
Adversarial Multiclass Learning under Weak Supervision
with Performance Guarantees

Alessio Mazzetto * 1 Cyrus Cousins * 1 Dylan Sam 1 Stephen H. Bach 1 Eli Upfal 1

Abstract
We develop a rigorous approach for using a set
of arbitrarily correlated weak supervision sources
in order to solve a multiclass classification task
when only a very small set of labeled data is avail-
able. Our learning algorithm provably converges
to a model that has minimum empirical risk with
respect to an adversarial choice over feasible label-
ings for a set of unlabeled data, where the feasibil-
ity of a labeling is computed through constraints
defined by rigorously estimated statistics of the
weak supervision sources. We show theoretical
guarantees for this approach that depend on the
information provided by the weak supervision
sources. Notably, this method does not require
the weak supervision sources to have the same
labeling space as the multiclass classification task.
We demonstrate the effectiveness of our approach
with experiments on various image classification
tasks.

1. Introduction
In the last decade, deep neural networks have been applied
to accurately solve a wide range of classification tasks in dif-
ferent domains, but the supervised learning of these models
requires a considerable amount of labeled data. An alterna-
tive strategy is to learn from weak supervision, i.e., sources
of labels that are noisy or heuristic. Examples include hand-
written rules (Ratner et al., 2017; Wu et al., 2018; Safranchik
et al., 2020) and classifiers trained for related tasks (Varma
et al., 2017; Bach et al., 2019; Chen et al., 2019). Even if
these sources of information are noisy, results show that
they can lead to high-quality models, particularly when the
outputs from many weak sources are combined.

A key technical challenge in such work is how to com-
bine multiple sources of weak supervision, since they might
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conflict with one another. We assume access to only a
small amount of ground-truth labeled data. Much prior
work on aggregating noisy labels (Dawid & Skene, 1979;
Zhang et al., 2016; Gao & Zhou, 2013; Karger et al., 2014;
Ghosh et al., 2011; Dalvi et al., 2013; Ratner et al., 2016;
2019) assumes that the sources make independent errors,
which is a very strong assumption. Some recent work (Bach
et al., 2017; Varma et al., 2019) attempts to learn more
sophisticated distributions, but still relies on parametric
assumptions that make conditional independence assump-
tions. Such independence assumptions in models of weak
supervision sources are hard to verify and limiting in prac-
tice. Furthermore, many useful weak supervision sources,
particularly ones learned from related datasets, can be ar-
bitrarily correlated, as there may be systematic differences
between the target classification task and the mildly related
tasks used to learn them. For example, if all the labelers are
fine-tuned from the same pretrained model, they are likely
to inherit some of the same biases.

Recent work has addressed the problem of combining weak
labelers without distributional assumptions by taking an
adversarial approach. For binary classification, Balsubra-
mani & Freund (2015) formulate the problem as minimax
optimization, where the goal is to find the labels of an un-
labeled dataset that minimize the error with respect to the
worst-case assignment to the unknown ground-truth labels,
while satisfying statistical constraints on the individual er-
ror of the weak labelers. This minimax problem can be
optimally solved for a large family of loss functions (Bal-
subramani & Freund, 2016). The adversarial label learning
(ALL) framework (Arachie & Huang, 2019) uses a similar
minimax optimization to learn a model that minimizes risk
using the worst-case assignment to the unknown ground-
truth labels, and was later extended to the multiclass setting
(Arachie & Huang, 2021), but it does not optimally solve
the minimax optimization problem, and provides no gener-
alization guarantees for the models it learns.

Another recent work, performance guaranteed majority vote
(PGMV) (Mazzetto et al., 2021), takes an alternative ap-
proach for the binary hard classification setting. Instead of
working with an adversarial choice of the ground-truth la-
bels, it uses both a small amount of labeled data and a large
amount of unlabeled data to empirically estimate properties
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of the labelers which are then used to constraint their joint
output distribution. However, this approach is inherently
limited to hard binary classi�cation, as it exploits the fact
that when two labelers disagree, one must be correct.

In this paper, we address the limitations of previous work
by providing a framework for multiclass classi�cation with
weak supervision, with rigorouscomputational ef�ciency
andgeneralization errorguarantees. Similar to ALL, we
formulate the search for ground truth as a search over the set
of feasible labelings that satisfy statistical constraints on the
weak supervision sources. However, ALL lacks theoretical
guarantees, and we show using techniques fromconvex op-
timizationthat our training algorithm rapidly converges to
the optimal solution of the minimax optimization problem.
Furthermore, we provide generalization bounds throughuni-
form convergence theoryfor the learned model, in terms of
the information provided by the weak supervision sources
(with respect to the target classi�cation), geometrically rep-
resented as the diameter of the set of feasible labelings.

Contributions. We introduce a novel method to use the
information provided by a set of arbitrarily correlated weak
supervision sources to learn a classi�er for a given target
task. Inspired by previous work, we use a small amount of
labeled data to compute statistics of the weak supervision
sources, and we formulate an optimization problem to �nd
the prediction model that achieves the lowest empirical risk
with respect to an adversarial choice of a labeling of an
unlabeled dataset that agrees with those statistics. Our main
contributions are as follows.

1. We develop the �rst method with theoretical guarantees
for learning multiclass classi�ers from weak supervision
sources without any prior assumptions on the joint distribu-
tion of their outputs and the true label (§4).

2. We provide theoretical analysis of our method, proving
approximation guarantees on the quality of our solution, and
time complexity bounds for the training algorithm (§4).

3. We provide generalization bounds for the solution pro-
vided by our method using a geometrical quantity that rep-
resents the aggregate information provided by the weak
supervision sources with respect to the target classi�cation
task (§4.2).

4. While the presentation of our method is general, we
demonstrate the applicability of our approach through two
practical instances of prediction model and loss function:
convex combinationof the weak supervision sources and
multinomial logistic regression(§4.1).

5. We show how to extend our method to use weak supervi-
sion sources with different labeling spaces from the target
task. This is useful, e.g., when learning with attributes. In
many weak supervision tasks, related classi�cations, such
as whether a classi�er detectsstripeson an animal, yields

partial information for target tasks likespecies identi�cation
(§4.3).

6. We conduct experiments demonstrating the effectiveness
of our novel approach for multiclass classi�cation tasks.
Our experiments show that our method compares favorably
with the recently-published ALL and PGMV algorithms for
(binary classi�cation) from weak supervision sources (§5).

