
ACE: A Color Expert System for User Interface Design

Barbara J. Me&

Department of Computer Science
Brown University

Box 1910
Providence, RI 029 12

Abstract
Color is used in computer graphics to code infOmUUi0~

to call attention to items. to signal a user, and to enhance display
aesthetics, but using color effectively and tastefully is often

beyond the abilities of application programmers because the
study of color crosses many disciplines, and many aspects, such
as human color vision, are not completely understood. We com-
piled a comprehensive set of guidelines for the proper use of
color, but even these guidelines cannot provide all of the
aesthetic and human factors knowledge necessary for making
good color selections. Furthermore, progranuners may misinter-
pret or ignore the guidelines. To alleviate some of these prob-
lems, we have implemented ACE, A Color Expert system which
embodies the color rules and applies them to user interface
design. The goal of the implementation was to test whether an
automated mechanism would be a viable solution to the problem
of choosing effective and tasteful colors.

Our implementation is written in OPS5, a production sys-
=mprogr amming language. which allowed us encode rules in a
similar fashion to our existing set of gui&lines. ACE takes a
user interface specification and uses our color rules as con-
straints to determine the best colors for particular items. While
ACE is only a prototype, we learned that an expert system is a
viable method for choosing an initial set of colors that can be
“tweaked” by a human expert. We also learned that much
more research needs to be pcrformed in the areas of visual color
relationships and how they can be used to provide the most
effective user interface.

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the ACM copyright notice aad
the title of the oublication and its date atxuar, and notice is given that copying is by pcrmis-
sion of the Ass&iation for Computing Mchinery. To copy otherwise. or to republish, requires
a fee and/or specific permission.

0 1988 ACM 0-89791-283-7/88/0010/0117 $1.50

1. Introduction

1.1. Wby color is used
Color is used in computer graphics for a variety of rca-

sons ranging from the aesthetic to the utihtarian. Color can be
used to group similar things, to distinguish dissimilar things. to
show temporal or magnitude differences, and to label items. In
auserinterface.colorcanbeusedtocallatrentiontoanitem,to
signal the user (as in green for acceptable, yellow for caution,
red for error or stop), and to show logical relations between
parts of the user interface. Color can also be used to influence,
to convey a mood, and to enhance recall. Color helps with per-
ceptual organization as in realistic imagery, and in trying to
visualize multidimensional data sets [Marcus, 19821.

A review of the experimental literature on the effects of
color coding [Christ, 19751 revealed that color is superior to
size, brightness, and shape in searching for and identifying
items that vary in only one aspect (e.g., only in color or in size),
but that color cannot be identified as accurately as text. This
review also showed that for some specific tasks, people
remember color longer than size, orientation, or shape. In
another study, Tullis [1981] found that although subjects per-
formed tasks equally well with black-and-white graphics as with
color graphics, when subjects were surveyed about their prefer-
ences in formats, most selected color graphics as their first
choice, citing aesthetic advantages over black-and-white for-
mats, Thus, even if color doesn’t enhance performance, it may
have an effect on user acceptance of a system. Both Christ and
TulBs found that subjects believe they perform better when
using color; they find color to be less monotonous and believe it
causes less fatigue and eyestrain.

1.2. The problem of designing with color

Unfortunately, user interface designers and implementors
typically do not have expertise in the science, theory, art. or
pragmatics of color use. Colors are often selected for user intcr-
faces in an ad hoc fashion, without considering their physical or
psychological effects, and without taking into account design
principles concerning legibility and readability. Programs that
provide color selection capabilities typically allow the user to
select colors freely without regard to their application; they pro-
vide no constraints. guidelines, or “templates” to help ensure
that the image will make intelligent use of color. Likewise, pro-
grammers usually do not have available to them good tools for
selecting colors for an image or application program. They use

117

primary or secondary colors or even use random ones without
regard to the effect the colors will have on viewers.

Color improperly used can be worse than no color at all.
It can cause confusion or eyestrain; logical relationships can be
implied where they don’t exist or a viewer may perceive unin-
tended depth differences. If redundancy coding for color
deficiency is not considered in a design, some color-deficient
users may have difficulties using an interface or perceiving an
image. With detailed images or text, incorrectly chosen colors
may detract from legibility [Marcus, 19821.

1.3. Why color is difficult

The study of color crosses multiple disciplines: physics,
physiology, psychology. art, and graphic design. Each field
employs its own terminology; in some cases, a particular word
will have one meaning in one field and a different meaning in
another field. Since human color vision is not well understood
much of the study of color is theoretical and experimental. As
mentioned above, researchers have performed some studies to
learn more about how we perceive and use color and have
developed theories for explaining color perception, but no
comprehensive model of vision exists and some perceptual
phenomena have yet to be understood Isoynton, 19791.

Researchers in all of the disciplines in which color is stu-
died agree that a color can be described by a set of three
independent parameters; however, each field uses a different set.
Some are physical measurements while others are perceptual
measurements. To add to the confusion, some are based on
reflected color while others are based on emitted color. Colors
can be specified using any of these parametric models; although
some models are clearly more appropriate than others for given
applications. Computer graphics programmers and users may
be familiar with several color systems, but the transformations
between them are not always trivial.

More to the point, however, color models contain no
information about the effective use of color; they are only a
framework on which to build this information, which is based
on theory, formal experiments, experience (i.e., informalexperi-
ments). and aesthetic judgment There are no established algo-
rithms that can be applied to choosing colors, only heuristics
and rules of thumb.

2. Guidelines to the use of color

Researchers in different disciplines have published infor-
mation about the effective use of color in computer displays to
try to bring together the existing, but scattered color rules
[Davis and Swezey, 19831, [Frame, 19841, [Heath and Flavell,
19851, [Krebs, Wolf, and Sandvig, 19781, [Marcus, 1982, 19861,
[Murch, 1984a, 1984b. 1984c], [Murch and Taylor, 19861,
[Obome. 19851, [Robertson, 1976. 1980. 1981. 19821, [Shneid-
erman, 19871. ~eichner. Christ, and Corso, 19771, [Truckenb-
rod, 19811. Many of the guidelines, heuristics, and rules of
thumb discussed in the these sources have been compiled,
edited, and synthesized into a set of prescriptive rules [Meier,
19871. The need for a compilation arose because much of the
published information consists of descriptions of experimental
studies in which a particular use of color has been tested, but
programmers and designers have difficulty generalizing from
the specific results of these experiments. Prior to our compila-
tion, existing lists of rules presented a few important rules

appropriate for programmers who occasionally must make a few
color selections. but these lists were not adequate for the user
interface designer. Moreover, many of the existing rules sug-
gested using or not using a particular color for a specific appli-
cation; they did not suggest general strategies and design guide-
lines for selecting colors. Our compilation is focused on color
in the user interface and provides both stiategic and tactical
rules for design synthesis.

