Sequential Composition of Protocols Without
Simultaneous Termination

E3
Yehuda Lindell
Dept. of Computer Science
Weizmann Institute of Science
Rehovot 76100, ISRAEL

lindell@wisdom.weizmann.ac.il

ABSTRACT

The question of the composition of protocols is an impor-
tant and heavily researched one. In this paper we consider
the problem of sequential composition of synchronous pro-
tocols that do not have simultaneous termination; i.e., the
parties do not necessarily conclude a protocol execution in
the same round. A problem arises becauses such protocols
must begin in synchrony; therefore a second execution can-
not follow from the first in a straightforward manner. An
important example of a protocol with this property is that
of randomized Byzantine Agreement with an expected con-
stant number of rounds (such as the one due to Feldman and
Micali). We note that expected constant-round Byzantine
Agreement cannot have simultaneous termination and thus
this (problematic) property is inherent.

Given that the termination of the parties is not simultane-
ous, a natural question to consider is how to synchronize
the parties so that such protocols can be sequentially com-
posed. Furthermore, such a composition should preserve
the original running-time of the protocol, i.e. running the
protocol £ times sequentially should take in the order of £
times the running-time of the protocol. In this paper, we
present a method for sequentially composing any protocol
in which the players do not terminate in the same round,
while preserving the original round complexity. An impor-
tant application of this result is the sequential composition
of parallel Byzantine Agreement. Such a composition can
be used by parties connected in a point-to-point network to
run protocols designed for the broadcast model, while main-
taining the original round complexity.

1. INTRODUCTION

The question of the composition of protocols is a fundamen-
tal one. After having designed a protocol, it is important to

*This work was carried out while the first and second au-
thors were visiting IBM Research.

Anna Lysyanskaya”*
MIT LCS
200 Technology Square
Cambridge, MA 02139 USA

anna@theory.lcs.mit.edu

Tal Rabin
IBM T.J.Watson Research
PO Box 704, Yorktown Heights
NY 10598, USA

talr@watson.ibm.com

know what happens to it under composition, as in most cases
there is a need to execute the protocol more than once. Two
crucial issues that arise when composition is considered are
protocol security and complexity. That is, does the protocol
maintain security under sequential, parallel or concurrent
composition, and is the running-time of the basic protocol
preserved under these types of composition? The literature
contains many papers which have studied these questions
for specific and for general protocols [11, 8, 15, 3, 4, 12].
Most of these works relate to the security of the protocol
in question under composition. Yet examining the running
time of the composed protocol has rarely been looked at (an
exception is [1]). This is due to the fact that composing
a protocol £ times usually yields a running time which is ¢
times the running time of a single invocation of the protocol.

In this paper we study a very natural set of protocols for
which the above does not hold. In particular, naive sequen-
tial composition does not result in a running time which is
{ times the running time of a single invocation. The charac-
teristic of these protocols is that the parties do not terminate
their execution in concert and there is no way for a given
party to know exactly when the others terminate. We refer
to such protocols as staggered since there is some termi-
nation staggering gap. Intuitively, this staggering causes a
problem if the protocol requires synchronized initialization
because then it is not possible to merely start the second ex-
ecution of the protocol immediately after the previous one
terminates.

The most prominent protocol which belongs to this set of
protocols is that of randomized Byzantine Agreement (BA).
Randomization was introduced by Rabin [14] and Ben-Or [2]
in order to beat known lower bounds for Byzantine Agree-
ment. In particular, [14] achieves a protocol that runs in
constant expected time, in contrast to the lower bound of
Fischer and Lynch [9], which states that in a synchronous
model where there are n parties out of which at most ¢t < n/3
may become faulty, any deterministic protocol requires ¢+ 1
rounds of communication.

Later, Feldman and Micali [10] presented the first random-
ized protocol in the information-theoretic setting which solved
the BA problem in constant expected time. Yet, the pro-
tocols of [14, 10] have the property that the honest parties
do not necessarily terminate in the same round. That is,
assuming that the first honest party terminates at time T,

then we are only guaranteed that all other honest parties
terminate by time T + c¢. In this case, we call ¢ the stag-
gering gap of the protocol. We require this staggering gap
to be a fixed value, and not a random variable that is de-
pendent on the execution. It is interesting to note that in
this case, staggered termination is inherent. That is, it is
impossible to construct a protocol for the Simultaneous BA
problem (where all honest parties are required to terminate
in the same round), which has ezecutions running for less
than ¢ + 1 rounds [7, 13]. Thus, any randomized BA proto-
col that has an expected constant number of rounds, must
have a staggering gap.

Now let us consider the problem of sequentially composing
a randomized BA protocol with a staggering gap in more
detail. We use the randomized BA protocol as a representa-
tive of the group of protocols with staggered termination, yet
the following description is general and applies to any such
protocol. The existing protocols for BA in the synchronous
model require that the parties start executing the protocol
simultaneously, i.e. all at the same time. Under this stip-
ulation the correctness properties are ensured. Now, in a
scenario where many executions BA1,BAs, ... of a staggered
protocol are run one after another, the parties no longer sat-
isfy the requirement of starting the execution of BA; ;1 at
the same time. This is because the execution of BA; com-
pletes in a staggered manner. Given that the requirement
for synchronicity is broken, it is unclear what can be said
with respect to the correctness of the protocol.

A straightforward solution to this problem would be to ex-
pand each time unit for the execution of a step in BA;;
according to the staggering gap generated by BA;. Given
that the staggering gap of BA; was ¢;, an honest party would
need to count 2¢; + 1 time units in the execution of BA; 4
before moving to the next step.! Since the staggering gap
of the underlying BA protocol is ¢, the staggering gap for
BAjt1 is ¢i+1 = ¢(2¢; + 1). This means that after ¢ invoca-
tions and given an initial staggering gap of ¢, the running
time and staggering termination gap blow up to O(2°'¢?).
Therefore, the running time of the £ execution is exponen-
tial in £.

In this paper we present a method for sequentially compos-
ing a staggered protocol ¢ times while maintaining:

1. A fixed staggering gap which is independent of the
number of sequential invocations £,

2. An expected running time that is equal to £ times the
expected running time of the staggered protocol that
we are composing. We concentrate in our discussion
on the round complexity; however, our methodology
preserves the order of the communication and compu-
tational complexity as well.