2. Related Work

The problem of learning from multiple, possibly con�ict-
ing, weak labelers with little to no ground-truth data has
received considerable attention recently (Ratner et al., 2016;
Bach et al., 2017; Ratner et al., 2017; Varma et al., 2019;
Arachie & Huang, 2019; Mazzetto et al., 2021).This setting
is distinct from much work on ensemble learning (Zhang
& Ma, 2012), such as boosting (Schapire, 1990; Freund,
1995), where abundant labeled examples are used to learn
to combine ensemble members. Other ensemble methods,
such as bagging (Breiman, 1996), take an unweighted vote
of ensemble members, but rely on the assumption that each
member is trained on labeled data sampled from the target
distribution. Unlike these methods, in weak supervision, the
goal is to use other statistical properties of the labelers, such
as their agreements and disagreements, to learn to combine
them. In this way, the combination of the labelers can be
potentially improved without increasing the need for labeled
training data.

This work has its roots in crowdsourcing, where the “label-
ers” are people with varying unknown levels of reliability.
Dawid and Skene's (1979) seminal work showed how the
accuracy of each labeler can be estimated with expecta-
tion maximization by assuming a naive Bayes distribution
over the labelers' votes and the latent ground truth. Since
then, much work has provided theoretically guaranteed al-
gorithms for learning under these assumptions (Zhang et al.,
2016; Gao & Zhou, 2013; Karger et al., 2014; Ghosh et al.,
2011; Dalvi et al., 2013). When the labelers are humans
working without coordination, the independence assumption
is a reasonable one.

Recently, frameworks for weakly supervised machine learn-
ing like Snorkel (Ratner et al., 2016; Bach et al., 2017; Rat-
ner et al., 2017) have used and extended these learning tech-
niques to the setting in which the labelers are programmed
rules, weak classi�ers, or other heuristics. As described in
the introduction, learned and programmed labelers can have
heavily correlated errors because of common elements in the
heuristics they use. This potential problem has motivated
attempts to relax the independence assumption. One line
of work (Bach et al., 2017; Varma et al., 2019) has tried to
learn more sophisticated parametric models of the labelers,
but they are still limited by how correct their assumptions
are, which are hard to verify in practice. In this work, we
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therefore focus on methods for learning from weak supervi-
sion that do not make such assumptions on the distribution
of labeler outputs and ground truth.

3. Preliminaries

We denote scalar and generic items as lowercase letters, vec-
tors as lowercase bold letters, and matrices as bold upper-
case letters. Thei -th column of a matrixA is denoted by the
corresponding lowercase symbola i , i.e.,A = [ a1; : : : ; an ].
Due to space constraints, all proofs are deferred to the ap-
pendix.

In multiclass learning, we have a domainX and a classi�er
function h that maps eachx 2 X to one ofk possible
labels (classes). Since we will work later with distributions
over thek classes, it is convenient to represent labeli 2
1; : : : ; k, as ak-dimensional vectorei , with all components
set to0, except for thei -th component, which is set to1.
Thus,h : X ! Y = f e1; : : : ; ek g. A classi�er (e.g., the
softmax layer of a neural network) may output a probability
distribution vectory 2 Rk

� 0 over thek classes, whereyc is
the probability that the item belongs to classc, and

P
c yc =

1. We takeY � � Y to be the set of all possible probability
vectors. Aloss functioǹ : Y � � Y ! R� 0 quanti�es the
error of the classi�er's outputh(x) with respect to the true
labely . Let pX Y be the probability distribution overX � Y .
Given a classi�erh, its risk is de�ned as

R(h) := E
(x; y ) � pX Y

`(h(x); y ) :

In standard supervised learning, we are givenlabeled sam-
plesfrom pX Y , and we �nd a classi�er with low risk among
a set of classi�ersH , which is also called ahypothesis class.
The amount of labeled data required to guarantee that we
can �nd (or train) such a classi�er is referred to as thesam-
ple complexity, which is related to thesizeor expressivityof
H . For many classi�cation tasks of interest, there could be
low availability of labeled data, and this is a critical problem
for a wide range of domains, where the most successful
hypothesis classes are very expressive (e.g., convolutional
neural networks for images).

In this work, we assume access tomL i.i.d. labeled sam-
ples ~X = f ~x1; : : : ; ~xm L g, ~Y = [ ~y1; : : : ; ~ym L ] drawn from
pX Y , where the sample sizemL is insuf�cient for the di-
rect supervised learning ofH . To circumvent the lack of
suf�cient training data, we assume access to a set of weak la-
belers (classi�ers)� 1; : : : ; � n , also called weak supervision
sources. These labelers areweakin the sense that they can
be inaccurate with respect to the target classi�cation task.
For example, the weak labelers could be trained for classi�-
cation tasks that are only tangentially related to the target
classi�cation task: we could train a labeler to detect stripes
on zebrasandhorses, and then attempt to use it to label

images as eithertigersor lions. Moreover, we add no fur-
ther assumptions on the properties of those classi�ers, and
their output could be arbitrarily correlated. We also assume
access tom unlabeled data pointsX = f x1; : : : ; xm g sam-
pled independently from the marginal distributionpX , and
our method uses the weak supervision sources� 1; : : : ; � n

to constrain the space of possible labels that can be given
to these unlabeled data points. We use the limited labeled
data to computestatisticsof the weak labelers, and then
consider possible labelings of the unlabeled dataX that
satisfy feasibility constraints derived from these statistics.

As an example, suppose that we use themL labeled data
points to compute theempirical riskstatistic of each weak
supervision source, i.e.,̂� i = 1

m L

P m L
j =1 `(� i (~x j ); ~y j ), for

eachi 2 1; : : : ; n. In Section 4, we use related statistics in
order to prove generalization guarantees. If we were to as-
sign a labeling to the unlabeled data pointsX , a reasonable
approach would be to �nd a labeling such that the empirical
risk of the weak supervision sourcei computed with respect
of those labels is equal tô� i . However, this is a computa-
tionally hard problem, as we have to assign a discrete label
(from Y) to each item, and each label affects the empirical
risk of all the weak supervision sources. Moreover, there
is no guarantee that we can �nd such a labeling for the un-
labeled data, and it is unclear which labeling to choose in
case there are multiple solutions.

