Eclipse

Preventing Speculative Memory-error Abuse with Artificial Data Dependencies

Neophytos Christou  Alexander J. Gaidis = Vaggelis Atlidakis ~ Vasileios P. Kemerlis
October 17, 2024

Secure Systems Laboratory (SSL)
Department of Computer Science
Brown University

[0 [
o
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 0/11


mailto:neophytos_christou@brown.edu
mailto:agaidis@cs.brown.edu
https://vatlidak.github.io
https://cs.brown.edu/~vpk
https://gitlab.com/brown-ssl/
https://cs.brown.edu
https://www.brown.edu
mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Speculative Memory-error Abuse

® Combine with
» Leverage memory errors to memory
» Cause the CPU to use the corrupted data during
> while inhibiting detection

(e.g., avoid crashes)

[0 [
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 1/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing!

if (condition) {
fptr() ; 0%10000

0x11000

0x12000

_ 0x13000

0x20000
fptr —————————>{ Program code

0x21000

S £
BROWN
15peculati\/e Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing!

if (condition) {
fptr(Q; 0x10000

0x11000

0x12000

_ 0x13000

1. Train branch

0x20000
fptr —————————>{ Program code

0x21000

S £
BROWN
15peculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing!

if (condition) {

fptr(); £ptr ——> 0x10000

0x11000

0x12000

_ 0x13000

1. Train branch

2. Architecturally corrupt fptr, flip condition

0x20000
Program code

0x21000

S £
BROWN
15peculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing!

if (condition) {

fptr(); £ptr ——> 0x10000

0x11000

0x12000

_ 0x13000

1. Train branch

2. Architecturally corrupt fptr, flip condition

» Corrupted fptr — speculatively deref.'d 0x20000

Program code

0x21000

@)
BROWN

15peculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing!

if (condition) {

fptr(Q; fptr ——> 0x10000
} No signal!
0x11000

0x12000

_ 0x13000

1. Train branch

2. Architecturally corrupt fptr, flip condition

» Corrupted fptr — speculatively deref.'d 0x20000

Program code

3. Check for cache activity (side channel) 0x21000

BROWN
15peculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing’

if (condition) {
fptr(Q; 0x10000

fptr ———> 0x11000

0x12000

_ 0x13000

1. Train branch

2. Architecturally corrupt fptr, flip condition

» Corrupted fptr — speculatively deref.'d 0x20000 Progran code

3. Check for cache activity (side channel) 0x21000

4. Repeat until cache activity is detected

BROWN

15peculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing’

if (condition) {

fptr(Q; 0x10000
} fptr ———> 0x11000
No-‘signal!
0x12000
1. Train branch
2. Architecturally corrupt fptr, flip condition
» Corrupted fptr — speculatively deref.'d 0320000 PR GXE
3. Check for cache activity (side channel) 021000

4. Repeat until cache activity is detected

BROWN

15peculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing’

if (condition) {
fptr(Q; 0x10000

0x11000

fptr ———> 0x12000

_ 0x13000

1. Train branch

2. Architecturally corrupt fptr, flip condition

» Corrupted fptr — speculatively deref.'d 0x20000 Progran code

3. Check for cache activity (side channel) 0x21000

4. Repeat until cache activity is detected

BROWN

15peculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing’

if (condition) {
fptr(Q; 0x10000

0x11000

fptr ———> 0x12000

_ s
0x13000

1. Train branch

2. Architecturally corrupt fptr, flip condition

» Corrupted fptr — speculatively deref.'d 0x20000 Progran code

3. Check for cache activity (side channel) 0x21000

4. Repeat until cache activity is detected

BROWN

15peculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing’

if (condition) {
fptr(Q; 0x10000

0x11000

0x12000

_ fptr ———> 0x13000

1. Train branch

2. Architecturally corrupt fptr, flip condition

» Corrupted fptr — speculatively deref.'d 0x20000 Progran code

3. Check for cache activity (side channel) 0x21000

4. Repeat until cache activity is detected

BROWN

15peculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing’