3. How an expert system can alleviate the problems of writ-
ten guidelines

A set of guidelines such as ours can provide readers with
many of the rules and strategies for proper use of color. How-
ever, because there are so many complex relationships, special
cases to general rules, and seeming contradictions, the guide-
lines cannot capture all the subtleties of the subject. Further-
more. the rules may be misinterpreted, misapplied, or not
applied at all. An expert system that helps programmers and
users select colors could alleviate many of these problems.
ACE, A Color Expert, is a research implementation of an expert
system that selects colors for user interfaces.

Three criteria determine the suitability of an expert sys-
tem for solving a class of problems [prerau, 19851. Fit, the
domain should be fairly narrow. The problems presented to
ACE are specitic enough so that the knowledge needed to solve
them can be encoded in a reasonably-sized program.

Second, tasks that are suitable for an expert system
should require the use of heuristics and strategies based on the
experience of the expert, rather than well-developed models and
algorithms. As mentioned above, since a comprehensive model
of human color vision does not exist, experts cannot predict
exactly how users will react to color. they must rely on experi-
mental results and their own experience and aesthetic judgment
when solving color problems.

Third. appropriate tasks for expert systems require exper-
tise, can be solved by existing experts, and are performed better
by experts than by amateurs. Expert user interface designers do
solve color selection problems, but there are few experts in the
field because the knowledge is scattered across many disciplines
and the use of color for computer displays is largely an uuex-
plored area of study. Moreover, the importance of using color
properly is often underestimated by managers that appropriate
resources for user interface design and implementation. Many
of the expert user interface designers that are making color deci-
sions are basing their selections on their expertise in another dis-
cipline such as graphic design for print media. Much more
information and experimentation is needed in order to evaluate
current solutions.

4. Previous automatic display design and color design
work

In several experimental projects researchers implemented
systems that encoded design rules and used this knowledge to
synthesize some part of a computer display. Several automated
design systems work in the domain of charts, tables, and graphs.
Bharat [Gnanamgari. 19811 is a system that chooses the most
appropriate chart style, such as bar, pie, or line. and its attributes
to display tabular data Beach [1985] automated the layout of
tables that are provided by the user. Unlike BharaL Beach’s
system does not work on the semantic level, but instead it uses a

118

. .

design database to choose a low-level typographical style for a
table. APT, A Presentation Tool, developed by Ma&inlay
[1986], is another system that designs and renders graphical
presentations such as bar charts, scatter plots. and connected
graphs.

None of these systems have the ability to make decisions
about the effective use of particular colors, with the exception of
the limited abilities of Bharat. A system that does select pad-
ular colors for coding based on constraints was developed by De
Carte 119861. De Carte’s algorithm produced a set of colors in
which each color is perceived to be different from all other
members of the set. The algorithm used minimum bchveen-
color distance formulae (based on the 1976 CIELUV color
space) and some constraiuts based on human factors studies for
improving user performance in color coding situations. De
Corte started with random colors and maxim&d the minimum
color distance by iteratively relaxing the maximum distance
constraints, while insuring that the colors lay within the human
factors constraints.

A knowledge-based system for solving coloring prob
lems in cartography. by Samson and Poiker [1985], is the most
similar project to ACE. Color rules (e.g., “use desaturated
color for large areas and saturated color for small areas”) and
map-coloring rules (e.g., *‘use blue for water”) are used in con-
junction with a table that encodes color relationships derived
from the Goethe color chart to decide what colors to assign to
regions of a map. ACE uses some of these same ideas, particu-
larly the use of a table to encode relations between colors, in its
knowledge base.

5. Goals of ACE

The long range goal of this project was to have an imple-
mentaticm of ACE that chooses appropriate, effective, and taste-
ful colors for user interfaces. The selected colors should be
suited for both the task being paformed and the output medium;
they should make good use of human visual abilities; and. at the
same time, the colors should be aesthetically pleasing.

Expert systems typically take many years to design,
implement, evaluate. and refine; therefore, we also had more
immediate goals for this project. We wanted to determine if
automating the color selection process were possible by imple-
menting a prototype, and thus determine if the existing guide-
lines from the literature were complete enough to enable the
automatic synthesis of designs, and whether an expert system
were an effective medium for encoding and automating the
rules. We also hoped to learn which areas of color selection and
user interface design need more study and experimentation.

6. Domain: types of user interfaces for which ACE can
select colors

ACE’s knowledge base encodes information about par-
ticular objects in user interfaces. Most of these objects, which
are characterized by their function, are standard items found in
the Xerox STAB and Apple Macintosh desktop environments.
They include the desktop or screen background, windows,
icons, dialog boxes, cursors, and menus. Some of these objects
have other objects associated with them such as backgrounds,
borders, text, symbols and other details. and highlights. Objects
about which ACE has information are shown in Figure 1.

temporary menu
icon foreground

reverse highlight cursor and background

kpyout ange Fill Li
\ I 1

7 : Chicago
tieneua

Switcher

MacDr I ATimes

window border application detail ghd window background

Figure X: User interface objects that ACE understands

and background

119

If a user interface includes a non-standard item, the user
can select properties that describe the item’s physical and func-
tional characteristics, including size, shape, and how it is used.
Usually ACE is better at selecting colors for standard items than
for non-standard items. because it includes specific rules based
on the functions of standard items.

7. User interface to ACE

The East interface to ACE is textual and consists of ACE
asking questions about user interface objects and their interrela-
tionships and users selecting answers from menus. After an
object’s description has been entered, ACE asks the user to indi-
cate how the new object physically relates to all of the previ-
ously entered objects. The possible physical relations are next
to, on, behind on screen at same time, or not on screen at same
time.

In the future, we would like to have a graphical interface
in which there are pictures of the standard user interface objects,
similar to Figure 1. Users would be able to point to the objects
they wanted and could drag objects to different positions on the
screen to show their relationships. Ideally, ACE should get its
specification of the user interface directly from a user interface
design and synthesis system, relieving users from specifying the
interface more than once. As well, this type of interface would
prevent users from misinterpreting the functions of objects. For
example, a user could mistakenly describe the icon of a window
as a window with a border and text instead of as an icon. Since
ACE uses different rules for windows and icons, the result
might not be appropriate.