To address the computational issues with discrete label se-
lection, we assign a probability vector fromY � to each
unlabeled data point. In other words, for each unlabeled
itemx j , we assign a probability vectory j , whereyj;c repre-
sents the probability that itemx j belongs to classc. Given
a classi�erh, we de�ne the loss of the classi�er on item
x 2 X with respect to the probability vectory 2 Y � as
theexpected loss. Abusing notation, lete � y denote that
e = ec 2 Y with probabilityyc. We then de�ne

` � (h(x); y ) := E
e� y

`(h(x); e) =
kX

c=1

yc � `(h(x); ec) : (1)

We observe that this de�nition of loss generalizes the one
computed with respect to a discrete labeling, since for each
e 2 Y , we havè (h(x); e) = ` � (h(x); e). Also, the loss(1)
is linear with respect to the labelingy . Let Y 2 Rk � m be
a matrix that describes a possible labeling of the unlabeled
data points; in particular thej -th column of the matrixY
is y j 2 Y � , and it denotes the probability vector of the
labeling of the itemx j . Theempirical riskof a classi�erh
on the unlabeled dataX with labelingY is de�ned as

R̂(h; X; Y ) :=
1
m

mX

j =1

` � (h(x j ); y j ) :

Finding a labelingY for which R̂(h; X; Y ) = �̂ i for i 2
1; : : : ; n is equivalent to the computationally easy task of
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solving a linear system withO(n + m) constraints (then
constraints on the empirical risk equality andm constraints
on probability vectors summing to1) andO(mk) variables.
However, there still could be multiple solutions to such an
underde�ned linear system. The core idea of the method
presented in Section 4 is to �nd a model that has the lowest
empirical risk with respect to an adversarial choice among a
related feasible set of labelings.

4. Learning Algorithm

Let H = f h � : � 2 � � Rdg be the hypothesis class that
we will use to �nd the classi�er for the classi�cation task of
interest, where each classi�erh 2 H is parametrized by a
vector of weights� .

Let Y � be the (unknown) true labeling of the unlabeled
dataX . For each weak supervision sourcei , we use the
labeled data to compute an interval4 i such that, with high
probability, we have that̂R(� i (x); X; Y � ) 2 4 i for i 2
1; : : : ; n. This is a crucial property that we will need to
show our theoretical bound (Theorem 8), and we construct
such intervals in Lemma 1.

Let Y � be the set of all possible labeling matricesY such
that the empirical risk of� i , computed with respect to the
labelingY of the unlabeled dataX , belongs to the cor-
responding interval4 i for each weak supervision source.
Formally, the setY � is de�ned as

Y � := f Y 2 Rk � m :

y j 2 Y � for j 2 1; : : : ; m

R̂(� i ; X; Y ) 2 4 i for i 2 1; : : : ; ng :

We will refer toY � as the set offeasible labelings. The next
lemma shows how to build the intervals4 i to guarantee
that, with high probability, the true labelingY � is feasible.

Lemma 1(Weak Labeler Risk Constraints). Suppose that
the codomain of the loss function` is contained in the
interval [0; B ]. Let �̂ 1; : : : ; �̂ n be the empirical risks of
� 1; : : : ; � n computed with respect to themL labeled sam-
ples. Fix a value� 2 (0; 1) and take


 := B

s
(mL + m) ln 2n

�

2mL m
:

If we set4 i = [ � i � 
; � i + 
 ], then with probability at
least1 � � it holds thatY � 2 Y � .

We want to �nd the classi�er that achieves the lowest empir-
ical risk among the feasible labelings of the unlabeled data
points. That is, we choose the classi�erh �̂ 2 H , where�̂
is the solution of the minimax problem

�̂ := arg min
� 2 �

max
Y 2 Y �

R̂(h � ; X; Y ) : (2)

The optimization problem above has some nice properties.
The setY � is speci�ed by linear constraints inY . Moreover,
the objective of the minimax(2) problem is also linear inY .
Hence, it is easy to see that for a given� 2 � , it is possible
to solve the maximization problem

f (� ) = max
Y 2 Y �

R̂(h � ; X; Y ) ; (3)

through a linear program withO(mk) variables andO(m +
n) constraints.

In order to solve the minimax problem(2), we will intro-
duce a few assumptions on the loss function and the model
choiceH , which are satis�ed by many classic machine learn-
ing settings. In particular, we would like the functionf (� )
to be convex, so that we can solve the minimization prob-
lemmin � 2 � f (� ). Even if f (� ) is convex, we may not be
able to apply a gradient-based optimization method, asf (� )
involves amaximization, hence it is not differentiable every-
where. To solve this issue, we use thesubgradient, which
generalizes the gradient. This will require the loss function
to be Lipschitz continuous. A functiong : Rd1 ! Rd2 is
said to beL-Lipschitz continuous if for anyx ; y 2 Rd1 , it
holds thatjjg(x ) � g(y )jj2 � L jjx � y jj2.

De�nition 2 (Subgradient). LetA � Rb be the domain of a
functiong. A vectorv 2 Rb is a subgradient for a function
g at x 2 A if for anyy 2 A we have that

g(y ) � g(x ) � vT � (y � x ) :

For eachx 2 A , we de�ne

@g(x ) := f v : v is a subgradient ofg at x g :

If a function isdifferentiableat a point, then its subgradient
with respect to that point is unique, and equals the gradient.
Furthermore, if the function isconvex, then there exists at
least one subgradient for each point of its domain.

The following intermediate result, which immediately fol-
lows from the de�nition of` � , will prove useful throughout
this discussion.

Lemma 3(Linear Loss Properties). Let`(h � (x); e) be con-
vex andL-Lipschitz continuous with respect to� for any
(x; e) 2 X � Y . Then, for any probability vectory 2 Y � ,
the function` � (h � (x); y ) is also convex andL-Lipschitz
continuous with respect to� .

The next Lemma shows that under some conditions often
encountered in our adversarial learning framework, it is
possible to compute the subgradient of the functionf .

Lemma 4 (Subgradient of Adversarial Learn-
ing). Fix a value � 0 2 interior(�) , let Y 0 :=
arg maxY 2 Y � R̂(h � 0; X; Y ), and assume that`(h � (x); e)
is convex with respect to� for anyx 2 X ande 2 Y . Then

; 6= @R(h � 0; X; Y 0) � @f(� 0) :
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Algorithm 1 Subgradient Algorithm
Input: Number of iterationsT, step sizeh, H , X ,
� 1; : : : ; � n

Output: Approximate solution~� of (2) (See Theorem 5)
~� (0) = � (0)  arbitrary point� 2 �
for t 2 1; : : : ; T do

Y 0  arg maxY 2 Y � R̂(h � ( t � 1) ; X; Y )
v  arbitrary vector from@̂R(h � ( t � 1) ; X; Y 0)
� ( t )  P(� ( t � 1) � hv) (P is projection onto� )
~� ( t )  arg minf f ( ~� ( t � 1) ); f (� ( t ) )g

end for
Return~� (T )

A subgradient-based optimization approach (Shor et al.,
1985) is similar to gradient descent, however at each itera-
tion we use the subgradient instead of the gradient, and we
memorize the best solution found among all the iterations.

