm used to solvéemma 6 (Brier Model Lipschitz Properties)The loss

the optimization problem (2) is presented in Algorithm 1.

As observed beforey © as de ned in the algorithm can

be computed by solving a linear program. The projectio

step depends on the set of parametersWhile this is

not a requirement for our approach, if the loss function

“(h (x);y); is differentiable with respect to, then we

can compute the gradient of the empirical risk instead of

subgradient.

Theorem 5(Subgradient Method Convergence Rate3)p-
posethatforanyx;y) 2 X Y , (h (x);y)isL-Lipschitz
continuous and convex with respect to Let step size
h > 0, anditeration counfT 2 N, and ~as returned by
Algorithm 1. Then, we have that

A diameter() 2+ L2h2T

£ £0) ohT ,

wherediameter( ) is computed with respect to thg-norm,
i.e., diameter() 2 = max ,. ,» k1 k5, and”is
de ned as in(2). Alternatively, for any' > 0, then if
h='a2andT L dameer) * e have that

UGG

Therefore, we can compute a solution within additive er-

L2 diameter() 2
L~ diameterl) -

ror" of (2) by runningO(
subgradient algorithm.

) iterations of the

4.1. Applications

“(h (x);e) of a prediction modeh de ned as in this
subsection i n-Lipschitz continuous with respect to

"Softmax (multinomial logistic legression) Suppose that

RP, and assume
Let = f =

each item is a vector iR, i.e., X
thatjjxjjz By foranyx 2 X.
wil) 2 RPK twe 2 RPAjjwgjj, By forc 2
""" kg That is, is the concatenation df vectors
Wlth bounded norm. Observe tIBat with this de nition of
, we have thatjlameter() 2kB,,. Given a vec-

tor = (w7 :::w/]), the projection step to is simply
T=(w]owy), wherewC = wWe=min(By Sjjwejj2; 1)
forc2 1;:::; k

Given :(WI iwl) 2 andx 2 X, we de ne

_expw] x) expw; x)

K
=1 expw x)

Lgne 1y T
=1 expwl x)

h (x)=

This classi er is a particular instantiation of softmax com-

bined with a linear model. For a vector= (vq;:::;vg) ",

denelnv = (In vi;:::;Invg)T. Given(x;e) 2X Y ,

we de ne the cross-entropy losf the prediction model

h as

“(h (x);e)= €' Inth (X)) :

This combination of prediction model and loss function is

also known as multinomial logistic regression. It is easy to

see that the loss function is differentiable with respect to
, and it is a known result thath (x);e) is convex with

In order to feature the generality of our framework, we showrespectto forany(x;e) 2 X Y (Bohning, 1992). We

two examples of different instantiations of the optimiza-now characterize the boundedness and Lipschitz properties
tion problem(2) for different choices of loss function and of the softmax function with respect to the cross-entropy
prediction models for which we can apply Theorem 5. loss.
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Lemma 7 (Properties of Multinomial Logistic Regression) 4.3. Constraining the Feasible Set

Forany(x;e)2X Y ,and 2 ,we have . . o .
Previously, our presentation has implicitly assumed an align-

ment between the output classes of the weak supervision

1. "(h (x);e) 2 [0;BwBx +In k]; and sources 1;:::; n and the target classi cation task. In
2. *(h (x);e) is (kBy)-Lipschitz continuous with respect fact, as seen in Lemma 1, we compute the interdals
to . based on the empirical risk of the weak supervision sources

using labeled data of the target classi cation task. How-
ever, for many applications of interest, the weak supervision
sources could output to a different codomain, potentially
In this subsection, we develop a bound on the true riskvith an unequal number of classes. As an example, sup-
of the classi erh that is a solution of the optimization pose that we would like to distinguish between images of
problem(2). The bounds are expressed in function of thef cat dog rabbit beag. A binary classi er that tells us if

4.2. Statistical Learning Guarantees

Rademacher complexity of the function family= f~ h:  the animal represented in an image has a tail or not still pro-
h 2 Hg that describes the loss of each functfo@ H, the  vides a useful clue with respect to the target classi cation
risk minimizer =argmin , R(h ), and the average task, and we would like to use that information.

