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Abstract 
Color is used in computer graphics to code infOmUUi0~ 

to call attention to items. to signal a user, and to enhance display 
aesthetics, but using color effectively and tastefully is often 

beyond the abilities of application programmers because the 
study of color crosses many disciplines, and many aspects, such 
as human color vision, are not completely understood. We com- 
piled a comprehensive set of guidelines for the proper use of 
color, but even these guidelines cannot provide all of the 
aesthetic and human factors knowledge necessary for making 
good color selections. Furthermore, progranuners may misinter- 
pret or ignore the guidelines. To alleviate some of these prob- 
lems, we have implemented ACE, A Color Expert system which 
embodies the color rules and applies them to user interface 
design. The goal of the implementation was to test whether an 
automated mechanism would be a viable solution to the problem 
of choosing effective and tasteful colors. 

Our implementation is written in OPS5, a production sys- 
=mprogr amming language. which allowed us encode rules in a 
similar fashion to our existing set of gui&lines. ACE takes a 
user interface specification and uses our color rules as con- 
straints to determine the best colors for particular items. While 
ACE is only a prototype, we learned that an expert system is a 
viable method for choosing an initial set of colors that can be 
“tweaked” by a human expert. We also learned that much 
more research needs to be pcrformed in the areas of visual color 
relationships and how they can be used to provide the most 
effective user interface. 
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1. Introduction 

1.1. Wby color is used 
Color is used in computer graphics for a variety of rca- 

sons ranging from the aesthetic to the utihtarian. Color can be 
used to group similar things, to distinguish dissimilar things. to 
show temporal or magnitude differences, and to label items. In 
auserinterface.colorcanbeusedtocallatrentiontoanitem,to 
signal the user (as in green for acceptable, yellow for caution, 
red for error or stop), and to show logical relations between 
parts of the user interface. Color can also be used to influence, 
to convey a mood, and to enhance recall. Color helps with per- 
ceptual organization as in realistic imagery, and in trying to 
visualize multidimensional data sets [Marcus, 19821. 

A review of the experimental literature on the effects of 
color coding [Christ, 19751 revealed that color is superior to 
size, brightness, and shape in searching for and identifying 
items that vary in only one aspect (e.g., only in color or in size), 
but that color cannot be identified as accurately as text. This 
review also showed that for some specific tasks, people 
remember color longer than size, orientation, or shape. In 
another study, Tullis [1981] found that although subjects per- 
formed tasks equally well with black-and-white graphics as with 
color graphics, when subjects were surveyed about their prefer- 
ences in formats, most selected color graphics as their first 
choice, citing aesthetic advantages over black-and-white for- 
mats, Thus, even if color doesn’t enhance performance, it may 
have an effect on user acceptance of a system. Both Christ and 
TulBs found that subjects believe they perform better when 
using color; they find color to be less monotonous and believe it 
causes less fatigue and eyestrain. 

1.2. The problem of designing with color 

Unfortunately, user interface designers and implementors 
typically do not have expertise in the science, theory, art. or 
pragmatics of color use. Colors are often selected for user intcr- 
faces in an ad hoc fashion, without considering their physical or 
psychological effects, and without taking into account design 
principles concerning legibility and readability. Programs that 
provide color selection capabilities typically allow the user to 
select colors freely without regard to their application; they pro- 
vide no constraints. guidelines, or “templates” to help ensure 
that the image will make intelligent use of color. Likewise, pro- 
grammers usually do not have available to them good tools for 
selecting colors for an image or application program. They use 
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primary or secondary colors or even use random ones without 
regard to the effect the colors will have on viewers. 

Color improperly used can be worse than no color at all. 
It can cause confusion or eyestrain; logical relationships can be 
implied where they don’t exist or a viewer may perceive unin- 
tended depth differences. If redundancy coding for color 
deficiency is not considered in a design, some color-deficient 
users may have difficulties using an interface or perceiving an 
image. With detailed images or text, incorrectly chosen colors 
may detract from legibility [Marcus, 19821. 

1.3. Why color is difficult 

The study of color crosses multiple disciplines: physics, 
physiology, psychology. art, and graphic design. Each field 
employs its own terminology; in some cases, a particular word 
will have one meaning in one field and a different meaning in 
another field. Since human color vision is not well understood 
much of the study of color is theoretical and experimental. As 
mentioned above, researchers have performed some studies to 
learn more about how we perceive and use color and have 
developed theories for explaining color perception, but no 
comprehensive model of vision exists and some perceptual 
phenomena have yet to be understood Isoynton, 19791. 

Researchers in all of the disciplines in which color is stu- 
died agree that a color can be described by a set of three 
independent parameters; however, each field uses a different set. 
Some are physical measurements while others are perceptual 
measurements. To add to the confusion, some are based on 
reflected color while others are based on emitted color. Colors 
can be specified using any of these parametric models; although 
some models are clearly more appropriate than others for given 
applications. Computer graphics programmers and users may 
be familiar with several color systems, but the transformations 
between them are not always trivial. 

More to the point, however, color models contain no 
information about the effective use of color; they are only a 
framework on which to build this information, which is based 
on theory, formal experiments, experience (i.e., informalexperi- 
ments). and aesthetic judgment There are no established algo- 
rithms that can be applied to choosing colors, only heuristics 
and rules of thumb. 

2. Guidelines to the use of color 

Researchers in different disciplines have published infor- 
mation about the effective use of color in computer displays to 
try to bring together the existing, but scattered color rules 
[Davis and Swezey, 19831, [Frame, 19841, [Heath and Flavell, 
19851, [Krebs, Wolf, and Sandvig, 19781, [Marcus, 1982, 19861, 
[Murch, 1984a, 1984b. 1984c], [Murch and Taylor, 19861, 
[Obome. 19851, [Robertson, 1976. 1980. 1981. 19821, [Shneid- 
erman, 19871. ~eichner. Christ, and Corso, 19771, [Truckenb- 
rod, 19811. Many of the guidelines, heuristics, and rules of 
thumb discussed in the these sources have been compiled, 
edited, and synthesized into a set of prescriptive rules [Meier, 
19871. The need for a compilation arose because much of the 
published information consists of descriptions of experimental 
studies in which a particular use of color has been tested, but 
programmers and designers have difficulty generalizing from 
the specific results of these experiments. Prior to our compila- 
tion, existing lists of rules presented a few important rules 

appropriate for programmers who occasionally must make a few 
color selections. but these lists were not adequate for the user 
interface designer. Moreover, many of the existing rules sug- 
gested using or not using a particular color for a specific appli- 
cation; they did not suggest general strategies and design guide- 
lines for selecting colors. Our compilation is focused on color 
in the user interface and provides both stiategic and tactical 
rules for design synthesis. 