The subgradient-based optimization algorithm used to solve
the optimization problem (2) is presented in Algorithm 1.

As observed before,Y 0 as de�ned in the algorithm can
be computed by solving a linear program. The projection
step depends on the set of parameters� . While this is
not a requirement for our approach, if the loss function
`(h � (x); y ); is differentiable with respect to� , then we
can compute the gradient of the empirical risk instead of a
subgradient.

Theorem 5(Subgradient Method Convergence Rates). Sup-
pose that for any(x; y ) 2 X �Y , `(h � (x); y ) isL -Lipschitz
continuous and convex with respect to� . Let step size
h > 0, and iteration countT 2 N, and ~� as returned by
Algorithm 1. Then, we have that

f ( ~� ) � f (�̂ ) �
diameter(�) 2 + L 2h2T

2hT
;

wherediameter(�) is computed with respect to the`2-norm,
i.e., diameter(�) 2 := max � 1 ;� 2 2 � k� 1 � � 2k2

2, and �̂ is
de�ned as in(2). Alternatively, for any" > 0, then if
h = "=L 2 andT � L 2 diameter(�) 2

" 2 , we have that

f ( ~� ) � f (�̂ ) � " :

Therefore, we can compute a solution within additive er-
ror " of (2) by runningO( L 2 diameter(�) 2

" 2 ) iterations of the
subgradient algorithm.

4.1. Applications

In order to feature the generality of our framework, we show
two examples of different instantiations of the optimiza-
tion problem(2) for different choices of loss function and
prediction models for which we can apply Theorem 5.

Convex combination of the weak supervision sources.
Let � = f � = ( � 1; : : : ; � n ) 2 Rn

+ :
P n

i =1 � i = 1g. Our
prediction model is a convex combination of the output of
the weak classi�ers� ; : : : ; � n . In particular, given� 2 � ,
the classi�erh � is de�ned ash � (x) =

P n
i =1 � i � i (x) for

anyx 2 X . It is easy to see thatdiameter(�) �
p

2. Given
an arbitrary vectorv 2 Rn , the projection step to� can
be done ef�ciently by using for example the algorithm of
Wang & Carreira-Perpińan (2013).

Let ` be the Brier loss, de�ned for any(x; e) 2 X � Y as

`(h � (x); e) :=
kX

c=1

�
h � (x)c � ec

� 2

= jjh � (x)jj2
2 � 2h � (x)T � e + 1 :

It is easy to see that the function`(h � (x); e) is convex,
differentiable with respect to� , and has codomain[0; 2].

Lemma 6 (Brier Model Lipschitz Properties). The loss
`(h � (x); e) of a prediction modelh � de�ned as in this
subsection is2

p
n-Lipschitz continuous with respect to� .

Softmax (multinomial logistic legression). Suppose that
each item is a vector inRb, i.e., X � Rb, and assume
that jjx jj2 � Bx for any x 2 X . Let � = f � =
(w T

1 : : : w T
k ) 2 Rb�k : w c 2 Rb ^ jj w cjj2 � Bw for c 2

1; : : : ; kg. That is, � is the concatenation ofk vectors
with bounded norm. Observe that with this de�nition of
� , we have thatdiameter(�) �

p
2kBw . Given a vec-

tor � = ( w T
1 : : : w T

k ), the projection step to� is simply
~� = ( ~w T

1 : : : ~w T
k ), where ~w c = w c=min(Bw =jjw cjj2; 1)

for c 2 1; : : : ; k.

Given� = ( w T
1 : : : w T

k ) 2 � andx 2 X , we de�ne

h � (x ) :=

 
exp(w T

1 � x )
P k

c=1 exp(w T
c �x )

; : : : ;
exp(w T

k � x )
P k

c=1 exp(w T
c �x )

! T

:

This classi�er is a particular instantiation of softmax com-
bined with a linear model. For a vectorv = ( v1; : : : ; vd)T ,
de�ne ln v := (ln v1; : : : ; ln vd)T . Given(x; e) 2 X � Y ,
we de�ne the cross-entropy loss` of the prediction model
h � as

`(h � (x ); e) := � eT � ln(h � (x )) :

This combination of prediction model and loss function is
also known as multinomial logistic regression. It is easy to
see that the loss function is differentiable with respect to
� , and it is a known result that`(h � (x ); e) is convex with
respect to� for any(x ; e) 2 X � Y (Böhning, 1992). We
now characterize the boundedness and Lipschitz properties
of the softmax function with respect to the cross-entropy
loss.
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Lemma 7(Properties of Multinomial Logistic Regression).
For any(x ; e) 2 X � Y , and� 2 � , we have

1. `(h � (x ); e) 2 [0; Bw Bx + ln k]; and

2. `(h � (x ); e) is (kB x )-Lipschitz continuous with respect
to � .

4.2. Statistical Learning Guarantees

In this subsection, we develop a bound on the true risk
of the classi�erh �̂ that is a solution of the optimization
problem(2). The bounds are expressed in function of the
Rademacher complexity of the function familyL = f ` � � h :
h 2 Hg that describes the loss of each functionh 2 H , the
risk minimizer� � = arg min � 2 � R(h� ), and the average
diameterDY � of the feasible set of solutionsY � , where

DY �
:= sup

Y 0;Y 002 Y �

1
m

mX

j =1






 y 0

j � y 00
j








1
: (4)

The quantityDY � characterizes the information given by the
classi�ers� 1; : : : ; � n on the classi�cation task. In particu-
lar, a weak supervision source provides useful information
on the classi�cation task of interest only if it reduces the size
of the feasible set, and it provably improves the performance
of our algorithm if it decreases the average diameterDY � .

Given a function familyL , we de�ne the empirical
Rademacher average (see Mitzenmacher & Upfal, 2017)
of the unlabeled itemsX and a possible labelingY of those
items as

R̂m (L ; X; Y ) := E
�

2

4 sup
` � � h2L

1
m

mX

i =1

� i ` � (h(x i ); y i )

3

5 ;

where� 1; : : : ; � m are independent random variables from
the Rademacher distribution, i.e.,P(� i = 1) = P(� i =
� 1) = 1

2 . Intuitively, this quantity measures thecapacity
of H to over�t, and under mild conditions, it approaches0
as sample sizem tends to in�nity, in which case over�tting
becomes impossible.