The main idea behind our method is to insert synchroniz-
ing steps between the sequential executions of the protocol.

1Why the expansion is 2¢; + 1 and not merely c; is a delicate point
which is derived from the proof of correctness of the protocol with
expanded steps. The details of this issue appear in the proof of
Lemma 3.1.

These synchronizing steps are implemented using a Byzan-
tine Agreement protocol.? There are two delicate issues
which need to be addressed by the solution:

1. The exact time at which to insert the synchronizing
step, in order to guarantee that all parties have com-
pleted the execution of the previous protocol before
beginning the next execution.

2. How to synchronize parties when the synchronizing
protocol itself is staggered. This issue arises because
we use a BA protocol with an expected constant num-
ber of rounds for the synchronization, which is itself
necessarily staggered [13, 7]. We note that if the pro-
tocol being composed runs for t+ 1 or more rounds,
then we could simply use a Simultaneous BA proto-
col in order to synchronize. This would simplify our
protocol and analysis, yet would result in a blowup of
O(t) rather than O(1) rounds.®

Parallel Composition of BA. The parallel composition
of a protocol with a constant expected number of rounds
does not necessarily result in a protocol with the same ex-
pected number of rounds. For example, if one composes
the Feldman-Micali BA protocol [10] n times in parallel,
then the expected running time of the composed protocol is
O(log n), and not constant. Ben-Or and El-Yaniv [1] show
how to achieve parallel composition of the [10] protocol, such
that the composed protocol also runs in constant expected-
time. Yet, in their protocol they need to sequentially com-
pose single invocations of the Feldman-Micali protocol, and
so they incur a staggering gap expansion (albeit for only
a constant number of executions). Thus our solution can
be incorporated into the Ben-Or and El-Yaniv protocol in
order to achieve parallel composition more efficiently. In
addition, by composing our result with the [1] protocol, we
obtain a protocol which enables the sequential composition
of many parallel BA executions, and where the overall com-
posed protocol maintains constant expected running time
for each parallel execution. This result is important as it
enables the efficient simulation of any protocol designed us-
ing a broadcast channel, within a point-to-point network.
We discuss this additional result in more detail in Section 6.

Relation to Asynchronous Protocols. One possible
approach to solving the above-described problem is to sim-
ply switch to an asynchronous model whenever this problem
arises. In such a model, parties need not begin a protocol
execution at the same time and thus sequential composi-
tion becomes straightforward. However, this approach is
problematic for the following reasons. Firstly, it may be
that the protocol being composed does not have an analo-
gous asynchronous version (or if it does, it may be that the
asynchronous counterpart is less efficient). Secondly, the se-
quential composition may be a subprotocol within a larger

2One should not confuse the synchronizing protocol which is a BA,
with the staggered protocol that we are trying to compose (which
might also happen to be a BA protocol).

3We note that our solution is actually relevant for any protocol whose
expected number of rounds is some function less than ¢ + 1, and not
just for protocols with a constant expected number of rounds.

synchronous protocol. For example, the classic use of Byzan-
tine Agreement is for simulating a broadcast channel. When
the protocol using the broadcast channel is synchronous, it
is not possible to replace the broadcast by an asynchronous
Byzantine Agreement protocol. Finally, if the asynchronous
protocol is also staggered (for example the asynchronous BA
protocols which run in constant expected time are staggered
[6, 5]), then the sequential composition will also experience
expansion in the running time, independent of the adver-
sary’s actions. Thus, efficiency also becomes an issue in this
setting.

2. DEFINITIONS

In this section we present the computational model and the
definition for Byzantine Agreement. We also clarify what is
meant by the sequential composition of protocols.

We consider a setting involving n parties, denoted Pi, ... , Py,
that are connected via authenticated point-to-point commu-
nication channels in a synchronous network. In the basic
point-to-point communication model, each party is formally
modelled by an interactive Turing machine with n — 1 pairs
of communication tapes. The communication of the network
proceeds in synchronized rounds, where each round consists
of a send phase followed by a receive phase. In the send
phase of each round, the parties write messages onto their
output tapes, and in the receive phase, the parties read the
contents of their input tapes. An adversary is called rushing
if, in every round, it sees the messages of the honest players
before computing its own.

In this model, an adversary controls a subset of the parties
and the corruption strategy depends on the adversary’s view
(i.e., the adversary is adaptive). Since the adversary controls
these parties, it receives their entire views and determines
the messages that they send. In particular, these messages
need not be according to the protocol execution, but rather
can be computed by the adversary as an arbitrary function
of its view. Throughout the paper, we always assume that
the adversary can corrupt at most ¢t < n/3 of the parties.

DEFINITION 1. (Byzantine Agreement): Let Pi,...,P,
be n parties, with associated inputs x1,... ,Tn, and let there
be an adversary who may corrupt up to |(n — 1)/3] of the
parties. Then, a protocol solves the Byzantine Agreement
problem if the following two properties hold:

1. Agreement: All honest parties output the same value.

2. Validity: If more than 2/3 of the parties have the same
input value x and follow the protocol specification, then
all honest parties output x.

In this paper, we are interested in the execution of ¢ pro-
tocols sequentially. In particular, we require that no honest
party should begin the next protocol until the previous pro-
tocol has concluded. Formally, we say that a party P; begins
an execution of a protocol when it sends its first message
of that execution. We note that P; may receive messages
belonging to an execution prior to the time that it sends its

first message (and thus before it begins). On the other hand,
we say that a protocol has concluded, if all honest parties
have terminated.

DEFINITION 2. (sequential composition): Let Ai,..., Ay
be £ protocols. We say that A1,... ,A; are run sequentially,
if for every i, no honest party begins A; until A;—1 has con-
cluded.

3. SEQUENTIAL COMPOSITION

In this section we present a protocol for the sequential com-
position of a staggered protocol ¢ times, so that the expected
running time of the composition is £ times the expected run-
ning time of the underlying protocol. Recall that a staggered
protocol is one for which the parties do not necessarily ter-
minate in the same round. Rather, there is a fixed value ¢,
known as the staggering gap, and all the parties are guar-
anteed to finish within an interval of ¢ rounds.