3. How an expert system can alleviate the problems of writ- 
ten guidelines 

A set of guidelines such as ours can provide readers with 
many of the rules and strategies for proper use of color. How- 
ever, because there are so many complex relationships, special 
cases to general rules, and seeming contradictions, the guide- 
lines cannot capture all the subtleties of the subject. Further- 
more. the rules may be misinterpreted, misapplied, or not 
applied at all. An expert system that helps programmers and 
users select colors could alleviate many of these problems. 
ACE, A Color Expert, is a research implementation of an expert 
system that selects colors for user interfaces. 

Three criteria determine the suitability of an expert sys- 
tem for solving a class of problems [prerau, 19851. Fit, the 
domain should be fairly narrow. The problems presented to 
ACE are specitic enough so that the knowledge needed to solve 
them can be encoded in a reasonably-sized program. 

Second, tasks that are suitable for an expert system 
should require the use of heuristics and strategies based on the 
experience of the expert, rather than well-developed models and 
algorithms. As mentioned above, since a comprehensive model 
of human color vision does not exist, experts cannot predict 
exactly how users will react to color. they must rely on experi- 
mental results and their own experience and aesthetic judgment 
when solving color problems. 

Third. appropriate tasks for expert systems require exper- 
tise, can be solved by existing experts, and are performed better 
by experts than by amateurs. Expert user interface designers do 
solve color selection problems, but there are few experts in the 
field because the knowledge is scattered across many disciplines 
and the use of color for computer displays is largely an uuex- 
plored area of study. Moreover, the importance of using color 
properly is often underestimated by managers that appropriate 
resources for user interface design and implementation. Many 
of the expert user interface designers that are making color deci- 
sions are basing their selections on their expertise in another dis- 
cipline such as graphic design for print media. Much more 
information and experimentation is needed in order to evaluate 
current solutions. 

4. Previous automatic display design and color design 
work 

In several experimental projects researchers implemented 
systems that encoded design rules and used this knowledge to 
synthesize some part of a computer display. Several automated 
design systems work in the domain of charts, tables, and graphs. 
Bharat [Gnanamgari. 19811 is a system that chooses the most 
appropriate chart style, such as bar, pie, or line. and its attributes 
to display tabular data Beach [1985] automated the layout of 
tables that are provided by the user. Unlike BharaL Beach’s 
system does not work on the semantic level, but instead it uses a 
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design database to choose a low-level typographical style for a 
table. APT, A Presentation Tool, developed by Ma&inlay 
[1986], is another system that designs and renders graphical 
presentations such as bar charts, scatter plots. and connected 
graphs. 

None of these systems have the ability to make decisions 
about the effective use of particular colors, with the exception of 
the limited abilities of Bharat. A system that does select pad- 
ular colors for coding based on constraints was developed by De 
Carte 119861. De Carte’s algorithm produced a set of colors in 
which each color is perceived to be different from all other 
members of the set. The algorithm used minimum bchveen- 
color distance formulae (based on the 1976 CIELUV color 
space) and some constraiuts based on human factors studies for 
improving user performance in color coding situations. De 
Corte started with random colors and maxim&d the minimum 
color distance by iteratively relaxing the maximum distance 
constraints, while insuring that the colors lay within the human 
factors constraints. 

A knowledge-based system for solving coloring prob 
lems in cartography. by Samson and Poiker [1985], is the most 
similar project to ACE. Color rules (e.g., “use desaturated 
color for large areas and saturated color for small areas”) and 
map-coloring rules (e.g., *‘use blue for water”) are used in con- 
junction with a table that encodes color relationships derived 
from the Goethe color chart to decide what colors to assign to 
regions of a map. ACE uses some of these same ideas, particu- 
larly the use of a table to encode relations between colors, in its 
knowledge base. 

5. Goals of ACE 

The long range goal of this project was to have an imple- 
mentaticm of ACE that chooses appropriate, effective, and taste- 
ful colors for user interfaces. The selected colors should be 
suited for both the task being paformed and the output medium; 
they should make good use of human visual abilities; and. at the 
same time, the colors should be aesthetically pleasing. 

Expert systems typically take many years to design, 
implement, evaluate. and refine; therefore, we also had more 
immediate goals for this project. We wanted to determine if 
automating the color selection process were possible by imple- 
menting a prototype, and thus determine if the existing guide- 
lines from the literature were complete enough to enable the 
automatic synthesis of designs, and whether an expert system 
were an effective medium for encoding and automating the 
rules. We also hoped to learn which areas of color selection and 
user interface design need more study and experimentation. 

6. Domain: types of user interfaces for which ACE can 
select colors 

ACE’s knowledge base encodes information about par- 
ticular objects in user interfaces. Most of these objects, which 
are characterized by their function, are standard items found in 
the Xerox STAB and Apple Macintosh desktop environments. 
They include the desktop or screen background, windows, 
icons, dialog boxes, cursors, and menus. Some of these objects 
have other objects associated with them such as backgrounds, 
borders, text, symbols and other details. and highlights. Objects 
about which ACE has information are shown in Figure 1. 
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Figure X: User interface objects that ACE understands 
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If a user interface includes a non-standard item, the user 
can select properties that describe the item’s physical and func- 
tional characteristics, including size, shape, and how it is used. 
Usually ACE is better at selecting colors for standard items than 
for non-standard items. because it includes specific rules based 
on the functions of standard items. 