8. Expert systems and production system programming
languages

8.1. Expert systems

An expert system consists of a knowledge base of rules
and an iriference-making capability that can put the rules
together to draw conclusions. Rules are conditional statements
that may perform an action or draw a conclusion. Using a rule-
based system for prototyping an expert system allows the pro-
grammer to incorporate know!edge in a format that is very simi-
lar to that expressed by domain experts. One of our goals in
implementing ACE was to understand more about the problem
itself. If the implementation mirrors the knowledge base, it can
be built, modified. and tailored incrementally as we accrue rules
and guidelines. By taking advantage of incremental implemen-
tation, prototypes of rule-based systems can be written very
quickly. Unlike programs written in procedural programming
languages, rule-based systems do not typically require lots of
flow-of-control constructs and support routines that must be
coded before the system can be tested. A rule-based system can
be tested after only a few rules are coded; more rules can be
added to improve the results. This is important when the exact
rules that will produce the desired results are unknown.

8.2. OPSS programming language

Our implementation of ACE uses OPS5. a production
system programming language developed at Carnegie-Mellon
University [Forgy, 1981; Brownston et al., 19851. A production
system consists of a set of productions, which are simply if-then
rules, and a global data base called the working memory. The

flow of control in a production system is not sequential as in
conventional progr amming languages. Instead, a program exe-
cutes in cycles that consist of determining which productions
may be fired (executed), selecting one (based on a strategy
inherent in the language), and firing the production. This is
called the recognize-act cycle.

83.1. Production system implementations and strategies

In general, production systems which use the recogtie-
act cycle, such as OPS5, are better suited for synthesis prob-
lems, which have many possible solutions, than for diagnosis
problems, which usually have one acceptable solution. ACE is
a synthesis problem - there are many ways to color a particular
user interface - so it uses a “data-driven.” forward-chaining
strategy instead of the “goal-driven,” backward-chaining stra-
tegy used for diagnosis problems. A forward-chaining architec-
ture must rely heavily on the heuristic information encoded in
its rules to proceed toward the solution, thus the rules often con-
tain control or strategic information.

9. ACE’s knowledge base

ACE’s rule base contains three types of knowledge. One
type is knowledge about user interface components and their
interrelationships while another type is kmowledge about rela-
tions between colors. The third type is control knowledge, the
rules that determine how the first two types of knowledge will
be used.

9.1. User interface knowledge

These rules constrain the colors of user interface com-
ponents based on their functions and their rekrtiom to one
another. An example of a relatiod constraint between user
interface components is that text in a window should have a
color that contrasts in brightness with the window color. A
functional constraint would be that the color selected for text
should not be pure blue, because human eyes cannot focus on
small blue objects. Another example is that windows and other
areas whose function is that of “paper” are generally given a
light color, while text and graphics that appear on such paper
areas are given darker colors.

Some of the rules in this part of the knowledge base, such
as the “paper” rule, are taken from the literature on human fac-
tors and user interface design. Unfortunately, most of this
literature contains only general principles and very few concrete
and specific recommendations and these are often what not to do
instead of what to do. Thus, most of ACE’s rules about user
interface design are baaed on our extensions of rules from the
literature, our experience, and our aesthetic judgment. For
example, we recommend that the screen background or desktop
be a dark color, and that menus be given a color that has a
brightness between that of the desktop and that of the window
backgrounds. These suggestions are based on the principles that
items that will appear on top of each other should have different
brighmesses and that background items should have darker
colors than foreground items. Thus, there are many ways to
apply the rules from the literature; the rules in ACE’s
knowledge base are not the only way to apply them, but we had
to make some decisions in or&r to use them at all.

120

92. Color knowledge

The second type of knowledge in ACE is information
about particular colors and their interrelationships. In a later
section, we will discuss how ACE uses constraints on these rela-
tionships to select colors. just as a CAD program might use
geometric relationships (e.g., distance or parallelism) to con-

strain positions of geometric primitives. Many color theorists
have devised rules for color harmony and contrast, particularly
for pure hues. These rules usually state that adjacent colors on a
color wheel hamronizc while opposite colors contrast
Harmony/contrast rules are helpful - in fact Samson and
Poiker’s mapcoloring system [Samson and Poiker, 19851 is
based on them - but they do not state which color combinations
are the most attractive or what happens to color relationships
when the colors have different brightnesses and saturations. We
tried to discover a general relation between any two colors in a
three-dimensional color space that would show whether the IWO

colors harmonized or contrasted and how attractive they
appeared together. This involved extending the one-
dimensional (hue only) harmony/contrast relation of the color
wheel to three dimensions and adding attractiveness relations as
well. Unfortunately, we were unable to iind any general rela-
tions, so we selected a discrete set of three-dimensional colors
and explicitly tabulated the relations between them based on
aesthetic judgment. These relations inIluence greatIy the colors
that ACE selects for a user interface design and may be tuned to
produce better results without interfering with the user interface
rules and control rules.

An earlier implementation of ACE used the HSV (hue,
saturation, and value) color space [Smith, 19781 and for each
color decision, it attempted to find a subset of the HSV space by
eliminating imppqriate colors according to a few user inter-
face and color rules. The 6nal color was chosen randomly from
the HSV subset. This scheme did not work because the subset
was always too large; typically, it was about half of HSV space,
and therefore, the 6.na.l color selections were almost entirely ran-
dom.

The current implementation narrows the set of possibili-
ties from intinite to a discrete set of colors from the HSL (hue,
saturation, and lightness) color space. [Note: The correct term
for the third parameter, and the one that we will use, is bright-
ness, not lightness, which usually refers to reflected light.] In
particular, the set consists of ten perceptually different hues,
fifteen brighmesses between black and white for each hue, and
three saturations for each hue/brightness combination. This
may seem limiting at first glance, but, in fact. it encompasses
450 different colors, 150 of which are shades of grey. User
interfaces require perceptually different colors unlike realistic
imagery, which requires continuous tone colors. A typical inter-
face might have a dozen different colors. half of which might he
white, black, or shades of grey. The hues in our set have
mnemonic names: red, orange, yellow, green, cyan, light blue,
blue, purple, magenta, and rose. The brightness levels are
denoted by integers from one to fifteen, and the saturations have
the names saturated &saturated, and grey. Each particular hue,
brightness level, and saturation was selected to be perceptually
different from its neighbors and to be aesthetically pleasing.

There are several color relations that are encoded in
ACE’s knowledge base. Ideally, we would have either a general
or an explicit relation between each pair of the 450 colors for
each relationship we wanted to know about (e.g., contrast or

attractiveness), but, as mentioned above, there is no general
relation, and encoding explicit relations would require too much
space. We compromised by explicitly encoding the relation-
ships between hues and by relying on general relations for
brightnesses and saturations. For example, a general relation
about brightness levels is that a low brightness (dark) color
always contrasts with a high brigbmess (pastel) color.