Theorem 8(Adversarial Risk Bounds). Let h �̂ be the so-
lution of (2). Let � � = arg min � 2 � R(h � ). Suppose that
the codomain of the loss function` is contained in the in-
terval [0; B ]. LetY � be the true (unknown) labeling of the
unlabeled dataX , and assume thatY � 2 Y � . Then, with
probability1 � � it holds that

R(h �̂ ) � R(h � � ) + BD Y �

+ sup
Y 2 Y �

4R̂m (L ; X; Y ) + O

0

B
@B

s
ln 1

�

m

1

C
A :

4.3. Constraining the Feasible Set

Previously, our presentation has implicitly assumed an align-
ment between the output classes of the weak supervision
sources� 1; : : : ; � n and the target classi�cation task. In
fact, as seen in Lemma 1, we compute the intervals4 i

based on the empirical risk of the weak supervision sources
using labeled data of the target classi�cation task. How-
ever, for many applications of interest, the weak supervision
sources could output to a different codomain, potentially
with an unequal number of classes. As an example, sup-
pose that we would like to distinguish between images of
f cat; dog; rabbit; bearg. A binary classi�er that tells us if
the animal represented in an image has a tail or not still pro-
vides a useful clue with respect to the target classi�cation
task, and we would like to use that information.

In this subsection, we will show how to constrain the fea-
sible set of labelingsY � in a more general setting, where
the weak supervision source� i is a classi�er that maps
elements from the domainX to soft labels overki classes,
i.e., � i : X ! Y �

k i
, whereY �

k i
= f v 2 Rk i

� 0 :
P

c vc = 1g.

Consider the weak supervision source� i . For eachc 2
1; : : : ; k and~c 2 1; : : : ; ki , we use themL labeled examples
(~x1; ~y1); : : : ; (~xm L ; ~ym L ) to compute the statistic

�̂ i;c; ~c( ~X; ~Y ) :=
1

j ~X j

j ~X jX

j =1

yj;c [� i (x j )]~c :

It is clear that the function̂� i;c; ~c( ~X; ~Y ) is linear in ~Y . For
each weak supervision source� i , true classc 2 1; : : : ; k,
and weak supervision source's output class~c 2 1; : : : ; ki ,
based on the valuê� i;c; ~c( ~X; ~Y ), we compute an interval
4 i;c; ĉ, de�ned as

4 i;c; ĉ
:= [ �̂ i;c; ~c( ~X; ~Y ) � 
; �̂ i;c; ~c( ~X; ~Y ) + 
 ] :

where the value
 is speci�ed in Lemma 9.

Given a labelingY of the unlabeled datasetX , we say that
Y is a feasible solution if for eachi; c and~c, it holds that:

�̂ i;c; ~c(X; Y ) 2 4 i;c; ĉ : (5)

That is, the set of all the feasible solutionsY � is de�ned as

Y � := f Y 2 Rk � m :

y j 2 Y � for j 2 1; : : : ; m

�̂ i;c; ~c(X; Y ) 2 4 i;c; ĉ 8i; c; ~cg :

Notice that the constraints speci�ed inY � are still linear
in Y , therefore we can still compute the valuef (� ) (as in
(3)) by solving a linear program, and all the discussion done
with empirical-risk based constraints still applies.

In order to be able to give the theoretical bound of Theo-
rem 8, we need to guarantee that the true labelingY � of the
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unlabeled dataX is feasible. This is possible by choosing a
suitable value
 when de�ning the intervals4 i;c; ~c.

Lemma 9 (Generalized Weak Labeler Constraints). For
everyi 2 1; : : : ; n, c 2 1; : : : ; k, and ~c 2 1; : : : ; ki let
4 i;c; ~c be computed as in(5). Let K = k

P n
i =1 ki . Fix a

value� 2 (0; 1), if we use the value


 :=

s
(mL + m) ln 2nK

�

2mL m

to compute those intervals, then with probability at least
1 � � it holds thatY � 2 Y � .

Sharper bounds for interval estimates, both forrisk con-
straints(Lemma 1), andgeneralized constraints(Lemma 9)
are of course possible. The Hoeffding bound, used to show
both results, is known to be loose forlow-variancefunctions,
and the union bound is loose forcorrelated functions. Infor-
mative weak labelers should produce low-variance statistics,
and our framework is designed explicitly for correlated la-
belers. The costly union bound can be circumvented via
the Rademacher average, and Cousins & Riondato (2020)
show that �nite or linear families of statistics, particularly
those with low variance, can be uniformly-bounded, even
more sharply with theempirically centralizedRademacher
average.

5. Experiments

We demonstrate the applicability and performance of our
method on image multiclass classi�cation tasks derived
from the DomainNet (Peng et al., 2019) dataset. We also
provide experiments on image binary classi�cation tasks de-
rived from the Animals with Attributes 2 (Xian et al., 2018)
dataset in order to compare our methods with additional
baselines. The code for the experiments is available online.1

DomainNet contains images from345 different classes
in 6 different domains, which we refer to asP =
f clipart, infograph, painting, quickdraw, real, sketchg. An-
imals with Attributes 2 contains natural images of 50 types
of animals. Associated with the dataset is a list of 85 at-
tributes for each animal class, which we use to create weak
supervision sources. Animals with Attributes 2 is divided
into 40 “seen” classes and 10 “unseen” classes, where the
seen classes can be used to train attribute classi�ers without
leaking information about the unseen classes.

We refer to our algorithms by using the acronymsAMCL-
CC andAMCL-LR , where AMCL stands forAdversial
Multi ClassLearning. AMCL-CC is an implementation
of our method that uses aConvex Combination of the
weak supervision sources as the prediction model, whereas

1https://github.com/BatsResearch/
mazzetto-icml21-code

AMCL-LR uses (multinomial)Logistic Regression (see
Section 4.1). For every image, we compute the output of a
pretrained ResNet-18 and use it as input for AMCL-LR.

5.1. Setup

From DomainNet, we selectk = 5 random classes from
the25 classes with the largest number of instances. Then,
for each domainp 2 P, we learn a multiclass classi�er
� p for thosek classes in domainp. The classi�er� p is
trained by �ne-tuning a pretrained ResNet-18 network (He
et al., 2016), using60%of the labeled data for that domain.
For each domainp, we consider the classi�ers trained in
the remaining domains, i.e.,P n f pg, as weak supervision
sources, i.e., the classi�ersf � qg for q 2 Pnf pg. We remark
that these weak supervision sources never have access to
samples from domainp.