diameteDy of the feasible set of solutioné , where In this subsection, we will show how to constrain the fea-

_ NG sible set of labelingy in a more general setting, where
Dy = sup — yp oy (4)  the weak supervision sourceg is a classi er that maps
yoyoey M j=1 1 elements from the domaiX to soft labels oy,eki classes,

ie, i:X!Y ., whereY, =fv2R" : _v.=1g
The quantityDy characterizes the information given by the
classiers i;:::; n onthe classication task. In particu-
lar, a weak supervision source provides useful informatio
on the classi cation task of interest only if it reduces the size
of the feasible set, and it provably improves the performance 1 R
of our algorithm if it decreases the average diamBter. Mo oK ¥) 2 = Vie [ 104)]e
Given a function familyL, we de ne the empirical e

Rademacher average (see Mitzenmacher & Upfal, 2017}. . ) s .
. i . It is clear that the functiottj.c. «(X; Y') is linear inY . For
of the unlabeled itemX and a possible labeling of those i )

Consider the weak supervision source For eachc 2
rz’[; i kande2 1; ;i ki, we use then, labeled examples
*x1;¥1); 000 (%my s ¥m, ) tO compute the statistic

items as and weak supervision source's output clasxs 1;:::;k;,
2 0 3 based on the valué;.. «(X; Y), we compute an interval
R (L;X; Y) = E4 sup % S (hxi):yD5 4 i ¢, de ned as
= bdice=[NigeXY) 5 NigeXYV)+ ]
where 1;:::; n are independent random variables fromwhere the value is speci ed in Lemma 9.

the Rademacher distribution, i.€( ; = 1) = P( ; =

1) = % Intuitively, this quantity measures tleapacity
of H to over t, and under mild conditions, it approaches
as sample sizm tends to in nity, in which case over tting Moo Y) 24 i (5)
becomes impossible.

Given a labelingr of the unlabeled datasit, we say that
Y is a feasible solution if for eadhc ande, it holds that:

N That is, the set of all the feasibl lutiovisis d d
Theorem 8 (Adversarial Risk Bounds)Leth » be the so- atis, the setotallihe feasile solutions 1 de ned as

lution of (2). Let =argmin , R(h ). Suppose that Y =fYy 2R M
the codomain of the loss functions contained in the in- yj 2Y forj 2 1;::::

i 1 m
terval[0; B]. LetY be the true (unknown) labeling of the ] L
unlabeled data , and assume that 2 Y . Then, with P e(X Y) 24 e 8iicieg :
probabilityl it holds that Notice that the constraints speci ed ¥ are still linear
in Y, therefore we can still compute the valug ) (as in
R(hs) R(h )+ BDy 0 1 (3)) by solving a linear program, and all the discussion done
S Iil with empirical-risk based constraints still applies.
n =
+ sup 4R (L;X;Y)+ O %)B WE : In order to be able to give the theoretical bound of Theo-

rem 8, we need to guarantee that the true labelingf the
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unlabeled datX is feasible. This is possible by choosing a AMCL-LR uses (multinomial)L ogistic Regression (see
suitable value when de ning the intervalg i.c. ¢. Section 4.1). For every image, we compute the output of a

Lemma 9 (Generalized Weak Labeler Constraint§pr pretrained ResNet-18 and use it as input for AMCL-LR.