7. User interface to ACE 

The East interface to ACE is textual and consists of ACE 
asking questions about user interface objects and their interrela- 
tionships and users selecting answers from menus. After an 
object’s description has been entered, ACE asks the user to indi- 
cate how the new object physically relates to all of the previ- 
ously entered objects. The possible physical relations are next 
to, on, behind on screen at same time, or not on screen at same 
time. 

In the future, we would like to have a graphical interface 
in which there are pictures of the standard user interface objects, 
similar to Figure 1. Users would be able to point to the objects 
they wanted and could drag objects to different positions on the 
screen to show their relationships. Ideally, ACE should get its 
specification of the user interface directly from a user interface 
design and synthesis system, relieving users from specifying the 
interface more than once. As well, this type of interface would 
prevent users from misinterpreting the functions of objects. For 
example, a user could mistakenly describe the icon of a window 
as a window with a border and text instead of as an icon. Since 
ACE uses different rules for windows and icons, the result 
might not be appropriate. 

8. Expert systems and production system programming 
languages 

8.1. Expert systems 

An expert system consists of a knowledge base of rules 
and an iriference-making capability that can put the rules 
together to draw conclusions. Rules are conditional statements 
that may perform an action or draw a conclusion. Using a rule- 
based system for prototyping an expert system allows the pro- 
grammer to incorporate know!edge in a format that is very simi- 
lar to that expressed by domain experts. One of our goals in 
implementing ACE was to understand more about the problem 
itself. If the implementation mirrors the knowledge base, it can 
be built, modified. and tailored incrementally as we accrue rules 
and guidelines. By taking advantage of incremental implemen- 
tation, prototypes of rule-based systems can be written very 
quickly. Unlike programs written in procedural programming 
languages, rule-based systems do not typically require lots of 
flow-of-control constructs and support routines that must be 
coded before the system can be tested. A rule-based system can 
be tested after only a few rules are coded; more rules can be 
added to improve the results. This is important when the exact 
rules that will produce the desired results are unknown. 

8.2. OPSS programming language 

Our implementation of ACE uses OPS5. a production 
system programming language developed at Carnegie-Mellon 
University [Forgy, 1981; Brownston et al., 19851. A production 
system consists of a set of productions, which are simply if-then 
rules, and a global data base called the working memory. The 

flow of control in a production system is not sequential as in 
conventional progr amming languages. Instead, a program exe- 
cutes in cycles that consist of determining which productions 
may be fired (executed), selecting one (based on a strategy 
inherent in the language), and firing the production. This is 
called the recognize-act cycle. 

83.1. Production system implementations and strategies 

In general, production systems which use the recogtie- 
act cycle, such as OPS5, are better suited for synthesis prob- 
lems, which have many possible solutions, than for diagnosis 
problems, which usually have one acceptable solution. ACE is 
a synthesis problem - there are many ways to color a particular 
user interface - so it uses a “data-driven.” forward-chaining 
strategy instead of the “goal-driven,” backward-chaining stra- 
tegy used for diagnosis problems. A forward-chaining architec- 
ture must rely heavily on the heuristic information encoded in 
its rules to proceed toward the solution, thus the rules often con- 
tain control or strategic information. 

9. ACE’s knowledge base 

ACE’s rule base contains three types of knowledge. One 
type is knowledge about user interface components and their 
interrelationships while another type is kmowledge about rela- 
tions between colors. The third type is control knowledge, the 
rules that determine how the first two types of knowledge will 
be used. 

9.1. User interface knowledge 

These rules constrain the colors of user interface com- 
ponents based on their functions and their rekrtiom to one 
another. An example of a relatiod constraint between user 
interface components is that text in a window should have a 
color that contrasts in brightness with the window color. A 
functional constraint would be that the color selected for text 
should not be pure blue, because human eyes cannot focus on 
small blue objects. Another example is that windows and other 
areas whose function is that of “paper” are generally given a 
light color, while text and graphics that appear on such paper 
areas are given darker colors. 

Some of the rules in this part of the knowledge base, such 
as the “paper” rule, are taken from the literature on human fac- 
tors and user interface design. Unfortunately, most of this 
literature contains only general principles and very few concrete 
and specific recommendations and these are often what not to do 
instead of what to do. Thus, most of ACE’s rules about user 
interface design are baaed on our extensions of rules from the 
literature, our experience, and our aesthetic judgment. For 
example, we recommend that the screen background or desktop 
be a dark color, and that menus be given a color that has a 
brightness between that of the desktop and that of the window 
backgrounds. These suggestions are based on the principles that 
items that will appear on top of each other should have different 
brighmesses and that background items should have darker 
colors than foreground items. Thus, there are many ways to 
apply the rules from the literature; the rules in ACE’s 
knowledge base are not the only way to apply them, but we had 
to make some decisions in or&r to use them at all. 
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92. Color knowledge 

The second type of knowledge in ACE is information 
about particular colors and their interrelationships. In a later 
section, we will discuss how ACE uses constraints on these rela- 
tionships to select colors. just as a CAD program might use 
geometric relationships (e.g., distance or parallelism) to con- 

strain positions of geometric primitives. Many color theorists 
have devised rules for color harmony and contrast, particularly 
for pure hues. These rules usually state that adjacent colors on a 
color wheel hamronizc while opposite colors contrast 
Harmony/contrast rules are helpful - in fact Samson and 
Poiker’s mapcoloring system [Samson and Poiker, 19851 is 
based on them - but they do not state which color combinations 
are the most attractive or what happens to color relationships 
when the colors have different brightnesses and saturations. We 
tried to discover a general relation between any two colors in a 
three-dimensional color space that would show whether the IWO 

colors harmonized or contrasted and how attractive they 
appeared together. This involved extending the one- 
dimensional (hue only) harmony/contrast relation of the color 
wheel to three dimensions and adding attractiveness relations as 
well. Unfortunately, we were unable to iind any general rela- 
tions, so we selected a discrete set of three-dimensional colors 
and explicitly tabulated the relations between them based on 
aesthetic judgment. These relations inIluence greatIy the colors 
that ACE selects for a user interface design and may be tuned to 
produce better results without interfering with the user interface 
rules and control rules. 