There are four hue relations encoded in ACE’s
knowledge base. Each relation is between two colors. TWO
encode harmony/contrast and the other two encode attractive-
ness. Of the first two, the adjacent contrasl relation is used if
the two colors will be adjacent on the display, and the other,
screen contrast, is used if the two colors will not be adjacent,
but will appear at the same time. Similar to Samson and
Poiker’s system, the value of the harmony/contrast relations is
an integer from one to five: one means harmony and five means
contrast. The adjacent contrast value for two colors can also be
negative which means that they clash and should not be used
next to each together.

Of the attractiveness relations, one is used if the first
color will be darker than the second color; the other relation is
used if the second color will be darker. The reason for having
two attractiveness relations is that some pairs of colors are much
more attractive if one of the colors is darker than the other. The
attractiveness value is also an integer from one to five: one is
unattractive and five is most attractive.

Relations between different brighmesses and between
saturations are encoded as well. Brightness contrast is simply
the difference between the two tightness levels. Sometimes
ACE does not need to know the exact brightness of a color; it
only needs an approximation so the fifteen brightness levels are
broken into three groups: dark (lxighmesses l-5). bright (6-10).
andpastel (11-15).

Relations between colors with different saturations are
slightly more complicated. Saturated and desaturated hues are
treated alike, but the third category, grey, is handled in a dif-
ferent way which is similar to the way hues are handled. Grey
colors in ACE appear as greys that have a slight tint of color;
thus there are ten “tints” of grey - one for each hue - in fifteen
brightness levels (producing 150 different greys). Fifteen greys
might have been adequate, but we found that grey is one of the
most common colors in user interfaces and that variations in the
color of grey can make a mundane-looking screen attractive and
sophisticated. Preys are assumed to be attractive with any hue;
however, some tints of grey are more attractive than others with
a particular hue. The particular tint of grey that is most attrac-
tive with each of the ten basic hues is encoded explicitly. This
relation also depends on the approximate brightness of the grey,
SO for each hue, there is an optimal tint for dark grey, medium
grey, and light grey. For example, watm greys are attractive
with red when the grey is pastel or light, so yellow is encoded as
the most attractive light grey tint for red. This relation is
encoded as a set of pairs similar to the hue pairs described ear-
lier. Each of the ten hues is matched with its most attractive tint
of grey for each of the three approximate brighmesses so there
iKf2thiQpairs.

The color relations and the reasoning behind them will
become more clear in the sections that explain how they are
used. At this point it should be noted that all of ACE’s color
relationship knowledge is based on our own interpretation of
classic color theory and our own aesthetic judgments. A less-

121

biased implementation could incorporate the taste and judg-
ments of several designers, but it could also run the risk of hav-
ing inconsistent and muddled relations, or the color selections
might be uninteresting and without style. We would like to
experiment with several types of color relations and their values
and perhaps allow users to choose the style they prefer.

93. Control knowledge

The third type of knowledge in ACE is control
knowledge. The other two types of knowledge can be thought
of as encoding data while the control knowledge encodes the
color selection algorithm. These rules determine how the user
interface design constraints will be applied and how the color
relationships will be used to choose colors.

Since choosing colors is a visual process, it is very
difficult to get designers to articulate their color selection pro-
cess. Most say that they select a few basic colors and then
tweak them until they “look right.” ACE’s control knowledge
is based on an analysis of how we solve user interface coloring
problems and on color theory. As with both the user interface
knowledge and the color knowledge, this method can bc
changed or tuned without changing the other two types of
knowledge. Since ACE has a forward-chaining architecture and
most of its inference-making capability is encoded in the control
knowledge, changing the method would be more difficult than
changing the other types of knowledge simply because it is
more pervasive in the system.

The problem-solving strategy is broken into eight
discrete steps which are shown in Figure 2. The OPS5 produc-
tions used by each of these steps have no specific ordering, but
some steps have substeps. The control knowledge formalizes
and provides a strategy for color selection, but it does not
specify a rigid algorithmic flow of control.

10. HOW ACE works
.

10.1. Overview

The goal is for ACE to assign a color to each object
described to it. ACE uses monotonic reasoning, so the overall
method is to order the color selection decisions in such a way
that none ever has to be changed. The first task that ACE per-
forms upon receiving a user interface specification is to deter-
mine what functional and relational constmints will act on each
object. Next, it orders the objects for color selection. The order
is roughly back to front; objects that are in the background of
the display will be assigned colors Rrst and objects that are
nearest will be assigned colors last. ACE then enters a loop and
selects a color for each object, called the target object. ACE
uses the functional constraints that apply to the target object to
narrow down the possibilities for candidate colors to form a
color Pool. Next, each object that has already had a color
assigned to it and that imposes a relational constraint on the tar-
get object proposes a candidate color from the color pool for the
target object. If a perfect candidate coot bc found in the color
pool, the relational constraints are relaxed gradually until a can-
didate color is found.

When all candidates colors have been proposed, each
candidate is graded against all of the object colors that have pro-
posed candidates. The grade determines “how far” the candi-
date is from the grading object’s version of an ideal color for the

target object The lower the grade, the closer the candidate is to
an ideal color. The grades for each candidate are summed and
the candidate with the lowest total grade is assigned to the target
object. When all object colors have been selected, ACE prints
out the results. The basic steps are shown in Figure 2 and the
details of the entire process will be. explained in the following
sections.

Read user interface specifications
Create functional constraints
Create relational constraints
Order objects for selection
For each object

Choose possible colors by applying functional constraints
Propose candidates by applying relational constraints
Grade candidates

Print results

Figure 2: Basic steps in the color selection process

The idea is that all of the previously selected colors
should have some influence on the color of the target object. It
would be too hard, however, to evaluate simultaneously the
relations between all the members of a large group of colors;
therefore, the candidates and previously selected colors are
compared pair-wise.

10.2. Comtrahts

In a previous section we discussed knowledge about the
functions of user interface objects, the relations between objects,
and the control knowledge that describes how colors are
selected. The following sections will show how the control
knowledge uses the functional and relational knowledge to
select colors. The set of permissible colors for the target object
are constrained by the object’s function and by the relations the
object’s color shares with other objects’ colors. These two
types of constraints are applied one at a time since they are
based on different fypes of knowledge. A third type of con-
straint, global constraints, may be added in the future.