4 . « be computed as i). Letk = k [, k. Fixa 5.1.Setup
value 2 (0;1), if we use the value
s

From DomainNet, we selegt = 5 random classes from
the 25 classes with the largest number of instances. Then,
for each domairp 2 P, we learn a multiclass classi er
2mem p for thosek classes in domaip. The classier ; is
trained by ne-tuning a pretrained ResNet-18 network (He
et al., 2016), usin@0%of the labeled data for that domain.
For each domaip, we consider the classi ers trained in
Sharper bounds for interval estimates, bothrisk con- ~ the remaining domains, i., n fpg, as weak supervision
straints(Lemma 1), angjeneralized constrainté emma 9) ~ Sources, i.e., the classi efs qgforq2 Pnfpg. We remark

are of course possible. The Hoeffding bound, used to shofat these weak supervision sources never have access to
both results, is known to be loose fow-variancefunctions, ~Samples from domaip.

and the union bound is loose foorrelated functionsinfor-  From Animals With Attributes, we create binary classi ca-
mative weak labelers should produce low-variance statistiC§ion tasks by selecting pairs of unseen classes. Following
and our framework is designed explicitly for correlated la-\azzetto et al. (2021), we create weak supervision sources
belers. The costly union bound can be circumvented vigy ysing the seen classes to train classi ers for the attributes
the Rademacher average, and Cousins & Riondato (202@jat distinguish them. Similarly to Domain Net, these clas-
those with low variance, can be uniformly-bounded, evemetwork using labeled data from the seen classes. In order
more Shal’ply with themplrlcally centralizedRademacher to focus on the most Cha"enging tasks (Where the weak

(mg + m)In 2K

to compute those intervals, then with probability at least
1 it holds thaty 2 Y .

average. supervision sources are not highly accurate), we seleet the
class pairs among the unseen classes with the lowest major-
5. Experiments ity vote accuracy.

We demonstrate the applicability and performance of ouWve remark thqt all algorithm.s that r.equire unlabeled data
method on image multiclass classi cation tasks derived®'® evaluated in a transductive setting: the unlabeled data
from the DomainNet (Peng et al., 2019) dataset. We als¢/S€d by the algorithms are also used to evaluate the nal
provide experiments on image binary classi cation tasks del®arned prediction models.

rived from the Animals with Attributes 2 (Xian et al., 2018)

dataset in order to compare our methods with additionaP.2. Baselines and Algorithms

baselines. The code for the experiments is available Oh"ne'FoIIowing the example of Mazzetto et al. (2021), we com-
DomainNet contains images fro845 different classes pare our method with the following ve baselines and algo-
in 6 different domains, which we refer to B = rithms.

fclipart, infograph, painting, quickdraw, real, skegciAn- Best Weak Supervision Source (Best WSSWe report
imals with Attributes 2 contains natural images of 50 typesy, o accuracy of the best weak supervision source
of animals. Associated with the dataset is a list of 85 at- '

tributes for each animal class, which we use to create wealdajority Vote (MV) : We consider a simple approach to
supervision sources. Animals with Attributes 2 is divided combining the weak supervision sources: we average their
into 40 “seen” classes and 10 “unseen” classes, where theutput and select the most voted class. This approach re-
seen classes can be used to train attribute classi ers withouuires no learning, but is suboptimal when the errors made
leaking information about the unseen classes. by weak supervision sources are not independent, or when

, i the error rates of weak supervision sources are not equal.
We refer to our algorithms by using the acronyAMCL-

CC andAMCL-LR , where AMCL stands foAdversial ~Semi-Supervised Dawid-Skene Estimator (DS)Ve also
Multi ClassLearning. AMCL-CC is an implementation consider a semi-supervised extension to the standard crowd-
of our method that uses @onvex Combination of the ~ sourcing algorithm (Dawid & Skene, 1979) that nds the
weak supervision sources as the prediction model, wherea@ptimal aggregation of the outputs of independent weak
_— supervision sources. The Dawid-Skene estimator is also the

"https://github.com/BatsResearch/ default aggregation method for the Snorkel system (Ratner
mazzetto-icml21-code
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Figure 1.Experimental results on Animals with Attributes for the binary classi cation tasks of dolphin v. blue whale and seal v. walrus as
we vary the amount of labeled data. Each method uses 560 unlabeled data for dolphin v. blue whale and 602 unlabeled data for seal v.
walrus.