3.1 Motivation for the Protocol

As we have shown in the Introduction, the main problem
with a naive composition of staggered protocols is that both
the running time of the protocol and its staggering gap grow
exponentially. Therefore, our protocol works by introducing
synchronizing steps. The aim of this synchronization is to
ensure that the parties start the staggered protocols at al-
most the same time, i.e. without too much of a gap. A
simplistic way of doing this would be to define fixed points
on a time line and have the protocol executions begin only at
these points. However, the problem with such an approach
is that there is no guarantee that previous executions of
the protocol have terminated before a new execution be-
gins. In such a case, the executions are not sequential. This
problem arises due to the fact that only the ezpected round-
complexity of the underlying protocol is constant. There-
fore, some executions may run for a very long time.*

Our solution to this problem is to still define fixed points
on a time line. However, instead of starting a new invoca-
tion of the staggered protocol whenever one of these points
is reached, the parties first vote on whether or not they are
ready to start the next run. All that is required from this
vote is that if all the honest parties are still running the
previous execution, then the result of the vote is negative
and a new execution will not begin. If the result of a vote
is negative, then the parties wait until the next fixed point
and cast a revote. On the other hand, if the result of a vote
is positive, then this implies that at least one honest party
completed the previous run of the staggered protocol. In
this case, the parties begin the next execution immediately
after the vote concludes. (As we will see, it is enough that
one party has concluded the previous run in order to ensure
that the executions are sequential.) As can be imagined, this
vote is carried out by running a Byzantine Agreement proto-
col. We call these vote executions Synchronizing Byzantine

4One can always show that, asymptotically in n, the probability that
such a protocol runs for n steps is negligible (and can thus be ig-
nored). However, we must then allocate n steps for each execution,
rather than a constant. This is overly wasteful and in such a case de-
terministic protocols that run for ¢ + 1 rounds could be used instead.
Furthermore, an error (albeit negligible) is introduced. Our solution,
on the other hand, introduces no error.

Agreements, denoted SBA (not to be confused with Simul-
taneous Byzantine Agreement [13, 7]). As described in the
Introduction, we cannot use a deterministic BA protocol
for the synchronization, as this would increase the running
time of the composition by a factor of ¢t + 1. Therefore, we
use an expected randomized Byzantine Agreement protocol
that concludes in constant expected time instead. Unfortu-
nately, this means that the synchronizing protocols are also
staggered.

3.2 A Protocol with Staggered Initiation

As we have mentioned, the Synchronizing Byzantine Agree-
ment (SBA) protocols are themselves staggered. Further-
more, we wish to use the SBA protocols to synchronize the
executions of a second protocol that requires a simultaneous
initialization. (In our general setting the second protocol is
the one which we are ultimately trying to compose sequen-
tially.) Therefore, we need to show how to modify a protocol
which has a requirement for simultaneous initialization into
one that can start in a staggered manner. This modified
protocol can then be run immediately after the SBA. Specif-
ically, our goal is the following: given a protocol IT and a
constant ¢, modify the protocol II so that it remains correct
even when the parties start its execution within ¢ steps of
each other. Intuitively, this is not difficult because the gap
c is known and thus we can ezpand each time unit by some
fixed amount (dependent on c¢), thereby returning to a syn-
chronous setting. The protocol II can have a staggering gap
as well, which we denote by d, though d might equal 0. This
expanded protocol is called ExpandIl and is presented in the
proof of the following lemma.

LEMMA 3.1. Let II be a protocol and let d be its (fized)
staggering gap. Then there exists a transformation of I1
into a protocol ExpandIl, such that if all honest parties begin
ExpandII within ¢ steps of each other (for some constant c),
then ExpandIl satisfies the following:

1. The outputs of ExpandIl and II are the same. Formally
speaking, for every adversary A attacking ExpandIl there
erists a rushing adversary A' attacking II, such that
for every vector of inputs T, the output of all parties
from an ezecution of ExpandIl with A (where the par-
ties’ input to ExpandIl is T), s identically distributed
to the output of all parties from an execution of II with
A’ (where the parties’ input is T).

2. The running time of ExpandIl (ezpected and worst)
equals 2¢ + 1 times the running time of II.

8. The staggering gap of protocol ExpandIl equals ¢ +
d(2c+1).

PrOOF. Loosely speaking, ExpandIIl works by defining in-
tervals of size (2¢+1). Then, for every round of I, each party
considers messages received +c¢ rounds from when it sends
its own II-message (thus the intervals are of size 2c + 1).
The key point is that since the honest parties begin within ¢
rounds of each other, it is guaranteed that all honest parties
consider the messages sent by other honest parties. Fur-
thermore, it is guaranteed that there is a distinct separation

between rounds of II (and thus the effect is of a fully syn-
chronous execution).

We now formally describe the protocol ExpandIl. Assume
that protocol II’s steps are labeled pi,p2,.... We further
assume without loss of generality that messages sent in Step
pi+1 are completely determined by the messages which were
received in Step p;°. We denote the time units of ExpandIl
by T1,T5, The protocol description is as follows:

ProTocoL 1. (Protocol ExpandIl): Let T} denote the round

that party Py, starts ExpandII.

1. At time Ty, party Py sends the messages from Step p1
of I1, and at time Ty, + (2c + 1) it sends the messages
relating to Step p2 of IL.

In general, Py sends the messages of Step p; of II at
time Ty +(2¢ + 1).

The messages associated with Step p; of IL are labeled
(ExpandIl, p;).

2. Whenever a party receives a message with the labeling
(ExpandlIl, p;) it stores the message along with the time
T; of protocol ExpandIl in which it was received.

8. In order to determine its Step piy1 message, party
Py, ezamines the messages labeled with (ExpandIl,p;)
which it received and stored between the steps
Ty +i(2¢+1) —c and Ty, + i1(2¢c + 1) + ¢. This is
an interval of size 2c+1 steps centered around the time
at which it sent its own p; message. It computes the
messages of Step pi+1 by applying the decision process
of II to these messages.

4. Each party outputs the output defined in protocol II.

Note that the times that messages are sent and the intervals
in which received messages are considered, are different for
every honest party and are dependent on the local times 77
in which the parties start ExpandIl.