An earlier implementation of ACE used the HSV (hue, 
saturation, and value) color space [Smith, 19781 and for each 
color decision, it attempted to find a subset of the HSV space by 
eliminating imppqriate colors according to a few user inter- 
face and color rules. The 6nal color was chosen randomly from 
the HSV subset. This scheme did not work because the subset 
was always too large; typically, it was about half of HSV space, 
and therefore, the 6.na.l color selections were almost entirely ran- 
dom. 

The current implementation narrows the set of possibili- 
ties from intinite to a discrete set of colors from the HSL (hue, 
saturation, and lightness) color space. [Note: The correct term 
for the third parameter, and the one that we will use, is bright- 
ness, not lightness, which usually refers to reflected light.] In 
particular, the set consists of ten perceptually different hues, 
fifteen brighmesses between black and white for each hue, and 
three saturations for each hue/brightness combination. This 
may seem limiting at first glance, but, in fact. it encompasses 
450 different colors, 150 of which are shades of grey. User 
interfaces require perceptually different colors unlike realistic 
imagery, which requires continuous tone colors. A typical inter- 
face might have a dozen different colors. half of which might he 
white, black, or shades of grey. The hues in our set have 
mnemonic names: red, orange, yellow, green, cyan, light blue, 
blue, purple, magenta, and rose. The brightness levels are 
denoted by integers from one to fifteen, and the saturations have 
the names saturated &saturated, and grey. Each particular hue, 
brightness level, and saturation was selected to be perceptually 
different from its neighbors and to be aesthetically pleasing. 

There are several color relations that are encoded in 
ACE’s knowledge base. Ideally, we would have either a general 
or an explicit relation between each pair of the 450 colors for 
each relationship we wanted to know about (e.g., contrast or 

attractiveness), but, as mentioned above, there is no general 
relation, and encoding explicit relations would require too much 
space. We compromised by explicitly encoding the relation- 
ships between hues and by relying on general relations for 
brightnesses and saturations. For example, a general relation 
about brightness levels is that a low brightness (dark) color 
always contrasts with a high brigbmess (pastel) color. 

There are four hue relations encoded in ACE’s 
knowledge base. Each relation is between two colors. TWO 
encode harmony/contrast and the other two encode attractive- 
ness. Of the first two, the adjacent contrasl relation is used if 
the two colors will be adjacent on the display, and the other, 
screen contrast, is used if the two colors will not be adjacent, 
but will appear at the same time. Similar to Samson and 
Poiker’s system, the value of the harmony/contrast relations is 
an integer from one to five: one means harmony and five means 
contrast. The adjacent contrast value for two colors can also be 
negative which means that they clash and should not be used 
next to each together. 

Of the attractiveness relations, one is used if the first 
color will be darker than the second color; the other relation is 
used if the second color will be darker. The reason for having 
two attractiveness relations is that some pairs of colors are much 
more attractive if one of the colors is darker than the other. The 
attractiveness value is also an integer from one to five: one is 
unattractive and five is most attractive. 

Relations between different brighmesses and between 
saturations are encoded as well. Brightness contrast is simply 
the difference between the two tightness levels. Sometimes 
ACE does not need to know the exact brightness of a color; it 
only needs an approximation so the fifteen brightness levels are 
broken into three groups: dark (lxighmesses l-5). bright (6-10). 
andpastel (11-15). 

Relations between colors with different saturations are 
slightly more complicated. Saturated and desaturated hues are 
treated alike, but the third category, grey, is handled in a dif- 
ferent way which is similar to the way hues are handled. Grey 
colors in ACE appear as greys that have a slight tint of color; 
thus there are ten “tints” of grey - one for each hue - in fifteen 
brightness levels (producing 150 different greys). Fifteen greys 
might have been adequate, but we found that grey is one of the 
most common colors in user interfaces and that variations in the 
color of grey can make a mundane-looking screen attractive and 
sophisticated. Preys are assumed to be attractive with any hue; 
however, some tints of grey are more attractive than others with 
a particular hue. The particular tint of grey that is most attrac- 
tive with each of the ten basic hues is encoded explicitly. This 
relation also depends on the approximate brightness of the grey, 
SO for each hue, there is an optimal tint for dark grey, medium 
grey, and light grey. For example, watm greys are attractive 
with red when the grey is pastel or light, so yellow is encoded as 
the most attractive light grey tint for red. This relation is 
encoded as a set of pairs similar to the hue pairs described ear- 
lier. Each of the ten hues is matched with its most attractive tint 
of grey for each of the three approximate brighmesses so there 
iKf2thiQpairs. 

The color relations and the reasoning behind them will 
become more clear in the sections that explain how they are 
used. At this point it should be noted that all of ACE’s color 
relationship knowledge is based on our own interpretation of 
classic color theory and our own aesthetic judgments. A less- 
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biased implementation could incorporate the taste and judg- 
ments of several designers, but it could also run the risk of hav- 
ing inconsistent and muddled relations, or the color selections 
might be uninteresting and without style. We would like to 
experiment with several types of color relations and their values 
and perhaps allow users to choose the style they prefer. 

93. Control knowledge 

The third type of knowledge in ACE is control 
knowledge. The other two types of knowledge can be thought 
of as encoding data while the control knowledge encodes the 
color selection algorithm. These rules determine how the user 
interface design constraints will be applied and how the color 
relationships will be used to choose colors. 

Since choosing colors is a visual process, it is very 
difficult to get designers to articulate their color selection pro- 
cess. Most say that they select a few basic colors and then 
tweak them until they “look right.” ACE’s control knowledge 
is based on an analysis of how we solve user interface coloring 
problems and on color theory. As with both the user interface 
knowledge and the color knowledge, this method can bc 
changed or tuned without changing the other two types of 
knowledge. Since ACE has a forward-chaining architecture and 
most of its inference-making capability is encoded in the control 
knowledge, changing the method would be more difficult than 
changing the other types of knowledge simply because it is 
more pervasive in the system. 