From Animals With Attributes, we create binary classi�ca-
tion tasks by selecting pairs of unseen classes. Following
Mazzetto et al. (2021), we create weak supervision sources
by using the seen classes to train classi�ers for the attributes
that distinguish them. Similarly to Domain Net, these clas-
si�ers are learned by �ne-tuning a pretrained ResNet-18
network using labeled data from the seen classes. In order
to focus on the most challenging tasks (where the weak
supervision sources are not highly accurate), we select the4
class pairs among the unseen classes with the lowest major-
ity vote accuracy.

We remark that all algorithms that require unlabeled data
are evaluated in a transductive setting: the unlabeled data
used by the algorithms are also used to evaluate the �nal
learned prediction models.

5.2. Baselines and Algorithms

Following the example of Mazzetto et al. (2021), we com-
pare our method with the following �ve baselines and algo-
rithms.

Best Weak Supervision Source (Best WSS): We report
the accuracy of the best weak supervision source.

Majority Vote (MV) : We consider a simple approach to
combining the weak supervision sources: we average their
output and select the most voted class. This approach re-
quires no learning, but is suboptimal when the errors made
by weak supervision sources are not independent, or when
the error rates of weak supervision sources are not equal.

Semi-Supervised Dawid-Skene Estimator (DS): We also
consider a semi-supervised extension to the standard crowd-
sourcing algorithm (Dawid & Skene, 1979) that �nds the
optimal aggregation of the outputs of independent weak
supervision sources. The Dawid-Skene estimator is also the
default aggregation method for the Snorkel system (Ratner
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Figure 1.Experimental results on Animals with Attributes for the binary classi�cation tasks of dolphin v. blue whale and seal v. walrus as
we vary the amount of labeled data. Each method uses 560 unlabeled data for dolphin v. blue whale and 602 unlabeled data for seal v.
walrus.

Figure 2.Experimental results on Domain Net for the clipart and quickdraw domains as we vary the amount of labeled data. Each method
uses 500 unlabeled data. Results are listed for the 5 classes off sea turtle, vase, whale, bird, violing.

et al., 2017). Here, we use a semi-supervised version of
this algorithm, for a fair comparison with our work. We
simply optimize the marginal likelihood of the weak super-
vision sources' outputs using the unlabeled data, and the
joint likelihood when the label is observed.

Adversarial Label Learning (ALL) : This algorithm
(Arachie & Huang, 2019) learns a prediction model that has
the highest expected accuracy with respect to an adversarial
labeling of an unlabeled dataset, where this labeling must
satisfy error constraints on the weak supervision sources.
This approach shares similarities with our method; however,
it fails to provide theoretical guarantees on the learning of
the prediction model. For a fair comparison to our method,
we use logistic regression as the prediction model, and use
the same features as AMCL-LR.

Performance-Guaranteed Majority Vote (PGMV): This
method �nds a subset of weak supervision sources whose
majority vote achieves high accuracy with respect to the
worst-case distribution of the output of the weak supervision
sources. Again, this worst-case distribution is constrained by
using statistics computed on the weak supervision sources
(individual error rates and pairwise differences).

Due to the limitations of PGMV and ALL, we can run those
algorithms only for binary classi�cation tasks.

5.3. Results

Animals With Attributes (binary classi�cation) : In Fig-
ure 1, we report the results on the Animals With Attributes
dataset for two binary classi�cation tasks.

In the binary setting, our methods match or outperform the
state-of-the-art methods PGMV and ALL over all labeled-
sample sizes. We note that even though AMCL-LR and ALL
use the same inputs and train the same prediction model, our
method achieves overall higher accuracies, in addition to
providing theoretical guarantees on the generalization error
of the prediction model.

Domain Net (multiclass classi�cation): In Figure 2, we
report the accuracies of the different algorithms on the Do-
main Net dataset for the clipart and quickdraw domains. As
previously discussed, ALL and PGMV cannot be used in
this setting, as they are restricted to binary classi�cation.

In the multiclass setting, our methods again match or out-
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perform the baselines over all quantities of labeled data.
We note that in the quickdraw domain, the weak supervi-
sion sources are overall very inaccurate, and it is dif�cult
to recover useful information from them. However, unlike
the baseline algorithms DS and MV, AMCL-CC can still
recover and improve upon the best weak supervision source.

Again, as noted by the Best WSS column, the weak supervi-
sion sources are quite inaccurate in this dataset. Therefore,
we do not report the results for the AMCL-LR algorithm, as
the weak supervision sources do not constrain the feasible
set of solutions suf�ciently well for our method to accurately
learn a (relatively) complex model like a (multinomial) lo-
gistic regressor.

Due to space constraints, additional plots and experimental
details for both datasets are reported in the appendix.

6. Conclusion

We develop the �rst general framework with theoretical
guarantees that can use information provided by arbitrarily-
correlated weak supervision sources in order to learn a pre-
diction model for a multiclass classi�cation task. In many
practical settings, our training method provably converges
to the model that achieves the smallest risk with respect
to an adversarial feasible labeling of an unlabeled dataset,
and we provide generalization guarantees on the quality of
the learned model based on a measure of the information
provided by the weak supervision sources. Surprisingly, our
theoretical guarantees for this adversarial learning setting
stem from standard methods in convex optimization and uni-
form convergence theory. Finally, we provide experiments
that illustrate the practical applicability of our approach and
its advantages over existing methods.
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A. Deferred proofs

Proof of Lemma 1. For the sake of the proof, assume that
we have two labeled set of samples of sizem andmL from
pX Y , call them respectivelyS andSL . The setS represents
our unlabeled sample, and the setSL represents the labeled
sample. For any� 2 (0; 1), we would like to �nd a
 > 0
such that with probability1 � � , for all i 2 1; : : : ; n,
�
�
�
�
�
�

1
m

X

(x; y )2 S

`(� i (x); y ) �
1

mL

X

(x; y )2 SL

`(� i (x); y )

�
�
�
�
�
�

� 
 :

(6)

The sampleS represents the unlabeled datax1; : : : ; xm

we have access to. In fact,1m
P

(x; y )2 S `(� i (x); y ) =

R̂(� i ; X; Y � ). The inequality(6) implies that for the
true labeling of the unlabeled datax1; : : : ; xm , for any
i 2 1; : : : ; n, it holds that:

R̂(� i ; X; Y � ) 2 [�̂ i � 
; �̂ i + 
 ]

where �̂ i = 1
m L

P
(x; y )2 SL

`(� i (x); y ) is the empirical
mean computed from the labeled sampleSL .

By using Hoeffding's inequality, we have that for a �xedi ,
it holds that
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: (7)

By taking a union bound and solving(7) with respect to
 ,
the statement follows.