10.2.1. Functional constraints

Functional constraints are imposed by the function of an
object and act on a single object at a time. When functional
constraints are applied, they determine the possibilities from
which candidate colors may be chosen These constraints can
never be relaxed or violated - a color that has been ruled out for
a particular target object cannot be used as a candidate for it.
Functional constraints are imposed on one of the color parame-
ters (hue, saturation, or brightness) and yield the approximate
ranges, dark, bright, and pastel, for brightness, saturated, desu-
turated. and grey for saturation, and the general categories,
warm and cool for hue. Particular hues may also be specified
by functional constraints. For example, the desktop is static, in
the background, and large in size; therefore, according to our
color rules, it should be be a dark, desaturated color. Another
color rule states that passive items, such as backgrounds, should
have cool colors, so cool is also imposed as a functional con-
straint on the desktop color.

122

Functional constraints Relational constraints

apply to color parameters (h.s,b) of one object apply to color relationships between two objects

are never relaxed or violated can be relaxed

based mostly on user interface knowledge based mostly on color knowledge
although some on user interface knowledge

purpose: to initially narrow down purpose: to provide data for selecting
the set of all possible colors candidates from the narrowed down set of possibilities

Figure 3: Differences between functional and reIational constraints

103.2. Relational constraints

Relational constraints, the second type of constraint in
ACE, are imposed by the physical and functional relationships
between two objects. Unlike functional constraints, relational
constraints can be relaxed and. in fact., have to be since a perfect
candidate cannot always be found in the color pool. Figure 3
shows the differences between functional and relational con-
Sh3illtS.

Each relational constraint is weighted according to how
much influence it should have over the linal color selection for
the target object. When the constraints are applied during can-
didate proposal, they are summed to form a total weight. The
weights are assigned when the constraints are created and are
used in the grading process which will be explained in a later
SeCtiOlt.

The &st two types of relational constraints we will
describe, aa’jacent contrast and screen contrast, are constraints
on hue relationships and they describe how much the colors of
two objects must contrast. These are values from one to five,
one meaning harmony or very little contrast, and five meaning a
lot of contrast. An adjacent umtrast constraint is created if the
two objects will appear next to each other or one atop the other,
whereas the screen contrast constraint is created if the two
objects will appear on the scnzn at the same time.

Another relational cmstraint, rehtive brightness, is a
constraint on the brightness relationship between two object
colors. It is the most common of the relational constraints,
because, in general, brightness is the most important color
parameter for distinguishing objects; humans can detect bright-
ness differences much more easily than hue or saturation differ-
ences. The relative brightness constraint describes how much
brightness contrast should exist between two objects and is
given by a number from one to fifteen. A relative brightness
direction can also be specifkd which describes which of the two
colors should be darker. The direction can also be unknown. In
this case, ACE knows that the two objects should contrast in
brightness, but cannot yet specify which will be darker than the
other.

Relational constraints have to be coordinated with the
functional constraints. because, in this implementation, the func-
tional constraints cannot be relaxed. For example, a functional
constraint on window backgrounds is that they be pastel. The
brighmess contrast between window backgrounds and the text
that will appear in them must be fairly large, thus the text must

be. bright or dark in order to contrast with the pastel background.
In this case, we can specify the die&ion of the brightness con-
trast: the text should contrast with and be darker than the win-
dow background.

There are two other types of relational constraints which
constmin some of the color parameters of the two objects to be
the same. One of them, hue contrust, asserts that the
brightnesses and saturations of the two objects are the same, but
the hue should be different. The other constraint, some, asserts
that the two objects will have exactly the same color. An exam-
ple of a situation where this constraint would be created is
highlighting schemes where the highlight colors are reversed
from the non-highlighted colors.

10.23. Global constraints

Global constraints are not yet implemented, but will be
described here for completeness. These constraints will be
imposed by the way in which the user interface is to be used and
will apply to all objects. For example, if the interface will be
used for long periods of time, then the colors should be less
saturated so that they will not cause eyestrain. Another global
constraint is that the colors used for a business application
should be subtle while those used for a video game can be bright
and saturated.

There are at least two ways that these constraints could
be applied. First, they could limit the available colors for all
objects. Another way is that they could limit the nun&r of
colors in a particular category. For example, they could limit
the number of very bright, saturated colors for a conservative
business application. Neither of these methods seem satisfac-
tory at this time since almost any color can be appropriate if
used properly. We need to look into other ways that these glo-
bal constraints can be applied.

10.3. Ordering color‘selection

After the functional and relational constraints have been
created for each specified object, but before any color selections
are made, ACE orders the selection decisions. The general stra-
tegy is to select colors for objects that are in the background 6rst
and then work forward to the foreground until all object colors
are selected. Each of the types of objects that ACE knows about
are placed in one of five partitions where the tirst partition is for
background items and the fifth partition is for foreground items.
Some objects are assigned to partitions based on their relations

123

to other objects. For example, text color is always selected after the consolidated constraints to select a hue, saturation, and
the background color on which it will appear. brightness for the candidate.

All objects in the first partition are assigned selection
order numbers starting with number one; those in the second
partition are assigned next, and so on. The order within each
partition is random. The reasoning for the ordering scheme is
that background items are usually large and pervasive, thus they
have more presence and should have the most influence over
other color selections. Background items also tend to carry the
basic color scheme of the interface while foreground items pro-
vide accents. When choosing colors for any application,
designers usually select a few basic colors for the fundamental
items and then select accent colors for the more temporary or
special items. The colors that are selected first have fewer con-
straints acting on them; therefore, it is easier to satisfy their con-
straints than it is for colors that are selected later in the process.
The result is that the first few colors form an aesthetically-
pleasing combination and determine the color scheme for the
rest.

The constraints that are consolidated in one data structure
include adjacent contrast, screen contrast, and relative bright-
ness and its associated direction. The information in the color
pool, i.e., the brighmess range, the saturation, and the hue possi-
bilities, also influences the proposal of a candidate. The last
pieces of information are the proposing object’s hue, saturation,
and brightness. Figure 4 summarizes where these pieces of data
come from and which color parameters of the candidate they are
used to infiuence.

source

functional constraints

Data

uossible hues

Parameters
affected
hue

10.4. Narrowing down possible colors: applying functionaI
constraints

After the objects have been ordered for color selection,
ACE enters a loop that iterates for each object. The object
whose color is being selected is called the furget object. The
6rst thing that ACE does for a new target object is apply the
functional constraints to the set of all available colors. This has
the effect of ruling out all possibilities that are not specified in a
functional constraint and of consolidating all of the functional
constraint information in one data structure. The data structure,
called the color pool, encodes which hues, brightnesses, and
saturations may be used for the final color. Hues are marked
explicitly as to whether they may be used, brightnesses are
specified by approximate range, dark, bright or pastel, and
saturations by their mnemonic names, saturated, desaturated,
and grey.