We now prove that ExpandIl satisfies the requirements of
Lemma 3.1. We begin by showing that requirement (1) is
fulfilled. In order to do this, we first show that all honest
parties consider the messages of all other honest parties, as
one would hope. Furthermore, no honest party sends its
pi+1 messages before all p; messages have been sent. That
is,

CLAIM 3.2. Let Py be an honest party and let T}, denote
the time at which it (locally) starts the execution. Then in
the interval Ty +i(2¢+ 1) — ¢ to Tr +i(2¢+ 1) + ¢, which Py,
constiders in order to compute its p;+1 message, all honest

parties send their p; message, and only that message. This
holds for all 3.

PRrROOF. This is shown via a simple calculation. An honest
P, sends its p; message at time T} +4(2¢ + 1). First we need

5This can be achieved by having party P, send itself its complete
view from the previous steps.

to show that P; sends its p; message in the specified interval.
Recall that all honest parties begin ExpandIl within at most
¢ steps of each other and thus Ty —¢ < T; < Ty +c. Plugging
this into the time specification of P; for message p; we have
that it falls inside Pj’s time interval. That is, for every i,
Te +i(2c+1) —c <Ti+i2c+1) < Tp +i(2c+1) +c
A similar calculation shows that for all j # ¢ the time for
sending message p; falls outside of the p; interval. This
completes the proof of the claim.

Note that the above claim does not prohibit the adversary
from sending a message of Step p; to Py, after an honest party
P, has sent a message of Step p;+1, and by that making the
message dependent on P;’s message. But rather it implies
that any such delayed message would not fall in the interval
considered by Pk, and thus will anyway be disregarded in
the execution of the protocol.

We are now ready to prove requirement (1). Let .4 be an
adversary for ExpandIl. Then, we construct a rushing ad-
versary A’ for II, such that the output distribution of II is
identical to the output distribution of ExpandIIl with adver-
sary A. A’ begins a simulation of the execution of ExpandIl
by invoking a run of the protocol II. For each round ¢ > 1
of TI, adversary A’ first receives the honest parties’ Step p;
messages. Recall that A’ is rushing and therefore receives
the honest parties’ messages before sending its own. Then,
A’ runs A for 2¢ + 1 steps providing the messages sent by
the honest parties at the time steps required, as defined in
ExpandIl. Furthermore, throughout these (virtual) steps, it
records the Step p; messages that 4 sends to the honest par-
ties. Any other messages are ignored by A’. At the end of
the 2c + 1 steps, A’ passes all these recorded messages from
A to the appropriate honest parties participating in II, thus
completing Step p;.

We claim that the above simulation by A’ is as required.
First, notice that an honest party’s view of messages received
from other honest parties is identical in IT and ExpandII.
This is because by Claim 3.2, all honest parties send their
messages in ExpandII in the specified intervals and are there-
fore considered by other honest parties. On the other hand,
trivially all honest parties in II receive the messages of all
other honest parties. Next, notice that if A only sends its
messages in the specified intervals, then A’ can pass these
messages at the correct time in II. On the other hand, if
A sends a message outside of the specified interval, then A’
ignores this and thus the honest parties of II do not receive
the message. However, in ExpandII these messages are also
ignored. Therefore, an honest party’s view of messages re-
ceived from corrupted parties (that are not ignored) is also
identical in IT and ExpandIl. Finally, we note that A’s view
in this simulation is also identical to its view in ExpandII.
This is because A’ passes A all the honest parties’ messages
at the times as defined in ExpandIl. We have that all parties’
views in this simulation by .4’ while running an execution of
II, are identical to their views in an execution of ExpandIl
with adversary A.

We now proceed to show that requirement (2) is fulfilled
for ExpandIl. The fact that the worst-case running-time is
(2¢ + 1) times the running-time of II is trivial, since each

step of II takes (2c+ 1) steps in ExpandIl. However, the fact
that the expected running-time is also (2¢+ 1) times that of
IT does not follow from the same argument. This is because
the expected running-time of the protocol may depend on
the adversary’s capabilities. For example, the [10] protocol
runs in expected constant-time assuming that the parties’
coin-tosses are kept private (otherwise, the adversary can
prevent the execution from ever halting). We must there-
fore show that our modification of II to ExpandIl conserves
the expected running-time. This is demonstrated by show-
ing that for every adversary A for ExpandIl there exists
an adversary A’ for II such that if the expected running-
time of ExpandIl with A is R rounds, then the expected
running-time of II with A’ is R/(2c + 1) rounds. It would
then follow that the expected running-time of ExpandII is at
most (2¢ + 1) times the expected running-time of II (with
respect to any adversary). We note that the adversary A’
required is exactly that demonstrated for requirement (1)
above. This is because every (2¢+ 1) rounds of ExpandlIl are
perfectly simulated in exactly one round of II.

We conclude with the fact that the third requirement clearly
follows: the staggering gap of ExpandII equals the staggering
gap of II multiplied by the time 2¢ + 1 needed to complete
a step in ExpandIl, plus the initial staggering in the start of
ExpandII, which is c¢. Thus the total total staggering gap of
ExpandIl equals ¢ + d(2c + 1). This completes the proof of
the lemma.

3.3 TheProtocol

Before presenting the protocol itself, there is one more tech-
nicality which must be dealt with. As described in Sec-
tion 3.1, the protocol works by running SBA protocols at
fixed intervals on a time-line. The parties use the SBA to
agree on whether or not to begin the next sequential exe-
cution. If yes, then they run protocol ExpandII (instead of
IT itself). The vote on whether or not to execute the next
ExpandII protocol is such that if at least one honest party has
concluded the previous ExpandIl execution, then the result
of the vote may be positive. Therefore, it is possible that
some honest parties are still running the previous ExpandII
when an SBA begins, and nevertheless, the result of the SBA
is a positive vote. Carrying this one step further, it is pos-
sible that some honest parties are still running the previous
ExpandIl when the SBA concludes, and thus when the new
ExpandII is supposed to begin. This cannot be allowed to
happen since the ExpandIl executions must be run strictly
sequentially (without any overlap).