The problem-solving strategy is broken into eight 
discrete steps which are shown in Figure 2. The OPS5 produc- 
tions used by each of these steps have no specific ordering, but 
some steps have substeps. The control knowledge formalizes 
and provides a strategy for color selection, but it does not 
specify a rigid algorithmic flow of control. 

10. HOW ACE works 
. 

10.1. Overview 

The goal is for ACE to assign a color to each object 
described to it. ACE uses monotonic reasoning, so the overall 
method is to order the color selection decisions in such a way 
that none ever has to be changed. The first task that ACE per- 
forms upon receiving a user interface specification is to deter- 
mine what functional and relational constmints will act on each 
object. Next, it orders the objects for color selection. The order 
is roughly back to front; objects that are in the background of 
the display will be assigned colors Rrst and objects that are 
nearest will be assigned colors last. ACE then enters a loop and 
selects a color for each object, called the target object. ACE 
uses the functional constraints that apply to the target object to 
narrow down the possibilities for candidate colors to form a 
color Pool. Next, each object that has already had a color 
assigned to it and that imposes a relational constraint on the tar- 
get object proposes a candidate color from the color pool for the 
target object. If a perfect candidate coot bc found in the color 
pool, the relational constraints are relaxed gradually until a can- 
didate color is found. 

When all candidates colors have been proposed, each 
candidate is graded against all of the object colors that have pro- 
posed candidates. The grade determines “how far” the candi- 
date is from the grading object’s version of an ideal color for the 

target object The lower the grade, the closer the candidate is to 
an ideal color. The grades for each candidate are summed and 
the candidate with the lowest total grade is assigned to the target 
object. When all object colors have been selected, ACE prints 
out the results. The basic steps are shown in Figure 2 and the 
details of the entire process will be. explained in the following 
sections. 

Read user interface specifications 
Create functional constraints 
Create relational constraints 
Order objects for selection 
For each object 

Choose possible colors by applying functional constraints 
Propose candidates by applying relational constraints 
Grade candidates 

Print results 

Figure 2: Basic steps in the color selection process 

The idea is that all of the previously selected colors 
should have some influence on the color of the target object. It 
would be too hard, however, to evaluate simultaneously the 
relations between all the members of a large group of colors; 
therefore, the candidates and previously selected colors are 
compared pair-wise. 

10.2. Comtrahts 

In a previous section we discussed knowledge about the 
functions of user interface objects, the relations between objects, 
and the control knowledge that describes how colors are 
selected. The following sections will show how the control 
knowledge uses the functional and relational knowledge to 
select colors. The set of permissible colors for the target object 
are constrained by the object’s function and by the relations the 
object’s color shares with other objects’ colors. These two 
types of constraints are applied one at a time since they are 
based on different fypes of knowledge. A third type of con- 
straint, global constraints, may be added in the future. 

10.2.1. Functional constraints 

Functional constraints are imposed by the function of an 
object and act on a single object at a time. When functional 
constraints are applied, they determine the possibilities from 
which candidate colors may be chosen These constraints can 
never be relaxed or violated - a color that has been ruled out for 
a particular target object cannot be used as a candidate for it. 
Functional constraints are imposed on one of the color parame- 
ters (hue, saturation, or brightness) and yield the approximate 
ranges, dark, bright, and pastel, for brightness, saturated, desu- 
turated. and grey for saturation, and the general categories, 
warm and cool for hue. Particular hues may also be specified 
by functional constraints. For example, the desktop is static, in 
the background, and large in size; therefore, according to our 
color rules, it should be be a dark, desaturated color. Another 
color rule states that passive items, such as backgrounds, should 
have cool colors, so cool is also imposed as a functional con- 
straint on the desktop color. 
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Functional constraints Relational constraints 

apply to color parameters (h.s,b) of one object apply to color relationships between two objects 

are never relaxed or violated can be relaxed 

based mostly on user interface knowledge based mostly on color knowledge 
although some on user interface knowledge 

purpose: to initially narrow down purpose: to provide data for selecting 
the set of all possible colors candidates from the narrowed down set of possibilities 

Figure 3: Differences between functional and reIational constraints 

103.2. Relational constraints 

Relational constraints, the second type of constraint in 
ACE, are imposed by the physical and functional relationships 
between two objects. Unlike functional constraints, relational 
constraints can be relaxed and. in fact., have to be since a perfect 
candidate cannot always be found in the color pool. Figure 3 
shows the differences between functional and relational con- 
Sh3illtS. 

Each relational constraint is weighted according to how 
much influence it should have over the linal color selection for 
the target object. When the constraints are applied during can- 
didate proposal, they are summed to form a total weight. The 
weights are assigned when the constraints are created and are 
used in the grading process which will be explained in a later 
SeCtiOlt. 

The &st two types of relational constraints we will 
describe, aa’jacent contrast and screen contrast, are constraints 
on hue relationships and they describe how much the colors of 
two objects must contrast. These are values from one to five, 
one meaning harmony or very little contrast, and five meaning a 
lot of contrast. An adjacent umtrast constraint is created if the 
two objects will appear next to each other or one atop the other, 
whereas the screen contrast constraint is created if the two 
objects will appear on the scnzn at the same time. 

Another relational cmstraint, rehtive brightness, is a 
constraint on the brightness relationship between two object 
colors. It is the most common of the relational constraints, 
because, in general, brightness is the most important color 
parameter for distinguishing objects; humans can detect bright- 
ness differences much more easily than hue or saturation differ- 
ences. The relative brightness constraint describes how much 
brightness contrast should exist between two objects and is 
given by a number from one to fifteen. A relative brightness 
direction can also be specifkd which describes which of the two 
colors should be darker. The direction can also be unknown. In 
this case, ACE knows that the two objects should contrast in 
brightness, but cannot yet specify which will be darker than the 
other. 