.
imposed on target object saturation saturation

brightness range brightness, hue
relational constraints adjacent contrast hue
between proposing object screen contrast hue
and target object relative brightness brightness, hue

and diction
proposing object’s color hue hue

lnighmess brighmess. hue
saturation saturation

Figure 4: Information that influences candidate selection.

105.1. Proposing a brightness

10.5. Proposfng candidates: applying relational constraints

Each object whose color has been previously selected
and who imposes at least one relational constraint on the target
object proposes a candidate color. For example, if ACE is
selecting a color for the fourth object, and the first and the third
impose a relational constraint on the target object then only
these two objects will propose candidates. Only objects that are
affected by the target object are able to influence its color.

An object proposing a candidate color for the target
object is called a proposing object. The candidate colors are
based on the proposing object’s color and on the relations
between the proposing object and the target object as expressed
in the relational constraints. The candidate is selected from the
color pool. so the functional constraints have already had their
effect on the decision. There are two steps in proposing a candi-
date. The first step is assembling the relational constraint infor-
mation into one data structure, just as ACE assembled the func-
tional constraints in the color pool. In addition to consolidating
the constraint information, the weights of all the constraints are
summed to produce a total weight for the candidate. Typically,
the candidate of a proposing object that is behind or next to the
target object will have the most total weight because it imposes
the most constraints and the most important constraints on the
target object. The second step in the proposing process is using

The candidate’s brightness depends on the brightness
range specified in the color pool, the proposing object’s bright-
ness, and the relative brightness constraint and its direction.
The relative brightness is added (or subtracted, depending on the
relative brightness direction) to the proposing object’s bright-
ness. This value is the brightness that is suggested by the pro-
posing object. If the suggested value is within the color pool
range, then all constraints are satisfied and the suggested value
is assigned to the candidate’s brighmess parameter. If the sug-
gested value is outside the brightness range, then the value that
is within the range, but closest to the suggested value is assigned
to the brightness parameter because the color pool brightness
range cannot be violated. If the direction of the relative bright-
ness is not specified, then ACE tries both and chooses the one
that is closest to the one specified in the color pool. Note that
the proposing object’s suggested value, called the ideal bright-
ness, is used later in the grading process.

105.2. Proposing a saturation

There are no relational constraints that influence satura-
tion so candidates get this parameter directly from the color
pool. If there is no saturation value in the color pool because
there were no functional constraints on saturation. then the
saturation defaults to saturated. The ideul saturation is what-
ever saturation was found in the color pool.

124

1053. Proposing a hue

Unless there is a samfr relational constraint the selection
of the candidate’s hue is the most complicated of the three color
parameters. Several relational constraints, which include screen
and adjacent contrast and the direction of the relative brightness.
work together to influence the selection of a hue from amongst
those available in the color pool. A proposing object may
impose only one or two of these constraints.

ACE tries to find a hue relationship pair in the color pool
that matches the proposing object’s hue, the adjacent and screen
contrast values, the relative brightness direction, and that also
has the highest attractiveness value. This set of constraints
defines the ideal hue and will be used later in the grading pro-
cess. The ideal hue may not exist, but if all of these constraints
can be satisfied exactly, then the best match occurs. The second
best match occurs if either of the screen or adjacent contrast
values in the color pool are off by one from what the proposing
object suggests and the attractiveness level is still at the highest
level. If a hue that satisfies the first or second best match cannot
be found, then ACE tries relaxing the attractiveness constraint.

If the attractiveness level reaches a threshold and ACE
still has not found a hue, it will suggest using a grey for the can-
didate because grey is considered attractive with any hue. ACE
uses the grey pairs to determine which tint of grey will be most
attractive with the hue of the proposing object. The hue param-
eter of the candidate is set to the tint of the grey, and the satura-
tion parameter is set to grey.

There are many exceptional cases to the above scenario
that occur in the cases of the first target object, a target object on
which no relational constraints are imposed, or a target object
on which not all of the basic relational constraints are imposed.
For the first target object, all three color parameters are selected
based only on the functional constraints, i.e., the color pool.
The hue is selected randomly from those in the color pool. The
brightness is set to the middle value within its approximate
range. If no range is specified. then it is set to the middle value.
The color for au object on which there are no relational con-
straints, and therefore no proposing objects, is selected in the
same way. After one or two object colors have been selected,
this rarely happens.

10.6. Grading candidates

Each of the objects that proposed a candidate assigns a
grade to each of the other candidate colors. The reasoning is
that each object that imposes any relational constraints on the
target object should have some influence on the target object’s
color. Thus the proposing objects from the last phase are now
grading objects. All of the grades that a candidate receives are
summed; the candidate color with the lowest total grade is
assigned to the target object.

The grade is a number that describes the difference
between a candidate and the grading object’s version of an ideal
color for the target object. The lower the number, the closer the
candidate is to an ideal color. Each candidate has a weight asso-
ciated with it which is used to affect the other candidates’
grades. Before a grade is added to the candidate’s total grade, it
is multiplied by the weight of the grading object’s candidate.
An object with a large weight has the effect of hurting every
other candidate’s grade while an object with a small weight does
not hurt other candidates’ grades very much. Thus, the weight
is not used to improve one’s own grade (by lowering it), but to

raise every other candidate’s by an amount proportional to the
weight.

Note that the grading object’s candidate color is not
necessarily the same as its version of an ideal color for the target
object. The constraints that define the ideal color were probably
relaxed before the candidate color was found. The grade
expresses the difference between an existing color that satisfies
the constraints and the nonexistent ideal color.

There are four basic components to the grade: brightness
deference, adjacent co~ast diq”erence, screen contrast differ-
ence, and attractiveness difierence. The brightness diference is
the difference between the grading object’s ideal brightness and
the candidate’s brightness. The ideal versions of adjacent and
screen contrast are those that the grading object suggested in the
proposing phase. ACE finds the real contrast relations between
the grading object’s hue and the candidate’s hue from the hue
pair data struchze that contain them. The confrart difference
components of the grade are the differences between the real
values and the ideal ones. The last component, attractiveness
d@zreme, is computed by taking the difference between the
highest possible attractiveness value and the real attractiveness
value.