Proof of Lemma 4. By invoking Lemma 3, it is easy to see
that the functionR̂(h � ; X; Y 0) is a convex combination of
convex functions with respect to� , hence it is also convex
in � . Let v 2 @̂R(h � ; X; Y 0). If a function is convex, then
there exists at least one subgradient for each point of its
domain, sov is well de�ned. Then, we have that for any
� 002 � , it holds that

R̂(h � 00; Y 0) � R̂(h � 0; Y 0) � vT (� 00� � 0) :

As f (� 00) � R̂(h � 00; X; Y 0), we have that

f (� 00) � f (� 0) � vT (� 00� � 0) ;

which implies thatv is a subgradient off at � 0.

Proof of Theorem 5. We need to show thatf (� ) is convex
andL-Lipschitz continuous with respect to� to apply the
standard convergence result for constant step size subgradi-
ent optimization (Bertsekas, 2015), which yields

f ( ~� ) � f (�̂ ) �
diameter(�) 2 + L 2h2T

2hT
: (8)

To show thatf (� ) is convex it is straightforward to see that
R̂(h � ; X; Y ) is convex in� as it is the convex combination
of convex functions in� . For any� 2 [0; 1], we have that

f (� � 1 + (1 � � )� 2) = max
Y 2 Y �

R̂(h� � 1 +(1 � � ) � 2 ; X; Y )

� max
Y 2 Y �

h
� R̂(h � 1 ; X; Y ) + (1 � � )R̂(h � 2 ; X; Y )

i

� � max
Y 2 Y �

R̂(h � 1 ; X; Y ) + (1 � � ) max
Y 2 Y �

R̂(h � 2 ; X; Y )

= �f (� 1) + (1 � � )f (� 2) :

Also, f (� ) is L -Lipschitz continuous with respect to� . In
fact, it is straightforward to see that̂R(h � ; X; Y ) is alsoL-
Lipschitz continuous with respect to� . For any� 1; � 2 2 � ,
we have that

jf (� 1) � f (� 2)j � max
Y 2 Y �

jR̂(h � 1 ; X; Y ) � R̂(h � 2 ; X; Y )j

� L jj � 1 � � 2jj2 :

The subgradient off (� ) in � is computed by using Lemma 4.
The last part of the Theorem immediately follows by substi-
tutingh andT in (8) as in the Theorem statement.

Proof of Lemma 6. For anyi 2 1; : : : ; n, we have that

@
@�i

`(h � (x); e) = 2
�

� i (x)T � h � (x) � � i (x)T � e
�

:

Therefore, we can bound the norm of the gradient of` as

jjr � `(h � (x); e)jj2 = 2

vu
u
t

nX

i =1

�
� i (x)T � (h � (x) � e)

� 2

� 2

vu
u
t

nX

i =1

(1)2

� 2
p

n :

The �rst inequality is an application of Ḧolder's Inequality,
as




 � i (x)T






1 = 1 and



 h � (x) � e






1 � 1. This implies
that the functioǹ (h � (x); e) is 2

p
n-Lipschitz continuous

with respect to� .

Proof of Lemma 7. First, we will prove that̀ (h � (x ); e) is
bounded. Without loss of generality, suppose thatei = 1 .
We have that

`(h � (x ); e) = � ln

 
exp(w T

i � x )
P k

c=1 exp(w T
c � x )

!

:
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It is easy to see that`(h � (x ); e) � 0. By using the Cauchy-
Schwarz inequality, we have that

`(h � (x ); e) = � ln

 
exp(w T

i � x )
P k

c=1 exp(w T
c � x )

!

� � ln
�

exp(� Bw Bx )
k exp(Bw Bx )

�

� 2Bw Bx + ln k :

Now, we prove that̀ (h � (x ); e) is Lipschitz continuous
with respect to� . For a �xed (x ; e) 2 X � Y , consider the
function! (p) : Rk ! Y � , de�ned as

! (p) := �
kX

c=1

ec � ln(pc) ;

and let

h(� ) :=

 
exp(w T

1 � x )
P k

c=1 exp(w T
c � x )

; : : : ;
exp(w T

k � x )
P k

c=1 exp(w T
c � x )

! T

;

where� = ( w1 : : : w k )T , and observe that`(h � (x); e) =
! � h(� ).

It is well known that̀ is L ! L h -Lipschitz continuous with
respect to� , whereL ! andL h are the Lipschitz constants
respectively of! andh. It is also a known result thatL ! � 1
(see for example Proposition4 of (Gao & Pavel, 2018)).

We now want to computeL h . We will use the fact that
max� 2 � jj Jh (� )jjF � L h , whereJh denotes the Jacobian
matrix ofh andjj � jj F denotes the Frobenius norm.

For ease of notation, leth(� ) = p = ( p1; : : : ; pk )T . We
have that for anyi 2 1; : : : ; k, it holds that

@[h( � ) ]i
@w j

= pi pj x for j 6= i ; and

@[h( � ) ]i
@w i

= ( pi � p2
i )x :

Therefore, we can bound the square of the Frobenius norm
of the Jacobian matrix ofh with
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We can conclude thath is kB x -Lipschitz continuous, and
the statement follows.

Proof of Theorem 8. From Chapter 14 of Mitzenmacher &
Upfal (2017), we know that
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By de�nition of f (�), it holds thatR̂(h �̂ ; X; Y � ) � f (�̂ ).
As �̂ is the optimal solution of(2), we have thatf (�̂ ) �
f (� � ). Let Y 0 := arg max

Y 2 Y �
R̂(h � � ; X; Y ). It holds that

f (� � ) = R̂(h � � ; X; Y 0)

= R̂(h � � ; X; Y 0) + R̂(h � � ; X; Y � ) � R̂(h � � ; X; Y � )

= R̂(h � � ; X; Y � ) + jR̂(h � � ; X; Y 0) � R̂(h � � ; X; Y � )j :

By using the fact that̀ is bounded, and the de�nition of
diameterDY � , we have that
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To wrap it up, it results that
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Proof of Lemma 9The proof is along the same lines of the
proof of Lemma 1, but we take a union bound with respect
to all thenK intervals4 i;c; ĉ for i 2 1; : : : ; n, c 2 1; : : : ; k,
andĉ = 1 ; : : : ; ki . Moreover, as for anyj 2 1; : : : ; m, we
have thatyj;c [� i (x j )]~c � 1, we takeB = 1 during the
proof (as de�ned in Lemma 1).
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B. Additional Experimental Details

We provide further information specifying the experimental
setup used to generate our �gures.

B.1. Weak Supervision Sources

We �rst build the weak supervision sources on our two
datasets as follows.