Relational constraints have to be coordinated with the 
functional constraints. because, in this implementation, the func- 
tional constraints cannot be relaxed. For example, a functional 
constraint on window backgrounds is that they be pastel. The 
brighmess contrast between window backgrounds and the text 
that will appear in them must be fairly large, thus the text must 

be. bright or dark in order to contrast with the pastel background. 
In this case, we can specify the die&ion of the brightness con- 
trast: the text should contrast with and be darker than the win- 
dow background. 

There are two other types of relational constraints which 
constmin some of the color parameters of the two objects to be 
the same. One of them, hue contrust, asserts that the 
brightnesses and saturations of the two objects are the same, but 
the hue should be different. The other constraint, some, asserts 
that the two objects will have exactly the same color. An exam- 
ple of a situation where this constraint would be created is 
highlighting schemes where the highlight colors are reversed 
from the non-highlighted colors. 

10.23. Global constraints 

Global constraints are not yet implemented, but will be 
described here for completeness. These constraints will be 
imposed by the way in which the user interface is to be used and 
will apply to all objects. For example, if the interface will be 
used for long periods of time, then the colors should be less 
saturated so that they will not cause eyestrain. Another global 
constraint is that the colors used for a business application 
should be subtle while those used for a video game can be bright 
and saturated. 

There are at least two ways that these constraints could 
be applied. First, they could limit the available colors for all 
objects. Another way is that they could limit the nun&r of 
colors in a particular category. For example, they could limit 
the number of very bright, saturated colors for a conservative 
business application. Neither of these methods seem satisfac- 
tory at this time since almost any color can be appropriate if 
used properly. We need to look into other ways that these glo- 
bal constraints can be applied. 

10.3. Ordering color‘selection 

After the functional and relational constraints have been 
created for each specified object, but before any color selections 
are made, ACE orders the selection decisions. The general stra- 
tegy is to select colors for objects that are in the background 6rst 
and then work forward to the foreground until all object colors 
are selected. Each of the types of objects that ACE knows about 
are placed in one of five partitions where the tirst partition is for 
background items and the fifth partition is for foreground items. 
Some objects are assigned to partitions based on their relations 
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to other objects. For example, text color is always selected after the consolidated constraints to select a hue, saturation, and 
the background color on which it will appear. brightness for the candidate. 

All objects in the first partition are assigned selection 
order numbers starting with number one; those in the second 
partition are assigned next, and so on. The order within each 
partition is random. The reasoning for the ordering scheme is 
that background items are usually large and pervasive, thus they 
have more presence and should have the most influence over 
other color selections. Background items also tend to carry the 
basic color scheme of the interface while foreground items pro- 
vide accents. When choosing colors for any application, 
designers usually select a few basic colors for the fundamental 
items and then select accent colors for the more temporary or 
special items. The colors that are selected first have fewer con- 
straints acting on them; therefore, it is easier to satisfy their con- 
straints than it is for colors that are selected later in the process. 
The result is that the first few colors form an aesthetically- 
pleasing combination and determine the color scheme for the 
rest. 

The constraints that are consolidated in one data structure 
include adjacent contrast, screen contrast, and relative bright- 
ness and its associated direction. The information in the color 
pool, i.e., the brighmess range, the saturation, and the hue possi- 
bilities, also influences the proposal of a candidate. The last 
pieces of information are the proposing object’s hue, saturation, 
and brightness. Figure 4 summarizes where these pieces of data 
come from and which color parameters of the candidate they are 
used to infiuence. 

source 

functional constraints 

Data 

uossible hues 

Parameters 
affected 
hue 

10.4. Narrowing down possible colors: applying functionaI 
constraints 

After the objects have been ordered for color selection, 
ACE enters a loop that iterates for each object. The object 
whose color is being selected is called the furget object. The 
6rst thing that ACE does for a new target object is apply the 
functional constraints to the set of all available colors. This has 
the effect of ruling out all possibilities that are not specified in a 
functional constraint and of consolidating all of the functional 
constraint information in one data structure. The data structure, 
called the color pool, encodes which hues, brightnesses, and 
saturations may be used for the final color. Hues are marked 
explicitly as to whether they may be used, brightnesses are 
specified by approximate range, dark, bright or pastel, and 
saturations by their mnemonic names, saturated, desaturated, 
and grey. 

. 
imposed on target object saturation saturation 

brightness range brightness, hue 
relational constraints adjacent contrast hue 
between proposing object screen contrast hue 
and target object relative brightness brightness, hue 

and diction 
proposing object’s color hue hue 

lnighmess brighmess. hue 
saturation saturation 

Figure 4: Information that influences candidate selection. 

105.1. Proposing a brightness 

10.5. Proposfng candidates: applying relational constraints 

Each object whose color has been previously selected 
and who imposes at least one relational constraint on the target 
object proposes a candidate color. For example, if ACE is 
selecting a color for the fourth object, and the first and the third 
impose a relational constraint on the target object then only 
these two objects will propose candidates. Only objects that are 
affected by the target object are able to influence its color. 

An object proposing a candidate color for the target 
object is called a proposing object. The candidate colors are 
based on the proposing object’s color and on the relations 
between the proposing object and the target object as expressed 
in the relational constraints. The candidate is selected from the 
color pool. so the functional constraints have already had their 
effect on the decision. There are two steps in proposing a candi- 
date. The first step is assembling the relational constraint infor- 
mation into one data structure, just as ACE assembled the func- 
tional constraints in the color pool. In addition to consolidating 
the constraint information, the weights of all the constraints are 
summed to produce a total weight for the candidate. Typically, 
the candidate of a proposing object that is behind or next to the 
target object will have the most total weight because it imposes 
the most constraints and the most important constraints on the 
target object. The second step in the proposing process is using 

The candidate’s brightness depends on the brightness 
range specified in the color pool, the proposing object’s bright- 
ness, and the relative brightness constraint and its direction. 
The relative brightness is added (or subtracted, depending on the 
relative brightness direction) to the proposing object’s bright- 
ness. This value is the brightness that is suggested by the pro- 
posing object. If the suggested value is within the color pool 
range, then all constraints are satisfied and the suggested value 
is assigned to the candidate’s brighmess parameter. If the sug- 
gested value is outside the brightness range, then the value that 
is within the range, but closest to the suggested value is assigned 
to the brightness parameter because the color pool brightness 
range cannot be violated. If the direction of the relative bright- 
ness is not specified, then ACE tries both and chooses the one 
that is closest to the one specified in the color pool. Note that 
the proposing object’s suggested value, called the ideal bright- 
ness, is used later in the grading process. 