If one of the candidate or the grading object’s color is
grey, a slightly different scheme is used to compute the grade.
The brightness difference component is retained, but the con-
trast differences and attractiveness difference are omitted while
a tint diflerence component is added. An ideal tipt of grey from
the point of view of the non-grey color (either the candidate or
the grading object) is determined from the grey pairs. The tint
difference is the difference between the ideal tint and the real
tint for the grey. The difference between tints is the number of
steps between them on the color wheel of the ten basic hues. If
both the grading object’s color and the candidate are grey, then
the tint difference is simply the difference between the tints of
grw

After a grade is computed, it is multiplied by the grading
object’s candidate’s weight and added to the candidate’s total
weight. A candidate does not grade itself since it was already
selected to be the closest match to the proposing object’s ideal
color for the target object.

When all candidates have been graded, then ACE finds
the candidate with the minimum grade, The winning candidate
color is assigned to the target object. The minimum average
grade is determined by dividing the minimum grade by the
number of objects that graded each candidate. If this grade ia
not over a certain threshold, a warning message is printed. The
reasoning behind the grading process is that ACE finds the can-
didate which is the least offensive to the most objects. That the
lowest average grade is not over the threshold implies that even
the best candidate may still not be very appropriate. In a later
section we propose several possible ways to deal with this prob-
lem other than just printing a warning message.

10.7. Output of results

The loop described above iterates for each user-specified
object in the order that is determined near the beginning of
ACE’s execution. When every object has been assigned a color,
ACE prints the results in a file, cleans up its working memory,
and halts execution.

125

11. Implementation

ACE is written in OPS5 with a few routines in Lisp.
Input and display programs are written in C. The OPS5 inter-
preter is written in Franz Lisp and runs on a DEC Microvax II
running Ultrix 1.2. ACE contains 170 OPS5 productions.

12. Preliminary results

Our first prototype of ACE has been in existence for only
a short tune and has not undergone rigorous testing, but we have
run it on some sample user interfaces. This section will present
the results of running ACE on a test case.

The test case consists of a desktop, windows with borders
and text, icons that can appear on either the desktop or the win-
dows, and a temporary menu. Both the icons and the menu have
background and foreground colors. Figure 5 shows the user
interface items, their selection order, and the colors that ACE
assigned to them. ACE took about nine minutes of real tune to
find this solution.

Objects in order of
color selection
desktop
window background
window border
window text
icon background
temporary menu background
icon foreground
temporary menu text

Color (saturation hue I
brightness)
desaturated light blue 3 (dark)
desaturated y&ow 11 (pastel)
desaturated light blue 5 (dark)
saturated purple 5 (dark)
grey orange 9 (medium)
grey yellow 11 (pastel)
grey red 1 (dark)

Figure 5: Results from test case.

An expert user interface designer would Probably not
select these same colors, but they follow all of the rules that
ACE currently knows about. For example, the desktop is a
dark, desaturated, cool color. The c&m follow ACE’s attrac-
tiveness roles well. Each of the color pairs that appear adjacent
on the display is attractive together. Contrast rules are generally
followed; for example. the pale yellow window color contrasts
well with the dark purple text. Other foreground and back-
ground colors, such as menu background and text and icon
background and detail, have lots of brightness contrast. The
backgrounds of icons have a middle brightness since they must
contrast both with the desktop and with the windows. The only
colors that do not provide adequate brightness contrast are the
window color and the temporary menu background color. In
this example, a menu may appear on top of the window so they
should contrast in brightness. At least they contrast in satura-
tion, so they will not totally blend in color.

13. Areas for improvement

The most significant problem with ACE’s algorithm is
that a candidate that is not appropriate can receive the lowest
total grade. Typically, one or two objects should have the most
inlluence over a color and, indeed, their candidates have the
largest weights. The other candidates, however, usually all have

approximately the same relation to the target object, so they all
propose the same or a similar color, but a color that is different
from the candidates of objects that should have the most
influence. Individually, they have small weights but the result is
that their candidate gets the lowest grade because they are all
voting for approximately the same thing. Hence, the candidate
that eventually wins is wrong, but gets elected by sheer
numbers.

Associating weights with the relational constraints was
supposed to handle this problem, and it does for small numbers
of user interface objects. ACE could increase the weights of the
most influential objects as the number of ordinary proposing
objects increase. A better way of handling the problem is to not
allow objects that have a small number of relational constraints
with the target object to propose candidates if more infhrential
objects exist. In this scenario, the most influential objects would
fight among themselves without corruption from a lot of ordi-
nary candidates.

Another drawback to the way that ACE selects colors is
that both selections and evaluations are performed pair-wise, but
the effect of a group of colors is as a whole. We might be able
to devise color relations between three, and maybe even four or
five colors, but more than this would be extremely difficult.
Adding these kinds of relations would require a fairly major
overhaul of the candidate Proposal and grading phases. Before
attempting this, we will see what changes can be made in the
existing color knowledge that may help produce better results.

In general, the visual effect of color is hard to encode.
Color relationships are very subtle and a small change can make
a big difference. A designer might spend several hours tweak-
ing the colors of a user interface. As well, it is difficult to
encode effects such as simultaneous contrast in which colors
look different depending on their surroundings. There seems to
be a limitation on the aesthetic quality of ACE’s output; ACE
can select reasonably attractive colors, but it probably will not
be able to perform the same tine adjustments that a human
expert can. We may be able to incorporate some of these fine
adjustments, but iirst we need to examine the ways that different
experts solve the problem.

As mentioned in the results section, ACE uses its rules
well, but the amount of knowledge we have encoded thus far
has been limited. ff more knowledge were encoded, ACE might
be able to make better color choices. On the other hand, if too
many constraints are added then ACE might reproduce the same
results for many user interfaces. This could be advantageous if
we wanted to develop a style of interface; other styles could be
introduced as well. One simple way to introduce different color
styles would be to provide different initial sets of colors or to
change the attractiveness relations between the colors.

In general, there are many ways that ACE can be
improved. Each of the types of knowledge. user interface, color
relations, and control, can be tuned and augmented to produce
better results.

14. Conclusions

ACE has a long way to go before it is a robust, useful
tool, but we have accomplished our immediate goals. From our
prototype. we have learned that an expert system is an appropri-
ate way of selecting colors for a user interface, but some tweak-
ing by a human expert will be necessary in order to achieve the

126

most aesthetically-pleasing colors. Certainly, the colors ACE
selects are better than a random selection and also better than
what a naive programmer with little aesthetic experience would
choose. The process of synthesis is usually considered more
difficult than that of analysis. ACE is a useful synthesizer of
colors, while human experts can be called in for analysis and
successive refinement; thus, ACE provides a user with a head
start, a first approximation to build upon.