Animals with Attributes . Each class is annotated with a bi-
nary vector of attributes. For each attribute, we train a binary
classi�er by �netuning a ResNet-18 using labeled data from
the seen classes. When we consider a classi�cation task
between two unseen classes, we use as weak supervision
sources the classi�ers for the attributes which are different
between the animals of these two unseen classes. We report
the results of the 4 binary classi�cation tasks which have the
lowest majority vote accuracy. We chose these particular
tasks to demonstrate the abilities of our methods on the tasks
that have the least accurate weak supervision sources.

DomainNet. We sample5 of the25classes of DomainNet
with the largest number of datapoints. For each domain, we
use60%of the available data for those classes to �ne tune a
pretrained ResNet-18 network. We perform this procedure
on two disjoint samples of test classes to illustrate our results
on two distinct multiclass classi�cation tasks.

In our experiments, we use the pretrained ResNet-18 from
PyTorch. We �netune this ResNet-18 network following the
approach described in (He et al., 2016), using cross-entropy
loss.

B.2. Algorithm Hyperparameters

The subgradient method (Algorithm 1) used to train AMCL-
CC and AMCL-LR uses the following hyperparameters:

AMCL-CC : We set� = 0 :1, and build the constraints as in
Lemma 1. We use" = 0 :1, and de�ne the step sizeh and
the number of iterationsT as in Theorem 5, usingL = 2

p
n

and diameter of� equal to
p

2.

AMCL-LR : In this case, the loss function is bounded as in
Lemma 7. Since this value could be potentially very large,
which in turn it would result in large intervals and number
of iterations, we use the valueB = 0 :1 in the experiments.
We set� to 0:1 and build the constraints as in Lemma 1. We
do not bound the set of weights� : in the experiments, the
norm of the weights of the multinomial logistic regression
model has never diverged. We run the subgradient algorithm
for T = 1000 iterations with step sizeh = 0 :02.

C. Additional Figures

C.1. Animals with Attributes

We provide the remaining �gures for our experiments on
the Animals with Attributes dataset. The last two binary
classi�cation tasks are bat v. rat and horse v. giraffe.

From Figure 3, we note that our methods show similar
results as the �gures displayed in the main body of the paper.
AMCL-LR matches or outperforms all other methods on
both tasks, over all ranges labeled data. AMCL-CC is within
a few accuracy points of the other baselines and AMCL-LR
on these tasks.

C.2. DomainNet

We provide the remaining �gures for our experiments on
the DomainNet dataset. We provide histograms when using
the other 4 domains as the target task and also provide
histograms for results on another of the samples of 5 classes.
The �rst sample of classes as mentioned in the main body
of the paper isf sea turtle, vase, whale, bird, violing. The
second sample isf tornado, trombone, submarine, feather,
zebrag.

From Figures 4–8, we note that in most domains our meth-
ods perform better than or match all other approaches,
namely in both samples of Clipart, Quickdraw, Painting,
and the second sample of Sketch. Our methods achieve
slightly lower accuracy than the best performing baseline on
the Real domain and on the second sample of the Infograph
domain, although they are not beaten by a single baseline
in all of these tasks. We believe that the combination of our
theoretical guarantees and that our methods achieve simi-
lar or sometimes better empirical performance captures the
bene�ts of AMCL.
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Figure 3.Experimental results on the Animals with Attributes dataset for the binary classi�cation tasks of bat vs. rat and horse vs. giraffe
as we vary the amount of labeled data. Each method uses 347 unlabeled data for bat vs. rat and 1424 unlabeled data for horse vs. giraffe.

Figure 4.Experimental results on the second sample of Domain Net for the clipart and quickdraw domains as we vary the amount of
labeled data. Each method uses 500 unlabeled data.

Figure 5.Experimental results on both samples of Domain Net for the Infograph domain as we vary the amount of labeled data. Each
method uses 500 unlabeled data.
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Figure 6. Experimental results on both samples of Domain Net for the Painting domain as we vary the amount of labeled data. Each
method uses 500 unlabeled data.
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Figure 7. Experimental results on both samples of Domain Net for the Real domain as we vary the amount of labeled data. Each method
uses 500 unlabeled data.
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Figure 8. Experimental results on both samples of Domain Net for the Sketch domain as we vary the amount of labeled data. Each method
uses 500 unlabeled data.
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D. Experiments on Synthetic Data
We run synthetic experiments to show that our method is
robust with respect to the addition of correlated weak su-
pervision sources. Similar experiments have been done for
ALL by Arachie & Huang (2019).

We consider a multiclass classification task over 5 classes,
and 25 weak supervision sources �1; : : : ;�25. In this clas-
sification task, each item of the domain X has a unique true
label. Given an item x 2 X , for i 2 1; : : : ; 10, the weak su-
pervision source�i returns the correct label with probability
1=2, and a random label with probability 1=2. The output of
the weak supervision source �i is independent to the output
of the weak supervision sources�j for j 2 f1; : : : ; 10gnfig.
Therefore, the weak supervision source �i is correct with
probability 1

2 (1 + 1
k ). For i = 11; : : : ; 25, the weak su-

pervision sources �i outputs the same result than the weak
supervision source �1. Note that the weak supervision
sources �11; : : : ;�25 do not provide any additional infor-
mation with respect to the target classification task, as they
add redundant constraints to the set of feasible labelings
Y�. The majority vote of the weak supervision sources
�1; : : : ;�25 is highly affected by these dependencies, and
it is very likely to provide the same answer as �1, which is
only 1

2 (1 + 1
k ) accurate on average. On the other hand, the

majority vote of the weak supervision sources �1; : : : ;�10

would improve upon the individual accuracy of the weak
supervision sources, as their output is independent.

We use 500 unlabeled examples, run experiments vary-
ing the amount of labeled data, and show that our method
AMCL-CC is robust against those dependencies. For the
sake of these experiments, as we want to use very small
amount of labeled data, we set 
 = 0 when building the
constraints for Y� as in Lemma 1. The experimental results
are reported in Table D. The table shows that AMCL-CC is
robust with respect to dependencies among weak supervi-
sion sources, whereas majority vote is greatly affected by
them. In fact, in this case the majority vote does not im-
prove upon the individual accuracy of the weak supervision
sources, which is on average 1

2 (1 + 1
k ) = 3

5 .

Table 1. We report the experimental results on the synthetic dataset.
We report the accuracy obtained by our method AMCL-CC and
the majority vote, when varying the amount of labeled examples
(we report the average accuracy over 3 distinct runs).

Labeled Examples AMCL-CC Majority Vote
100 0.902 0.595
50 0.828 0.602
25 0.819 0.598