This problem is solved in the following way. First, no-
tice that if one honest party has concluded ExpandII before
the SBA begins, then all other honest parties will conclude
within the staggering gap of ExpandIl, which by Lemma 3.1
equals ¢ + d(2¢ + 1) steps. Therefore, as long as we make
sure that the SBA always runs for at least ¢ + d(2¢c + 1)
steps, we are guaranteed that the new ExpandII will not be-
gin until the previous one concludes. This condition is eas-
ily achieved by stalling any party that concludes the SBA
in less than ¢ + d(2c + 1) steps. Note that doing so cannot
increase the staggering gap because an SBA always starts in
a synchronized fashion. We are now ready to present the
protocol.

Components of the Protocol:

e Ezpanded Staggered Protocols (ExpandIl): These are ex-
pected constant-round protocols with staggering gap d,
that have undergone the transformation from II as de-
scribed in Lemma 3.1. The protocol below is used for
composing ¢ of these ExpandIls sequentially. We denote
them by ExpandII(1),... ,ExpandII(£).

e Synchronizing Byzantine Agreements (SBA): These pro-
tocols are defined exactly according to the underlying,
expected constant-round, Byzantine Agreement proto-
col. The best known candidate for the SBA protocol is
the Feldman-Micali Byzantine agreement [10]. Let ¢ de-
note the staggering gap of the protocol and assume that
this protocol runs for a minimum of ¢+ d(2¢+ 1) rounds
for every player.® Finally, denote by k the expected
number of rounds until SBA terminates. For simplicity
of exposition, we assume that both ¢ and k are constant
values (as in the protocol of [10]), although the compo-
sition is unaffected when these are arbitrary values.

ProTOCOL 2. (protocol for sequential composition):

e Execution of Synchronizing Byzantine Agreements: Let
T be the current round number. If T is a multiple of 2k,
then the parties Tun a Synchronizing Byzantine Agree-
ment protocol (denoted SBAT) where their inputs are de-
fined as follows:

1. If Party P; is not currently running any ExpandIL
or previous SBA, then it inputs 1 into SBAr.
We stress that P; is said to be currently executing a
protocol also in the case that it is scheduled to send
the first or last message of the protocol in round T .

2. Otherwise (if P; is currently ezecuting some ExpandIl
or previous SBA), then P; inputs 0 into SBA7.

In order to ensure that the messages sent by P; in this
protocol are not confused with messages from different
(concurrently running) protocols, P; concatenates the
string “SBAT” to every message belonging to the SBAr
execution.

e Execution of Staggering Protocols: Let SBAr be an SBA
that concluded in the previous round.

1. If Party P;’s output from SBAr equals 0, then P;
does not begin a new ExpandIl (but does continue
participating in any previous SBA or ExpandII pro-
tocols that are still running).

2. If Party P;’s output from SBAr equals 1 and this
is the '™ SBA to terminate with 1, then P; be-
gins its execution of ExpandII(¢) in the next round,
according to the protocol definition of ExpandIl in
Lemma 3.1 (Protocol 1).

As above, P; concatenates the string “ExpandII(z)”
to all messages from this protocol.

e Termination: Party P; halts after ExpandII(€) termi-
nates.

6As we have mentioned this can always be achieved by having parties
stall until ¢ 4+ d(2¢+ 1) rounds pass. Furthermore, assuming that c is
constant, this does not significantly affect the complexity.

4. PROOF OF CORRECTNESS

In this section, we prove that the effect of running Proto-
col 2 is the same as the effect of running the II protocols
sequentially. In particular, we show that for every 7, the
execution of ExpandII(i) begins strictly after the execution
of ExpandII(s — 1) concludes. This is enough because by
Lemma 3.1, the output of ExpandII is the same as the output
of II. Thus the sequential composition of ExpandIl implies
the desired result. We first claim that all the SBA executions
in Protocol 2 are correct:

LEMMA 4.1. Let SBA1,SBA,,... denote the SBA proto-
cols in an execution of Protocol 2. Then, for every i, SBA;
constitutes a correct Byzantine Agreement protocol.

PROOF. First consider a simplified version of Protocol 2,
where all the messages sent by the honest parties in ExpandIl
are 0 only. Then, clearly these messages have no effect on the
correctness of the SBA executions, and we can consider the
SBA executions only. What remains is an execution con-
taining multiple Byzantine Agreement protocols that may
be running concurrently (these executions may be concur-
rent because SBA; may not conclude before SBA; 1 begins).
However, as was shown in [12, Proposition 2.1], Byzantine
Agreement protocols compose concurrently (for any concur-
rent scheduling). Therefore, all the SBA;’s are correct.

Now, in the general case, the messages sent in ExpandIl may
be arbitrary (and not only 0). Nevertheless, we claim that
they can have no effect on the correctness of the SBA. This
is due to the following reason. If an adversary attacking
Protocol 2 can cause one of the SBA executions to be incor-
rect, then we can construct an adversary that successfully
attacks concurrent Byzantine Agreement. This adversary
simulates all the messages from ExpandII while running the
SBA executions. It is easy to see that this simulation may
be carried out. Therefore, since concurrently composed SBA
executions are correct, so are the SBA executions of Proto-
col 2.

We remark that the above lemma holds only with respect
to ordinary Byzantine Agreement (in contrast to authen-
ticated Byzantine Agreement). In particular, the concur-
rent composition of authenticated Byzantine Agreement has
been shown not to hold whenever t > n/3 [12].”

‘We now use the fact that each SBA protocol is correct to
establish that for every 4, protocol ExpandII(: + 1) begins
strictly after ExpandII(7) concludes. That is, no honest party
begins ExpandII(i+1) until all honest parties have concluded
ExpandII(s).®

7Despite the fact that authenticated Byzantine Agreement does not
compose concurrently, it is possible to run concurrent executions if
unique session-identifiers are allocated to each execution [12]. In the
setting we are dealing with here, it is possible to simply set the
session-identifier to equal the round number in which the SBA be-
gan (this is always the same for all honest parties and is unique for
each SBA). Therefore, our result can be extended to authenticated
Byzantine Agreement.

81t is actually enough to require that the output of ExpandII(i) is
fully determined before ExpandII(i 4+ 1) begins. However, the above
formulation is simpler and requires little extra cost.