Figure 2.Experimental results on Domain Net for the clipart and quickdraw domains as we vary the amount of labeled data. Each method
uses 500 unlabeled data. Results are listed for the 5 claséesafurtle, vase, whale, bird, violgn

et al., 2017). Here, we use a semi-supervised version ddue to the limitations of PGMV and ALL, we can run those
this algorithm, for a fair comparison with our work. We algorithms only for binary classi cation tasks.

simply optimize the marginal likelihood of the weak super-

vision sources' outputs using the unlabeled data, and thg.3. Results

joint likelihood when the label is observed. ) ) ] ) o )
Animals With Attributes (binary classi cation) : In Fig-

Adversarial Label Learning (ALL) : This algorithm  yre 1, we report the results on the Animals With Attributes
(Arachie & Huang, 2019) learns a prediction model that hasjataset for two binary classi cation tasks.

the highest expected accuracy with respect to an adversarial . .
labeling of an unlabeled dataset, where this labeling musgf) the binary setting, our methods match or outperform the

satisfy error constraints on the weak supervision sourceState-of-the-art methods PGMV and ALL over all labeled-
This approach shares similarities with our method: howeveS@Mple sizes. We note that even though AMCL-LR and ALL

it fails to provide theoretical guarantees on the learning ot/S€ the same inputs and train the same prediction model, our
the prediction model. For a fair comparison to our methodMethod achieves overall higher accuracies, in addition to
we use logistic regression as the prediction model, and ugroviding thepretlcal guarantees on the generalization error
the same features as AMCL-LR. of the prediction model.

Performance-Guaranteed Majority Vote (PGMV): This ~ Pomain Net (multiclass classi cation} In Figure 2, we
method nds a subset of weak supervision sources whosEEPOrt the accuracies of the different algorithms on the Do-
majority vote achieves high accuracy with respect to thén@in Net dat.aset for the clipart and quickdraw domains. As
worst-case distribution of the output of the weak supervisiorPreviously discussed, ALL and PGMV cannot be used in
sources. Again, this worst-case distribution is constrained b{iS Setting, as they are restricted to binary classi cation.

using statistics computed on the weak supervision sources the multiclass setting, our methods again match or out-
(individual error rates and pairwise differences).
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perform the baselines over all quantities of labeled datand services for weakly supervised machine learning.
We note that in the quickdraw domain, the weak supervi-

sion sources are _overaII very inaccurate, and it is dif c_uIt References

to recover useful information from them. However, unlike
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A. Deferred proofs

Proof of Lemma 1. For the sake of the proof, assume that

we have two labeled set of samples of siz&andm, from
Pxy , call them respectivel$ andS, . The selS represents

our unlabeled sample, and the Sgtrepresents the labeled

sample. For any 2 (0;1), we would liketo nda > 0

such that with probabilith. ~ , foralli 2 1;:::;n,
1 X .
o (ixyy) — (i(x)y)
L
(xy)2S (xy)2SL

(6)
The sampleS represents the pnlabeled dadg @ i1 Xm
we have access to. In facﬁ (xy)2S Cix)y) =

R( i;X;Y ). The inequality(6) implies that for the
true labeling of the unlabeled dakg;:::;xn, for any
i 2 1;:::;n, it holds that:

RCGXY )2 s+ ]

where® = L o5 “(i(x);y) is the empirical

mean computed from the labeled sample

By using Hoeffding's inequality, we have that for a xégd
it holds that

0 1
X X
PO 0w & > K
(x;y)2s (x;y)2SL
|
22 '
2exp P P
jm:]_ (%)2 + I Jm:j_ (%)2
B 2m.m 2 ' B _
200 Ememy) 0 )

By taking a union bound and solvir{@) with respect to ,
the statement follows.