105.2. Proposing a saturation 

There are no relational constraints that influence satura- 
tion so candidates get this parameter directly from the color 
pool. If there is no saturation value in the color pool because 
there were no functional constraints on saturation. then the 
saturation defaults to saturated. The ideul saturation is what- 
ever saturation was found in the color pool. 
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1053. Proposing a hue 

Unless there is a samfr relational constraint the selection 
of the candidate’s hue is the most complicated of the three color 
parameters. Several relational constraints, which include screen 
and adjacent contrast and the direction of the relative brightness. 
work together to influence the selection of a hue from amongst 
those available in the color pool. A proposing object may 
impose only one or two of these constraints. 

ACE tries to find a hue relationship pair in the color pool 
that matches the proposing object’s hue, the adjacent and screen 
contrast values, the relative brightness direction, and that also 
has the highest attractiveness value. This set of constraints 
defines the ideal hue and will be used later in the grading pro- 
cess. The ideal hue may not exist, but if all of these constraints 
can be satisfied exactly, then the best match occurs. The second 
best match occurs if either of the screen or adjacent contrast 
values in the color pool are off by one from what the proposing 
object suggests and the attractiveness level is still at the highest 
level. If a hue that satisfies the first or second best match cannot 
be found, then ACE tries relaxing the attractiveness constraint. 

If the attractiveness level reaches a threshold and ACE 
still has not found a hue, it will suggest using a grey for the can- 
didate because grey is considered attractive with any hue. ACE 
uses the grey pairs to determine which tint of grey will be most 
attractive with the hue of the proposing object. The hue param- 
eter of the candidate is set to the tint of the grey, and the satura- 
tion parameter is set to grey. 

There are many exceptional cases to the above scenario 
that occur in the cases of the first target object, a target object on 
which no relational constraints are imposed, or a target object 
on which not all of the basic relational constraints are imposed. 
For the first target object, all three color parameters are selected 
based only on the functional constraints, i.e., the color pool. 
The hue is selected randomly from those in the color pool. The 
brightness is set to the middle value within its approximate 
range. If no range is specified. then it is set to the middle value. 
The color for au object on which there are no relational con- 
straints, and therefore no proposing objects, is selected in the 
same way. After one or two object colors have been selected, 
this rarely happens. 

10.6. Grading candidates 

Each of the objects that proposed a candidate assigns a 
grade to each of the other candidate colors. The reasoning is 
that each object that imposes any relational constraints on the 
target object should have some influence on the target object’s 
color. Thus the proposing objects from the last phase are now 
grading objects. All of the grades that a candidate receives are 
summed; the candidate color with the lowest total grade is 
assigned to the target object. 

The grade is a number that describes the difference 
between a candidate and the grading object’s version of an ideal 
color for the target object. The lower the number, the closer the 
candidate is to an ideal color. Each candidate has a weight asso- 
ciated with it which is used to affect the other candidates’ 
grades. Before a grade is added to the candidate’s total grade, it 
is multiplied by the weight of the grading object’s candidate. 
An object with a large weight has the effect of hurting every 
other candidate’s grade while an object with a small weight does 
not hurt other candidates’ grades very much. Thus, the weight 
is not used to improve one’s own grade (by lowering it), but to 

raise every other candidate’s by an amount proportional to the 
weight. 

Note that the grading object’s candidate color is not 
necessarily the same as its version of an ideal color for the target 
object. The constraints that define the ideal color were probably 
relaxed before the candidate color was found. The grade 
expresses the difference between an existing color that satisfies 
the constraints and the nonexistent ideal color. 

There are four basic components to the grade: brightness 
deference, adjacent co~ast diq”erence, screen contrast differ- 
ence, and attractiveness difierence. The brightness diference is 
the difference between the grading object’s ideal brightness and 
the candidate’s brightness. The ideal versions of adjacent and 
screen contrast are those that the grading object suggested in the 
proposing phase. ACE finds the real contrast relations between 
the grading object’s hue and the candidate’s hue from the hue 
pair data struchze that contain them. The confrart difference 
components of the grade are the differences between the real 
values and the ideal ones. The last component, attractiveness 
d@zreme, is computed by taking the difference between the 
highest possible attractiveness value and the real attractiveness 
value. 

If one of the candidate or the grading object’s color is 
grey, a slightly different scheme is used to compute the grade. 
The brightness difference component is retained, but the con- 
trast differences and attractiveness difference are omitted while 
a tint diflerence component is added. An ideal tipt of grey from 
the point of view of the non-grey color (either the candidate or 
the grading object) is determined from the grey pairs. The tint 
difference is the difference between the ideal tint and the real 
tint for the grey. The difference between tints is the number of 
steps between them on the color wheel of the ten basic hues. If 
both the grading object’s color and the candidate are grey, then 
the tint difference is simply the difference between the tints of 
grw 

After a grade is computed, it is multiplied by the grading 
object’s candidate’s weight and added to the candidate’s total 
weight. A candidate does not grade itself since it was already 
selected to be the closest match to the proposing object’s ideal 
color for the target object. 

When all candidates have been graded, then ACE finds 
the candidate with the minimum grade, The winning candidate 
color is assigned to the target object. The minimum average 
grade is determined by dividing the minimum grade by the 
number of objects that graded each candidate. If this grade ia 
not over a certain threshold, a warning message is printed. The 
reasoning behind the grading process is that ACE finds the can- 
didate which is the least offensive to the most objects. That the 
lowest average grade is not over the threshold implies that even 
the best candidate may still not be very appropriate. In a later 
section we propose several possible ways to deal with this prob- 
lem other than just printing a warning message. 