LEMMA 4.2. In an ezecution of Protocol 2, for every i, all
honest parties conclude the ezecution of protocol ExpandII(z)
before any honest party sends a message belonging to the
ezecution of protocol ExpandII(i + 1).

PrOOF. Let SBAT be a synchronizing Byzantine Agree-
ment protocol that terminates with 1 and let ExpandII(i+ 1)

be the Expandll protocol that begins immediately after SBA7.

There are three possible scenarios regarding the status of
ExpandII(¢) at the point that SBAy begins:

1. Case 1— all honest parties are still running ExpandII(7)
when SBAT begins: In this case, all the honest parties
input 0 into SBAr. By the validity requirement of
Byzantine Agreement protocols, this implies that all
honest parties output 0 from SBAr. (Notice that we
apply Lemma 4.1 here in our assumption that SBAr
is correct.) By the assumption that SBAr terminates
with output 1, we have that this case cannot occur.

2. Case 2 — all honest parties have already concluded
ExpandII(¢) when SBAT begins: In this case, the lemma
holds because ExpandIl(i + 1) begins after SBAr ter-
minates (and ExpandII(%) concluded even before SBAp
began).

3. Case 3 — at time T when SBAT begins, some hon-
est parties have concluded ExpandII(¢) and some hon-
est parties are still executing ExpandII(z): This means
that there is at least one honest party that concluded
ExpandII(¢) by time T'— 1. Recall that the stagger-
ing gap of ExpandIl(i) equals ¢ + d(2¢ + 1), therefore,
all honest parties will conclude ExpandIl(7) at time at
most T'—1+c+d(2¢c+1). By the assumption that SBAT
runs for a minimum of ¢+d(2¢+1) rounds, we have that
all honest parties will conclude by time T+c+d(2¢c+1)
(at the latest). This means that ExpandII(z + 1) will
start no earlier that 7'+ ¢+ d(2c+ 1) + 1, resulting in
the fact that ExpandII(¢ + 1) starts after ExpandII(z)
has completed.

This completes the proof of the lemma. [l

Combining Lemma 3.1 with Lemma 4.2, we obtain the fol-
lowing theorem:

THEOREM 3. Let II be any (staggered) protocol with a
fized staggering gap. Then, for every adversary A attack-
ing Protocol 2, there exists a rushing adversary A’ attacking
¢ sequential executions of I, such that for every set of inputs
T, the output of all parties from an execution of Protocol 2
with A and input T, is identically distributed to the output
of all parties from £ sequential executions of I with A" and
mput T.

Thus, the effect of running Protocol 2 is the same as running
¢ sequential executions of II, as desired. Note that when
considering a specific II, it must be ascertained that II is
secure against rushing adversaries in order for the theorem
to be of help. In Section 5 we show that Protocol 2 also
obtains optimal round complexity.

5. COMPLEXITY

Our goal is to show that the cost of using our technique for
running ¢ staggered protocols sequentially is essentially the
sum of the costs of running these protocols individually.

Notation: Let A be a protocol and let r(A) be a random
variable denoting the number of rounds that an execution
of A takes. E[r(A)] denotes the expected number of rounds.

Let k£ be the expected number of rounds for the Byzantine
agreement protocol used for the SBA component of our pro-
tocol (i.e., E[r(SBA)] = k). We assume that the Byzantine
agreement protocol used for SBA has Properties 5.1 and 5.2
below. For the Feldman-Micali protocol, they follow by in-
spection; we omit the proofs and refer the reader to [10].
The first property tells us that when all honest parties are
in agreement regarding their input, then the SBA protocol
always terminates quickly. That is,

PROPERTY 5.1. There exists a constant k' < k such that
if all honest players input the same value b into the SBA,
then it is guaranteed to terminate with this value b in k'
rounds.

The next property tells us that for any k-round period in the
SBA protocol execution, the SBA concludes in this period
with probability at least 1 — € (for some constant ¢).

PROPERTY 5.2. There exists a constant € such that for all
integers 1 > 0, Pr[r(SBA) > ik | »(SBA) > (i — 1)k] < e.

‘We note that for the Feldman-Micali protocol, k is constant
and it holds that k' ~ k/3, while ¢ ~ (2/3) = 8/27. We are
now ready to begin our analysis of the round complexity of
Protocol 2. Recall that the SBA protocols begin every 2k
rounds exactly according to a fixed scheduling. We begin
by showing that k rounds after a new SBA begins, there is
at most one SBA being executed. We note that this holds
irrespective of the ExpandIl executions.

CrLAIM b5.3. For every integer j, at round 2kj + k there is
at most one SBA that is being executed.

PRrROOF. We prove this by induction on j. For j = 0 this is
immediate because only one SBA has been started. Assume
that the claim holds for round 2k(j—1)+k; we now prove it
for round 2kj + k. Consider SBAyy; (i.e., the SBA protocol
that begins at round 2kj). By the inductive hypothesis,
there is at most one SBA that is being executed at the time
that SBAs; begins (the hypothesis holds for round 2kj — k
and therefore trivially for round 2kj as well). Denote this
SBA by SBAr. There are three possible cases:

1. Case 1: All honest parties complete SBAT before round
2kj. In this case, the claim immediately holds because
only one SBA is running already by round 2kj.

2. Case 2: All honest parties are running SBAr in round
2kj. By the instructions of Protocol 2, in this case all
honest parties input 0 into SBAsx;. By Property 5.1,
we have that SBAsk; concludes by round 2kj + k' <
2kj + k. Therefore, only SBAr can still be running by
round 2kj + k.

3. Case 8: Some honest parties are running SBAr in
round 2kj and some have already concluded. In this
case, SBAr concludes before round 2kj + ¢ where ¢
is the staggering gap of the SBA protocol. Since SBA
runs for at least ¢+ d(2¢c+1) steps, we have that ¢ < k
and SBAr concludes before 2kj + k. Therefore, only
protocol SBAyg; can be still running by round 2kj +k.