if (condition) {

fptr() ; 0x10000
L 0x11000
0x12000

1. Train branch No signall

2. Architecturally corrupt fptr, flip condition

» Corrupted fptr — speculatively deref.'d 0x20000 Progran code

3. Check for cache activity (side channel) 0x21000

4. Repeat until cache activity is detected

BROWN

15peculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing’

if (condition) {
fptr(Q; 0x10000

0x11000

0x12000

_ 0x13000

1. Train branch

2. Architecturally corrupt fptr, flip condition

; , £ptr ——> 0x20000
» Corrupted fptr — speculatively deref.'d P * Progran code

3. Check for cache activity (side channel) 0x21000

4. Repeat until cache activity is detected

BROWN

15peculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing’

if (condition) {
fptr(Q; 0x10000

0x11000

0x12000

_ 0x13000

1. Train branch

2. Architecturally corrupt fptr, flip condition

; , £ptr ——> 0x20000
» Corrupted fptr — speculatively deref.'d P * Program code

3. Check for cache activity (side channel) 0x21000

4. Repeat until cache activity is detected

BROWN

15peculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example — Speculative Probing!

if (condition) {
fptr() ; 0%10000

A% Problem

is used during

1.
2. caused by a mispredicted conditional branch

3.

4. Repeat until cache activity is detected

@
BROWN

1Speculati\/e Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Overview

CPUs cannot execute instructions with unresolved data dependencies

© Even when executing speculatively

BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 3/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Overview

CPUs cannot execute instructions with

© Even when executing speculatively

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 3/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Overview

CPUs cannot execute instructions with

© Even when executing speculatively

& Compiler-assisted mitigation

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 3/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Overview

CPUs cannot execute instructions with

© Even when executing speculatively

& Compiler-assisted mitigation
il Analyze program to identify SMA-Capable (SMAC) instructions
=» Instructions that can be leveraged to carry out a SMA attack

=» Can be speculatively executed as a result of a misprediction of a
preceding conditional branch

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 3/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Overview

CPUs cannot execute instructions with

© Even when executing speculatively

& Compiler-assisted mitigation
il Analyze program to identify SMA-Capable (SMAC) instructions
=» Instructions that can be leveraged to carry out a SMA attack

=» Can be speculatively executed as a result of a misprediction of a
preceding conditional branch

/ Instrument code to introduce on the
identified SMAC instructions
X Prevent instructions from during

speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 3/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

1 0x0, %
if (condition) { cmp. $0x0, Y%rax

fptr O ; je no_call
} IEIE callg *%rcx
.no_call:
target: target:

[ B Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4/11

@)
BROWN


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

je no_ca.

callq  *%rcx
.no_call:

target:

target:

[ B Non-speculative execution
: Speculative execution

LS

rax (condition): unknown Rk

[ [

rflags: unknown Qg
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

cmpl $0x0, %rax |Modifies rflags

Depends on rflags

target:
target:

[ B Non-speculative execution

_ S e

rax (condition): unknown '[;j:[:]
rflags: unknown Qg
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

1 0x0, %
if (condition) { cmp! $0x0, Yrax

fptr() i je no_call
} : callg *Jrcx
.no_call:
target: target:

[ B Non-speculative execution
: Speculative execution

rax (condition): unknown £

rflags: unknown ';D::E

rcx (fptr): target afy
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

1 0x0, %
if (condition) { cmp. $0x0, Y%rax

fptr(): je no_call
3 P ’ callq  */rcx
.no_call:
target: p—

[ B Non-speculative execution
_ ¢ Specuiative execurion

rax (condition): unknown '?:n

rflags: unknown [ [

rcx (fptr): target oy
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

mov $0x0, %rii
state = 0;
poison = -1; mov SOxFfEEEFEFEFEFFFLLS, Yri2
if (condition) { ?mpl $0x0, ’rax
state = (!condition) 7 poison : state; Je no_call
fptr |= state; cmove  %ri2, %ril
508 or %ril, Yrex
¥ callg  *Jrecx
.no_call:
target:
target:

[ B Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4/11

[0 [
BROWN


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

EEm [oer_ sostterrssseceees, a]
if (condition) {

state = (!condition) ? poison : state; Je 0.0
’ cmove  %ri2, Yrii
LpLzggstate: or %ril, Yrex
fptrO; callg  *rcx
Y .no_call:
target: target:

[ B Non-speculative execution
_ ¢ Speculative execution
ri1 (state): 0
[0 [
r12 (poison): -1 ey
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

state = 0;

poison =

state ('condition) ? poison : state;
fptr |= state;
fptr(Q;

}

target:

ril (state): O
r12 (poison): -1
rax (condition): unknown

rflags: unknown

neophytos_christou@brown.edu (Brown University)

mov $0x0, %ril
SOxFEFFEELFFFFFFEES, Yrl2
Modifies rflags

je no_ca.
cmove  %ri12, Y%rii
or %ril, Yrex
callq  *%rcx
.no_call:

target:

[ B Non-speculative execution
: Speculative execution

[0 [
BROWN

Eclipse ACM CCS 2024 4/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

mov $0x0, %ril
state = 0; mov SOxEfLFELFFEFFFFFFFF, Yrl2
poison = cmpl $0x0, %rax | Modifies rflags

state ('condition) ? poison : state; BEEEREE € SR

fptr |= state; cmove  %ri12, Yrit
fptr(); or %ril, Yrex
} callq  *%rcx
.no_call:
target:
target:

[ B Non-speculative execution
: Speculative execution

ri1l (state): 0
ri2 (poison): -1

e [ [
rax (condition): unknown T [
rflags: unknown BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

mov $0x0, %ril
state = 0; mov SOxEEFEFEFEFEFEEEEE, %rl12
poison = -1; cmpl $0x0, %rax
if (condition) { je no_call | Depends on rflags

state = (!condition) ? poison : state;

fptr |= state; cmove  %ri12, %ril Depends on rflags

fptrQ); or %ri1, Yrcx
} callq  *%rcx
.no_call:
target:
target:

[ B Non-speculative execution
: Speculative execution

ri2 (poison): -1
rax (condition): unknown
rflags (impicit): unknown [ [

oo
ri1 (state): unknown B]N

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4/11



mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

mov $0x0, %ril
state = 0; mov SOXTEEFELLLFFFFLLLS, Yrl2
poison = -1; cmpl $0x0, Y%rax
if (condition) { je no_call | Depends on rflags

state = (!condition) 7 poison : state;
cmove  %r12, %ril [Depends on rflags
fptr |= state;

fptr(); or %r1l, %rex Depends on ril
¥ callqg  *jrcx
.no_call:
target:
target:

— L) e

: Speculative execution
r12 (poison): -1

rax (condition): unknown

rflags: unknown ) @
rii (state): unknown (] [
rcx (fptr): unknown BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

mov $0x0, %ril
state = 0; mov SOxfEFELFFEFFELLEEE, Yrl2
poison = -1; cmpl $0x0, Yrax
if (condition) { je no_call | Depends on rflags

state = (!condition) 7 poison : state;

cmove  %ri12, Y%ril [Depends on rflags
fptr |= state;

fptr(); or %ri1, Yrcx |Depends on rii
} callg  *%rcx
.no_call:
target:
target:

: Speculative execution

r12 (poison): -1
rax (condition): unknown

rflags: unknown [ [
ril (state): unknown afy
rcx (fptr): unknown BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

state = 0;

poison =

state ('condition) ? poison : state;
fptr |= state;
fptr(Q;

}

target:

ri2 (poison): -1
rax (condition): O

rflags: resolved

neophytos_christou@brown.edu (Brown University)

mov $0x0, %ril
$OxfEFFEFFFFFEEFFEE, Yrl2

je no_ca.
cmove  %ri12, Y%rii
or %ril, Yrex
callq  *%rcx
.no_call:

target:

[ B Non-speculative execution
: Speculative execution

[0 [
BROWN

Eclipse ACM CCS 2024 4/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

mov $0x0, %ril
mov SOxfEFELFFEFFEEFFEE, Yrl2
cmpl $0x!

state = 0;

poison =

state ('condition) ? poison : state;

%ri hril
fptr |= state; B .
or %ril, %rcx
fptr(); 5
3 callq  *%rcx
.no_call:
target:
g target:

[ B Non-speculative execution
_ ¢ Specuiative execurion

r12 (poison): -1

rax (condition): 0 [ [
rflags: resolved ey
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

mov $0x0, %ril
state = 0; o
. mov SOxfEFELFFEFFEEFFES, Yrl2
poison = -1; 1 $0x0, %
cmj X rax
if (condition) { 23 .
L. . je no_call
state = (!condition) 7 poison : state; . N
cmove  %ril2, %ril
fptr |= state; B .
or %ril, %rcx

fptr();

call hrcx
; Cne eant:

target:
target:

[ B Non-speculative execution
_ ¢ Specuiative execurion

r12 (poison): -1

rax (condition): 0 [ [
rflags: resolved afy
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Design — SMAC Instruction ldentification

® |terate each instruction in a function

¢ When encountering an indirect branch:

» Remove block from the function's Control-flow Graph (CFG)
» Is the CFG still fully connected?

® If yes, classify the indirect branch as SMAC

BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 5/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Design — SMAC Instruction ldentification

® |terate each instruction in a function

¢ When encountering an indirect branch:

» Remove block from the function's Control-flow Graph (CFG)
» Is the CFG still fully connected?

® If yes, classify the indirect branch as SMAC

® Reiterate the CFG backwards, starting from each block containing a
SMAC indirect branch

» Keep track of all encountered conditional branches

[0 [
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 5/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Design — Instrumentation

.bbl

.bb3

jmp *%rdx

—> ret

BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 6/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Design — Instrumentation

mov $0, %ri2

Initialize a state and a poison register — 0 and —1, respectively

.bb3

jmp *%rdx

—> ret

ey
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 6/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Design — Instrumentation

mov $0, %ri2

Initialize a state and a poison register — 0 and —1, respectively

For each tracked conditional branch, inject a conditional move

instruction at each edge

® Taken edge — opposite conditional code

.bb3

® Not-taken edge — same conditional code
cmovne %ril, %ri2

jmp *%rdx

—( =) 2

BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 6/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Design — Instrumentation

mov $0, %ri2

mov $-1, %ril

Initialize a state and a poison register — 0 and —1, respectively

For each tracked conditional branch, inject a conditional move

instruction at each edge

® Taken edge — opposite conditional code

.bb3

® Not-taken edge — same conditional code

cmovne %ril, %ri2

or %ri2, %rdx

] y
Before each SIMIAC indirect branch, inject an or instruction jmp *%rdx

® Source operand — state register

® Destination operand — register used by indirect branch

—C= g

BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 6/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Other SMA Attacks

An SMA attack that can bypass certain information-hiding-based
memory-error mitigations (e.g., (K)ASLR, XOM, etc.)

ISpecuIative Probing: Hacking Blind in the Spectre Era. Géktas, et al., CCS 2020.
2 PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.

BROWN
3Bypassing memory safety mechanisms through speculative control flow hijacks. Mambretti et al., EuroS&P 2021.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 7/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Other SMA Attacks

An SMA attack that can bypass certain information-hiding-based
memory-error mitigations (e.g., (K)ASLR, XOM, etc.)

An SMA attack that can be used to bypass ARM's Pointer Authentication

1.‘jpeculati\/e Probing: Hacking Blind in the Spectre Era. Géktas, et al., CCS 2020.
2 PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.

3Bypassing memory safety mechanisms through speculative control flow hijacks. Mambretti et al., EuroS&P 2021.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 7/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Other SMA Attacks

An SMA attack that can bypass certain information-hiding-based
memory-error mitigations (e.g., (K)ASLR, XOM, etc.)

An SMA attack that can be used to bypass ARM's Pointer Authentication

Demonstrates how SMA attacks can be used to bypass several hardening

schemes (e.g., LLVM's SSP, GCC's VTV, etc.)

1Specu/ati\/e Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020. [ [
2 PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022. oy

BROWN
3Bypassing memory safety mechanisms through speculative control flow hijacks. Mambretti et al., EuroS&P 2021.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 7/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Other SMA Attacks

An SMA attack that can bypass certain information-hiding-based

Bl Common Pattern

n

An ¢ Attacker memory, then causes a
- to be speculatively executed
Demr

schemes (e.g., LLVM's SSP, GCC's VTV, etc.)