10.7. Output of results 

The loop described above iterates for each user-specified 
object in the order that is determined near the beginning of 
ACE’s execution. When every object has been assigned a color, 
ACE prints the results in a file, cleans up its working memory, 
and halts execution. 
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11. Implementation 

ACE is written in OPS5 with a few routines in Lisp. 
Input and display programs are written in C. The OPS5 inter- 
preter is written in Franz Lisp and runs on a DEC Microvax II 
running Ultrix 1.2. ACE contains 170 OPS5 productions. 

12. Preliminary results 

Our first prototype of ACE has been in existence for only 
a short tune and has not undergone rigorous testing, but we have 
run it on some sample user interfaces. This section will present 
the results of running ACE on a test case. 

The test case consists of a desktop, windows with borders 
and text, icons that can appear on either the desktop or the win- 
dows, and a temporary menu. Both the icons and the menu have 
background and foreground colors. Figure 5 shows the user 
interface items, their selection order, and the colors that ACE 
assigned to them. ACE took about nine minutes of real tune to 
find this solution. 

Objects in order of 
color selection 
desktop 
window background 
window border 
window text 
icon background 
temporary menu background 
icon foreground 
temporary menu text 

Color (saturation hue I 
brightness) 
desaturated light blue 3 (dark) 
desaturated y&ow 11 (pastel) 
desaturated light blue 5 (dark) 
saturated purple 5 (dark) 
grey orange 9 (medium) 
grey yellow 11 (pastel) 
grey red 1 (dark) 

Figure 5: Results from test case. 

An expert user interface designer would Probably not 
select these same colors, but they follow all of the rules that 
ACE currently knows about. For example, the desktop is a 
dark, desaturated, cool color. The c&m follow ACE’s attrac- 
tiveness roles well. Each of the color pairs that appear adjacent 
on the display is attractive together. Contrast rules are generally 
followed; for example. the pale yellow window color contrasts 
well with the dark purple text. Other foreground and back- 
ground colors, such as menu background and text and icon 
background and detail, have lots of brightness contrast. The 
backgrounds of icons have a middle brightness since they must 
contrast both with the desktop and with the windows. The only 
colors that do not provide adequate brightness contrast are the 
window color and the temporary menu background color. In 
this example, a menu may appear on top of the window so they 
should contrast in brightness. At least they contrast in satura- 
tion, so they will not totally blend in color. 

13. Areas for improvement 

The most significant problem with ACE’s algorithm is 
that a candidate that is not appropriate can receive the lowest 
total grade. Typically, one or two objects should have the most 
inlluence over a color and, indeed, their candidates have the 
largest weights. The other candidates, however, usually all have 

approximately the same relation to the target object, so they all 
propose the same or a similar color, but a color that is different 
from the candidates of objects that should have the most 
influence. Individually, they have small weights but the result is 
that their candidate gets the lowest grade because they are all 
voting for approximately the same thing. Hence, the candidate 
that eventually wins is wrong, but gets elected by sheer 
numbers. 

Associating weights with the relational constraints was 
supposed to handle this problem, and it does for small numbers 
of user interface objects. ACE could increase the weights of the 
most influential objects as the number of ordinary proposing 
objects increase. A better way of handling the problem is to not 
allow objects that have a small number of relational constraints 
with the target object to propose candidates if more infhrential 
objects exist. In this scenario, the most influential objects would 
fight among themselves without corruption from a lot of ordi- 
nary candidates. 

Another drawback to the way that ACE selects colors is 
that both selections and evaluations are performed pair-wise, but 
the effect of a group of colors is as a whole. We might be able 
to devise color relations between three, and maybe even four or 
five colors, but more than this would be extremely difficult. 
Adding these kinds of relations would require a fairly major 
overhaul of the candidate Proposal and grading phases. Before 
attempting this, we will see what changes can be made in the 
existing color knowledge that may help produce better results. 

In general, the visual effect of color is hard to encode. 
Color relationships are very subtle and a small change can make 
a big difference. A designer might spend several hours tweak- 
ing the colors of a user interface. As well, it is difficult to 
encode effects such as simultaneous contrast in which colors 
look different depending on their surroundings. There seems to 
be a limitation on the aesthetic quality of ACE’s output; ACE 
can select reasonably attractive colors, but it probably will not 
be able to perform the same tine adjustments that a human 
expert can. We may be able to incorporate some of these fine 
adjustments, but iirst we need to examine the ways that different 
experts solve the problem. 

As mentioned in the results section, ACE uses its rules 
well, but the amount of knowledge we have encoded thus far 
has been limited. ff more knowledge were encoded, ACE might 
be able to make better color choices. On the other hand, if too 
many constraints are added then ACE might reproduce the same 
results for many user interfaces. This could be advantageous if 
we wanted to develop a style of interface; other styles could be 
introduced as well. One simple way to introduce different color 
styles would be to provide different initial sets of colors or to 
change the attractiveness relations between the colors. 

In general, there are many ways that ACE can be 
improved. Each of the types of knowledge. user interface, color 
relations, and control, can be tuned and augmented to produce 
better results. 

14. Conclusions 

ACE has a long way to go before it is a robust, useful 
tool, but we have accomplished our immediate goals. From our 
prototype. we have learned that an expert system is an appropri- 
ate way of selecting colors for a user interface, but some tweak- 
ing by a human expert will be necessary in order to achieve the 
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most aesthetically-pleasing colors. Certainly, the colors ACE 
selects are better than a random selection and also better than 
what a naive programmer with little aesthetic experience would 
choose. The process of synthesis is usually considered more 
difficult than that of analysis. ACE is a useful synthesizer of 
colors, while human experts can be called in for analysis and 
successive refinement; thus, ACE provides a user with a head 
start, a first approximation to build upon. 

Another of our goals was to discover areas in which more 
studies and research need to be performed. One of these areas is 
visual color relationships. Humans develop senses of 
hsrmony/contrast and of attractiveness throughout their lives, 
and each individual has a different idea of which sets of colors 
harmonize or contrast or are attractive. This type of information 
is the hardest to. encode and is the reason why expert systems 
usually take years to write and refine. Ultimately, user interface 
colors that are produced by ACE should be tested on users. 
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