Another of our goals was to discover areas in which more
studies and research need to be performed. One of these areas is
visual color relationships. Humans develop senses of
hsrmony/contrast and of attractiveness throughout their lives,
and each individual has a different idea of which sets of colors
harmonize or contrast or are attractive. This type of information
is the hardest to. encode and is the reason why expert systems
usually take years to write and refine. Ultimately, user interface
colors that are produced by ACE should be tested on users.

15. Acknowledgements

Many thanks to David Laidlaw for ideas and suggestions
for the ACE algorithm and to Ed Chang, David Laidlaw. and
Andy van Dam for critically reading earlier drafts of this paper.
Thanks also to Norm Cox, Steve Feiner, Jim Foley, David
Laidlaw, Aaron Marcus, Dick Shirley, David Smith, and Andy
van Dam for critical feedback on the color rules work on which
ACE is based. The color rules work was supported in part by
Apple Computer, Jnc.

16. References and Bib&graphs

Beach 19851
Beach, R., Setting tables and illustrations with style,
Ph.D. Thesis, Department of Computer Science, Univer-
sity of Waterloo, Ontario, 1985.

Boynton, R., Human Color Vision, Holt, Rinehart, and
winston, 1979.

&ownston, et al.. 19851
Brownston, L., R. Farrell, E. Kant, and N. Martin, Pro-
gramming &pert Sysrem in OPS5, Addison-Wesley.
Reading, MA, 1985.

[Christ. 19751
Christ, R., Review and analysis of color coding research
for visual displays, Human Factors, 17,1975,542-570.

[Davis and Swezey. 19831
Davis, E. and R. Swezey. Human factors guidelines in
computer graphics: a case study, International Journal of
Man-Machine Studies, 18, 1983, 113-33.

[De Corte, 19861
De Corte, W., Finding appropriate colors for color
displays, COLOR Research and Application, 11: 1, Spring,
1986.56-61.

[Forgy, 198 11
Forgy. C. L. The OPS5 users’s manual. Technical Rept.
CMU-CS-81-135. Department of Computer Science,
Carnegie-Mellon University, 1981.

[Frome. 19841
Frome, F., Jmproving color CAD systems for users: some
suggestions from human factors studies, IEEE Design and
Test of Computers, 1: 1. February, 1984, 18-27.

[Gnanamgari. 19811
Gnanamgari, S., Information presentation through default
displays, Ph.D. Thesis, Department of Computer and
Information Science, University of Pennsylvania, 198 1.

[Heath and Flavell, 19851
Heath, A., and R. Flavell, Colour coding scales and com-
puter graphics, Proc. Graphics Interface ‘85, June, 1985.
321-328.

[Krebs, Wolf, and Sandvig. 19781
Krebs, M., J. Wolf, and J. Sandvig, Color display design
guide, ONR Report No. ONR-CR213-136-2F. NTJS AD
No. AO66630. October, 1978.

[Macki.nlay, 19861
Ma&inlay, I., Automating the design of graphical presen-
tations of relational information, ACM Transaction on
Graphics, 5:2. April, 1986,110.

[Marcus, 19821
Marcus, A., Color: a tool for computer graphics conunun-
ication. in The Computer Image, Addison-Wesley, Read-
ing, MA, 1982.76-90. .

[Marcus, 19861
Marcus, A., The ten commandments of color, Computer
Graphics Today, 3:10, November, 1986.7.

[Meier, 19871
Meier, B., Effective use of color in user-computer intcr-
face design, Brown University, 1987.

[Mud, 1984al
Murch, G., Physiological principles for the effective use
of color, IEEE Computer Graphics and Applications.
4~11, November, 1984,49-54.

[Murch, 1984b]
Murch, G., The effective use of color. perceptual princi-
ples, TEKniques 8:1, Spring, 1984, p. 4-9.

[Murch, 1984c]
Murch, G., The effective use of color: cognitive princi-
ples, TEKniques 8:2. Summer, 1984, p. 25-3 1.

[Murch and Taylor, 19861
Murch, G., and J. Taylor, The effective use of color in
computer graphics applications, Proc. Computer Graphics
‘86 Conference, Vol. 3, National Computer Graphics
Association, Anaheim, Ca., May, 1986.5 15-521.

[Oborne, 19851
Obome, D., Computers at Work A Behavioural
Approach, John Wiley & Sons Ltd., 1985.

[Prerau, 19851
Prerau, D., Selection of an appropriate domain for an
expert system, AZMuguzine. 69, (Summer 1985), 26-30.

127

[Robertson, 19761
Robertson, P.J., The use of colour for computer displays,
MS Thesis, University of Aston at Birmingham, U.K.,
Department of Applied Psychology: published as IBM
Hursley Human Factors Laboratory Report No. HFOO5,
IBM United Kingdom Laboratories Ltd., Hursley Park,
Winchester, Hampshire, U.K., October, 1976.

[Robertson. 19801
Robertson, P.J., A guide to using color on alphanumeric
displays, Technical Report, IBM United Kingdom
Laboratories Ltd., Hursley Park, Winchester, Hampshire,
U.K., June, 1980.

[Robertson, 19811
Robertson, P.J.. A survey of users of the IBM 3279 color
display station, Technical Report TR.12.193. IBM United
Kingdom Laboratories Ltd., Hursley Park Winchester,
Hampshire. U.K., August, 1981.

[Robertson, 19821
Robertson, P.J., Review of color display benefits. IBM
Hursley Human Factors Laboratory Report No. HF056,
IBM United Kingdom Laboratories Ltd., Hursley Park
Winchester, Hampshire. U.K., January, 1982.

[Samson and Poiker, 19851
Samson, L. and ‘I’. Poiker. Graphic design with color
using a knowledge base, Simon Fraser University, 1985.

[Shneiderman, 19871
Shneidennan, B., Designing the User Interface: Stra-
tegies for Effective Human-Computer interaction
Addison-Wesley, 1987.

[Smith, 19781
Smith, A., Color gamut transform pairs. Computer
Graphics (Proc. SIGGRAPH 78), 12:3. July, 1978, 12-19.

meichner, Christ, and Corso. 19771
Teichner, W., R. Christ, and G. Corso. Color research for
visual displays, ONR Report No. ONR-CR213-102-4F,
NTIS AD No. AO43609, June, 1977.

~ruckenbrod, 19811
Trucker&rod, J. R., Effective use of color in computer
graphics, Computer Graphics (Proc. SIGGRAPH 81).
15:3, August, 1981,83-90.

Tullis, T., An evaluation of alphanumeric, graphic, and
color inEormation displays, Hrunan Facmrs 23~5, October,
198!.541-550.

128