Proof of Lemma 4. By invoking Lemma 3, it is easy to see
that the functiorR(h ; X; Y 9) is a convex combination of
convex functions with respect tq hence it is also convex

in . Letv2 @(h ;X;Y9.Ifafunction is convex, then

Proof of Theorem 5 We need to show thdit( ) is convex
andL -Lipschitz continuous with respect toto apply the

standard convergence result for constant step size subgradi-

ent optimization (Bertsekas, 2015), which yields

diameter() 2+ L2h?T
ISINT® O :

(8)

To show thaf ( ) is convex it is straightforward to see that
R(h ;X; Y)isconvexin asitisthe convex combination
of convex functions in . For any 2 [0; 1], we have that

fC 1+@ ) 2=max R(h .q ) ,iXY)

h i

max R(h ;X Y)+@ HR(h ,;X;Y)

max R(h ;X; Y)+(1
Y2vY

= f(D+@ (o) :

Also, f () is L-Lipschitz continuous with respect ta In
fact, it is straightforward to see th&(h ;X; Y ) is alsoL -
Lipschitz continuous with respectta Forany 1; 22 ,
we have that

() fC21 maxiRh X ¥) Rh i Y)j

) max R(h ,;X;Y)

Lij +  2li2 :

The subgradient df( ) in is computed by using Lemma 4.

The last part of the Theorem immediately follows by substi-

tutingh andT in (8) as in the Theorem statement.

Ohie=2 " h 0 07 e

Therefore, we can bound the norm of the gradient a$
v

qx
it C(h 0ieiiz=2 T (hx) e’

i=1

o<

X
2 (1)?
i=1
2p n:

there exists at least one subgradient for each point of it¥he rstinequality is an application of élder's Inequality,

domain, sov is well de ned. Then, we have that forany as i(x)" ;=1andh (x) e ,

02 | it holds that
Rh oY) R oY) vi(® 9
Asf( 99 R(h o;X; Y9, we have that
FC% (9 vi(® 9;

which implies thaw is a subgradient df at °.

1. This implies
that the function (h (x);e) is2 n-Lipschitz continuous
with respect to .

Proof of Lemma 7. First, we will prove that(h (x);e)is
bounded. Without loss of generality, suppose that 1.

We have that |

_ exp@{ x)
r K T
o= eXpwl x)

“(h (x);e)=In
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Itis easy to see thath (x);e) 0. By using the Cauchy- Proof of Theorem 8 From Chapter 14 of Mitzenmacher &

Schwarz inequality, we have that Upfal (2017), we know that
; ! 0g 1
. ) exp(w;  x) 1
h = In p In
(h (x);e) n P el %) R(h~) RhaX: Y )+2Rm(L:X: Y )+ OFB ﬁﬁ ;
exp( BwBx)
kexp(BuBx) By de nition of f (), it holds that(h~: X; Y ) (7).
2BywBy +Ink :

As " is the optimal solution of2), we have thaf (")

0~ VS
Now, we prove that(h (x);e) is Lipschitz continuous F( ). Lety ™= ar?;'}ax Q(h 1 X;Y). Itholds that

with respectto . Fora xed(x;e) 2 X Y , consider the

function! (p) : RK1Y , denedas f( )=R(h :X;Y9
o =Rk :X;Y9+ Rk :X;Y ) R :X;Y)
' (p) = e In(pe) ; =R(h ;XY )+ R :X;Y9Y R XY ):
c=1
and let By using the fact that is bounded, and the de nition of
| diameteDv , we have that
ST
o expwi x) _ expiwy x) . iR(h :X: Y9 R(h XY )j
h( )_ r Kk T 1y Kk T ) ! ! ! !
= T - e - I el v
where = (wq:::w)T, and observe thath (x);e) = - M i0:8e)Wie Ve
' h().
. ) . o . . 12X X
Itis well known that isL, Lj-Lipschitz continuous with B— yjoC Yic BDyvy
respect to , whereL, andLy, are the Lipschitz constants m j=1 c=1

respectively of andh. Itis also a knownresultthat, 1 ) )
(see for example Propositiahof (Gao & Pavel, 2018)). To wrap it up, it results that

We now want to computey,. We will use the fact that  R(h») R(h ;X;Y )+ BDy +2Rn(L;X;Y )
max 2 jjJn( )jie  Ln, wheredy denotes the Jacobian 0 _1
matrix ofh andjj jjr denotes the Frobenius norm. Int