This completes the proof of the claim. [

The above claim tells us that only one SBA protocol is run-
ning during the k rounds before any new SBA begins. By
applying Property 5.2, we have that this SBA will conclude
before the new SBA begins with probability 1 —e. As will be
explained below, SBA executions that begin with no prior
SBA still running are of importance. We therefore wish to
calculate how many SBA protocols are executed until we
obtain one which has this property. In the following claim
we show that the probability that ¢ SBA executions go past
without success , e.g. SBAsi(j1+1) t0 SBAgk(j+4), is at most

€.

CrLAM 5.4. Denote by X; a boolean random variable such
that X; = 1 if and only if SBAay; begins when a previous
SBA s still running (i.e., some honest party has not yet
concluded this previous SBA ezecution). Then for every j
and for every 1,

Pr [ﬂ Xj+l = 1:| S Ei

=1

PRrROOF. First, note that for every j, Pr[X; = 1] <e. This
follows immediately from Property 5.1 and Claim 5.3. That
is, by Claim 5.3 there is at most one SBA that is running by
round 2kj—k. Then, Property 5.1 states that the probability
that this SBA continues for £ more rounds is at most €. Next,
notice that for every j and every [, it also holds that

-1

(| Xjre=1| <e
£=1

Pr|{X;u=1

This is because Property 5.1 holds irrespective of the inputs
and the past. Since

i A -1
Pr [ﬂXH,:l] =[P (X =1][] Xjue =1
=1 =1 £=1

we conclude that Pr[ni_; X;4; = 1] < €' as required. [

Our interest in an SBA that begins when no prior SBA pro-
tocols are running is as follows. Consider the case that an

ExpandII execution concludes and the parties are now wait-
ing for an SBA execution to terminate with 1 in order to
begin a new ExpandIl execution. Then, the parties are only
guaranteed to begin a new ExpandIl execution when they all
input 1 into an SBA protocol (they may output 1 in other
cases, but they also may not). However, this can only oc-
cur in the case that a new SBA execution begins when no
previous SBA is still running. In this context, the above
claim tells us that the probability that the parties have to
wait more than 2ki rounds for such an SBA is exponentially
small in 4.

We now proceed to compute the expected delay between
ExpandIl executions. That is, let d; denote the number of
rounds that elapse between the time that the last player
concludes ExpandII(z) and the time that the first player be-
gins ExpandII(i + 1). The expected value of d; is computed
in the following claim:

CrAM 5.5. Let d; be as defined above. Then,

i < ! —
Eldi) <2k+k -|—2k(1_6)2

PRrROOF. First, note that at most 2k steps pass between
the time that ExpandIl(i) concludes until the time that the
first subsequent SBA begins. Furthermore, ExpandII(: + 1)
is guaranteed to follow from the first SBA that begins when
no previous SBA is still running (this is because no SBA or
ExpandII protocol is running and thus all parties input 1 into
the new SBA). The number of rounds that this “successful”
SBA contributes to the delay is at most k' (by Property 5.1).

We therefore have that the expected delay between ExpandII(z)
and ExpandII(i+1) is at most 2k+k’ plus the expected num-
ber of rounds to pass until an SBA begins when no prior SBA
protocols are running. Recall that by Claim 5.4, the proba-
bility that 2kj rounds will pass until such an SBA begins is
at most /. Thus,

Eld] < 2k+K +) 2kj-€
j=0

% + k' + 2k - —

(1—e)?

as required.

Applying the above claim, we obtain the following theorem
regarding the complexity of Protocol 2:

THEOREM 4. Let II be a protocol such that the expected
number of rounds in an execution of II equals K. Further-
more, let Py denote £ sequential exzecutions of II according
to the instructions of Protocol 2. Then, E[r(FP;)] = O((K).

PRrROOF. By the the linearity of expectation, we have that

£ L
E[r(P)] = E[r(ExpandII(i))] + Y E[di]

i=1 i=1

First, by Lemma 3.1, E[r(ExpandIl(¢))] = (2¢+ 1)K, for ev-
ery i. (Recall that c is the staggering gap of the SBA proto-
col, which in this case is constant.) Thus, E[r(ExpandIl(z))] =
O(K).

Next, by Claim 5.5, E[d;] < 2k + k' + 2ke/(1 — €)?, for
every 4. Since k, k' and € are all constants, we have that
E[d;] = O(1).

Combining the above, we conclude that E[r(P;)] = O((K),
concluding the proof.

The main focus of this paper is regarding the round com-
plexity of the sequential composition of a protocol II with
expected number of rounds K. Indeed, we have just shown
that the complexity of the composition is optimal. That is, £
sequential executions require just O(¢K) rounds. However,
it is of importance to also show that the communication and
computational complexity of Protocol 2 is not overly expen-
sive. (By communication complexity, we refer to the number
of bits sent and by computational complexity we refer to the
local computation of every party.) We now briefly analyze
these measures.

First, it is clear that the communication and computational
cost of running ExpandII is the same as that of running the
original protocol II. It is also clear, that the expected num-
ber of additional SBA executions run is O(¢K/2k), since an
SBA is run every 2k steps of Protocol 2. However, we can
actually make a stronger claim. Namely, we claim that at
any point in time, the additional overhead required is at
most two SBA executions. This is implied by Claim 5.3
and ensures us that no party will be involved in many SBA
executions at one time. (Such a scenario may be very unde-
sirable.) This completes our analysis.

6. SIMULATING PROTOCOLSDESIGNED
FOR THE BROADCAST MODEL

Protocol 2 allows the sequential composition of any proto-
col that has a staggering gap, and in particular Byzantine
Agreement protocols of this type. The prime use of such a
composition is for running protocols that are designed for
the broadcast model, while interacting in a point-to-point
network. In such a protocol, at each step a party broadcasts
its message. Therefore, what we really need is the sequential
composition of Byzantine Generals protocols. In a Byzan-
tine Generals protocol there is a dealer with a given input
x. The validity requirement is restated so that if the dealer
is honest, then all honest parties output . The composi-
tion of such protocols follows immediately from the above
because any Byzantine Agreement protocol can be used to
achieve Byzantine Generals (with the cost of only one ad-
ditional round). Specifically, the dealer first sends its input
to all parties. Then, the parties run a Byzantine Agreement
protocol, inputting the values that they received in the first
round. It is easy to see that the resulting protocol fulfills
the requirements. By sequentially composing these Byzan-
tine Generals protocols, we obtain a perfect simulation of a
broadcast channel, while using a point-to-point network.