Rgh S)+ B[iy +A4RM(L;X Y )

m:pipjx forj 6 i ; and In 1
e rogs X
av, “=(p POX
' R(h )+ BDy 0 .
Therefore, we can bound the square of the Frobenius norm S In L
of the Jacobian matrix df with + sup 4Rm(L;X;Y)+ O%)B LX :
m
X 2 Y2Y
2 _ @n( )l
‘]h( ) =N @V
i 0 ! 2 1 Proof of Lemma 9 The proof is along the same lines of the
X X proof of Lemma 1, but we take a union bound with respect
i xjj% @ P@ p )]2 + [pip; ]2A to all thenK intervals4 ..o fori 2 1;:: 'n,c2 1;:::k,
i i8] and¢=1;:::;kj. Moreover, as forany 2 1;:::;m, we

s 2ion i i - have thatyjc [ i(xj)]le 1, we takeB = 1 during the
i izl + K=2) i ki proof (as de ned in Lemma 1).

We can conclude thdtt is kB -Lipschitz continuous, and

the statement follows.
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B. Additional Experimental Details C. Additional Figures

We provide further information specifying the experimental C.1. Animals with Attributes

setup used to generate our gures. . - .
P 9 9 We provide the remaining gures for our experiments on

the Animals with Attributes dataset. The last two binary
classi cation tasks are bat v. rat and horse v. giraffe.

We rst build the weak supervision sources on our two From Figure 3, we note that our methods show similar
datasets as follows. results as the gures displayed in the main body of the paper.
Animals with Attributes . Each class is annotated with a bi- AMCL-LR matches or outperforms all other methods on
nary vector of attributes. For each attribute, we train a binaryooth tasks, over all ranges labeled data. AMCL-CC is within
classi er by netuning a ResNet-18 using labeled data from a few accuracy points of the other baselines and AMCL-LR
the seen classes. When we consider a classi cation taskn these tasks.

between two unseen classes, we use as weak supervision

sources the classi ers for the attributes which are differentC.2. DomainNet

between the animals of these two unseen classes. We repw ide th - f . i
the results of the 4 binary classi cation tasks which have the € provide Ihe remaining gures for our experiments on

lowest majority vote accuracy. We chose these |oarticula$he DomainNet dat_aset. We provide histograms when using
Qe other 4 domains as the target task and also provide

tasks to demonstrate the abilities of our methods on the tasl{]
Istograms for results on another of the samples of 5 classes.

that have the least accurate weak supervision sources. X X .

The rst sample of classes as mentioned in the main body
DomainNet We samplés of the 25 classes of DomainNet of the paper if sea turtle, vase, whale, bird, violgn The
with the largest number of datapoints. For each domain, wgecond sample igornado, trombone, submarine, feather,
use60%of the available data for those classes to ne tune azebrag.
pretrained ResNet-18 network. We perform this procedur
on two disjoint samples of test classes to illustrate our result
on two distinct multiclass classi cation tasks.

B.1. Weak Supervision Sources

rom Figures 4-8, we note that in most domains our meth-
ods perform better than or match all other approaches,
namely in both samples of Clipart, Quickdraw, Painting,
In our experiments, we use the pretrained ResNet-18 frorand the second sample of Sketch. Our methods achieve
PyTorch. We netune this ResNet-18 network following the slightly lower accuracy than the best performing baseline on
approach described in (He et al., 2016), using cross-entrophe Real domain and on the second sample of the Infograph

loss. domain, although they are not beaten by a single baseline
in all of these tasks. We believe that the combination of our
B.2. Algorithm Hyperparameters theoretical guarantees and that our methods achieve simi-

lar or sometimes better empirical performance captures the
The subgradient method (Algorithm 1) used to train AMCL'bene ts of AMCL P P P

CC and AMCL-LR uses the following hyperparameters:

AMCL-CC : We set =0:1, and build the constraints as in
Lemma 1. We usé = 0:1, and de ne the step size Bnd
the number of iteration$ ag in Theorem 5, using=2" n
and diameter of equalto 2.

AMCL-LR : In this case, the loss function is bounded as in
Lemma 7. Since this value could be potentially very large,
which in turn it would result in large intervals and number
of iterations, we use the valig = 0:1 in the experiments.
We set to0:1 and build the constraints as in Lemma 1. We
do not bound the set of weights in the experiments, the
norm of the weights of the multinomial logistic regression
model has never diverged. We run the subgradient algorithm
for T = 1000 iterations with step size = 0:02.
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Figure 3.Experimental results on the Animals with Attributes dataset for the binary classi cation tasks of bat vs. rat and horse vs. giraffe
as we vary the amount of labeled data. Each method uses 347 unlabeled data for bat vs. rat and 1424 unlabeled data for horse vs. giraffe.

Figure 4.Experimental results on the second sample of Domain Net for the clipart and quickdraw domains as we vary the amount of
labeled data. Each method uses 500 unlabeled data.

Figure 5.Experimental results on both samples of Domain Net for the Infograph domain as we vary the amount of labeled data. Each
method uses 500 unlabeled data.
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Painting Painting (Sample 2)
0.57 0.64
0.56 0.63
0.55 0.62
508
& O 9 06
5 052 AMCL-CC © 0.50 AMCL-CC
> ..
g 051 mDS O 058 m DS
< 0° < 057
0.49 .
0.48 MV 0.56 MV
0.47 Best WSS 0.55 Best WSS
0.46 0.54
100 200 300 100 200 300
Number of Labeled Data Number of Labeled Data

Figure 6. Experimental results on both samples of Domain Net for the Painting domain as we vary the amount of labeled data. Each
method uses 500 unlabeled data.

Real Real (Sample 2)
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Figure 7. Experimental results on both samples of Domain Net for the Real domain as we vary the amount of labeled data. Each method
uses 500 unlabeled data.

Sketch Sketch (Sample 2)
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Figure 8. Experimental results on both samples of Domain Net for the Sketch domain as we vary the amount of labeled data. Each method
uses 500 unlabeled data.
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D. Experiments on Synthetic Data

We run synthetic experiments to show that our method is
robust with respect to the addition of correlated weak su-
pervision sources. Similar experiments have been done for
ALL by Arachie & Huang (2019).

‘We consider a multiclass classification task over 5 classes,

and 25 weak supervision sources 1;:::; 2s. In this clas-
sification task, each item of the domain X has a unique true

pervision source ; returns the correct label with probability
1=2, and a random label with probability 1=2. The output of
the weak supervision source j is independent to the output

pervision sources j outputs the same result than the weak
supervision source ;. Note that the weak supervision
sources 11;:::; 25 do not provide any additional infor-
mation with respect to the target classification task, as they
add redundant constraints to the set of feasible labelings
Y . The majority vote of the weak supervision sources
1;::1; 25 is highly affected by these dependencies, and
it is very likely to provide the same answer as 1, which is
only %(1 + %) accurate on average. On the other hand, the
majority vote of the weak supervision sources 1;:::; 10
would improve upon the individual accuracy of the weak
supervision sources, as their output is independent.

We use 500 unlabeled examples, run experiments vary-
ing the amount of labeled data, and show that our method
AMCL-CC is robust against those dependencies. For the
sake of these experiments, as we want to use very small
amount of labeled data, we set = 0 when building the
constraints for Y as in Lemma 1. The experimental results
are reported in Table D. The table shows that AMCL-CC is
robust with respect to dependencies among weak supervi-
sion sources, whereas majority vote is greatly affected by
them. In fact, in this case the majority vote does not im-
prove upon the individual accuracy of the weak supervision
sources, which is on average %(1 + %) = %

Table 1. We report the experimental results on the synthetic dataset.
We report the accuracy obtained by our method AMCL-CC and
the majority vote, when varying the amount of labeled examples
(we report the average accuracy over 3 distinct runs).

Labeled Examples | AMCL-CC | Majority Vote
100 0.902 0.595
50 0.828 0.602
25 0.819 0.598