However, another issue that arises in such a simulation is
the issue of simultaneous broadcast. In general, when an-

alyzing the round complexity of protocols in the broadcast
model, we would like to assume that in each round, every
party can broadcast a message to all other parties, as this
can lead to a significant reduction in the round complexity
of the protocol. Therefore, it would be desirable to allow
the sequential composition of parallel executions of Byzan-
tine Generals protocols. A naive way of doing this would be
to simply run the Feldman-Micali protocol [10] in parallel
at every step. However, this approach does not work for the
following reasons. First, the expected number of rounds for
n parallel executions of [10] is not constant, but is rather
O(log n). Secondly, and more seriously, the staggering gap
of the parallel protocol is no longer fized. Rather, this too,
becomes an ezpected value. In this case, Lemma 3.1 does
not apply since it only holds for protocols with a fixed stag-
gering gap. (We note that we do not know how to extend
Lemma 3.1 to deal with expected staggering gaps.)

Ben-Or and El-Yaniv [1] presented a solution for the parallel
composition of the Feldman-Micali BA protocol while pre-
serving a constant expected round complexity. But in their
protocol they also need to sequentially compose a stagger-
ing BA protocol (albeit for an expected constant number of
times). Furthermore, their method of composition results
in a protocol with an ezpected staggering gap. Thus, as
above, Lemma 3.1 cannot be directly applied to their proto-
col. Nevertheless, the sequential composition of BA in their
protocol can be substituted with the methodology presented
in this paper. The composition of the Ben-Or and El-Yaniv
protocol with ours yields a protocol for parallel executions
of BA with a constant expected running time and a fixed
staggering gap. Furthermore, this protocol is secure against
a rushing adversary. Therefore, the resulting protocol sat-
isfies the criteria of Theorem 3 and it can be sequentially
composed using Protocol 2. Given the above, we obtain the
following corollary:

COROLLARY 6.1. Let Prot be an n-party protocol designed
for the synchronous broadcast model, and let Py,--- , P, ben
parties. Then, there exists a protocol Prot’ for the point-to-
point network model such that the following holds: For every
adversary A’ attacking Prot’ there exists an adversary A at-
tacking Prot such that the output of P, ... , P, running Prot
with A is identically distributed to the output of P1,... , P,
running Prot’ with A'. Furthermore, the expected number
of rounds of Prot’ is only a constant times the round com-
plexity of Prot (with simultaneous broadcast in each round).

The protocol Prot’ in the corollary is constructed as fol-
lows: The parties run Protocol 2 in order to sequentially
compose the protocol of [1], where the parties’ inputs into
each invocation of [1] are defined by Prot (i.e., the parties
use [1] in order to simultaneously broadcast the messages as
instructed in Prot). From the above discussion, it is clear
that Prot’ correctly simulates an execution of Prot that uses
a broadcast channel.

We conclude by noting an important special case of the
above corollary: there exists a round-preserving transfor-
mation of any secure protocol for computing a function f in
the broadcast model, to a secure protocol that computes f
in the point-to-point network model.

7. ACKNOWLEDGMENTS

We thank Cynthia Dwork and Marcos Aguilera for pointing
out to us that the lower bound of ¢+ 1 rounds holds even for
randomized Simultaneous Byzantine Agreement (and there-
fore that any expected constant-time BA protocol must be
staggered).

8. REFERENCES
[1] M. Ben-Or and R. El-Yaniv. Interactive Consistency in
Constant Time. Submitted for publication, 1991.

[2] M. Ben-Or. Another Advantage of Free Choice:
Completely Asynchronous Agreement Protocols. In
Proceeding 2nd Annual Symposium on Principals of
Distributed Computing, pages 27-30. ACM, 1983.

[3

R. Canetti. Security and composition of multiparty
cryptographic protocols. Journal of Cryptology,
13(1):143-202, 2000.

[4] R. Canetti. Universally Composable Security: A New
Paradigm for Cryptographic Protocols. In Proc. 42st
FOCS, pages 136-145. IEEE, 2001.

[5] C. Cachin, K. Kursawe, and V. Shoup. Random
Oracles in Constantipole: Practical Asynchronous
Byzantine Agreement Using Cryptography . In Proc.
19th ACM PODC, pages 123-132. ACM, 2000.

[6] R. Canetti and T. Rabin. Optimal Asynchronous
Byzantine Agreement. In Proc. 25th STOC, pages
42-51. ACM, 1993.

[7] C. Dwork and Y. Moses. Knowledge and Common
Knowledge in a Byzantine Environment: The Case of
Crash Failures. In Proceedings of the Conference on
Theoretical Aspects of Reasoning About Knowledge,
pages 149-170. Morgan Kaufman, 1986.

[8] C. Dwork, M. Naor, and A. Sahai. Concurrent
zero-knowledge. In Proc. 30th STOC, pages 409—418.
ACM, 1998.

[9] M. Fischer and N. Lynch. A Lower Bound for the
Time to Assure Interactive Consistency. Information
Processing Letters, 14(4):183-186, 1982.

[10] P. Feldman and S. Micali. An Optimal Algorithm for
Synchronous Byzantine Agreement. SIAM. J.
Computing, 26(4):873-933, 1997.

[11] O. Goldreich and H. Krawczyk. On the composition of
zero-knowledge proof systems. SIAM. J. Computing,
25(1):169-192, 1996.

[12] Y. Lindell, A. Lysyanskya, and T. Rabin. On the

Composition of Authenticated Byzantine Agreement.
To appear in STOC 2002, 2002.

[13] Y. Moses and M. R. Tuttle. Programming
Simultaneous Actions Using Common Knowledge. In
Proc. 27th FOCS, pages 208—221. IEEE, 1986.

[14] M. Rabin. Randomized Byzantine Generals. In
Proceeding 24th Annual Symposium on the Foundations
of Computer Science, pages 403—409. IEEE, 1983.

[15] R. Richardson and J. Kilian. On the concurrent
composition of zero-knowledge proofs. In Eurocrypt
'99, pages 311-326, 1999. LNCS No. 1592.