1Specu/ati\/e Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020. [ [
2 PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022. oy

BROWN
3Bypassing memory safety mechanisms through speculative control flow hijacks. Mambretti et al., EuroS&P 2021.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 7/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Generalizing Eclipse

Eclipse is not tied to any particular architecture or SMA attack

Lo

BROWN

L PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 8/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Generalizing Eclipse

Eclipse is to any particular architecture or SMA attack

¥ Eclipse can be applied to any architecture that provides instructions

for capturing and linking data dependencies

> e.g., Eclipse can be applied against SP on ARM using the csetm
(capturing) and orr instructions (linking)

@
BROWN

L PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 8/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Generalizing Eclipse

Eclipse is to any particular architecture or SMA attack

¥ Eclipse can be applied to any architecture that provides instructions
for capturing and linking data dependencies

> e.g., Eclipse can be applied against SP on ARM using the csetm
(capturing) and orr instructions (linking)

© Eclipse can be deployed against any SMA attack
> Data dependencies will be linked onto different SMAC instructions
© Deployed Eclipse against the ARM-specific PACMAN! attack
> SMAC are ARM PA authentication instructions (e.g., autia)

@y
BROWN

L PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 8/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

@
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

> Eclipse-lfence: Eclipse variant which mitigates SP by injecting
(i.e., 1fence) before SMAC indirect branches

> Relies on Eclipse to identify SMAC instructions

[0 [
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

> Eclipse-lfence: Eclipse variant which mitigates SP by injecting
(i.e., 1fence) before SMAC indirect branches

> Relies on Eclipse to identify SMAC instructions

» Speculative Load Hardening (SLH): Out-of-the-box mitigation against
Spectre-PHT, also prevents SP

> More generic mitigation, hardens all load instructions in a function

@
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

Benchmark Eclipse Eclipse-lfence SLH
600.perlbench_s 4.31% 4.26% 50.82%
602.gcc_s 0.74% 0.76% 49.74%
605.mcf_s 6.52% 26.73% 58.59%
619.1bm_s 0.42% 0.35% 2.62%
620.omnetpp_s 9.05% 22.94%  33.49%
623.xalancbmk_s 8.49% 11.69% 154.36%
625.x264_s 3.85% 10.67% 26.58%
631.deepsjeng_s 0.23% 0.19% 31.49%
638.imagick_s 9.53% ~0%  97.74%
641.leela_s 1.21% 1.23%  20.03%
644 .nab_s 0.29% 0.72% 31.36%
657.%xz_s ~0% 0.13% 54.26%

@
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

Benchmark Eclipse Eclipse-lfence SLH
600.perlbench_s 4.31% 4.26% 50.82%
602.gcc_s 0.74% 076% 49.74%
605.mcf_s 6.52% 58.59%
619.1bm_s 0.42% 0.35% 2.62%
620.omnetpp_s 9.05% 22.94% 49%
623.xalancbmk_s 8.49% 11.69% ( 154.36%
625.x264_s 3.85% 10.67% 26.58%
631.deepsjeng_s 0.23% 0.19%  31.49%
638.imagick_s ~0%  97.74%
641.leela_s 1.21% 1.23%  20.03%
644 .nab_s 0.29% 0.72% 31.36%
657.%xz_s ~0% 0.13% 54.26%

» Eclipse outperforms alternative approaches,

@
N
incurring up to 9.53% overhead BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

Application Eclipse Eclipse-lfence SLH
SQLite 8.61% 12.72% 55.11%
Redis (GET/s) ~0% 0.17%  3.20%
Redis (SET/s) ~0% 0.17%  3.20%
Nginx (1KB) 1.00% 0.67% 2.00%
Nginx (100KB) 0.65% 0.10% 3.73%
Nginx (1MB) 0.36% 0.78% 3.52%
MariaDB 0.42% 1.60% 10.16%

W) [@
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

Application Eclipse Eclipse-lfence SLH
saLi
Redis (GET/s) ~0% 0.17%  3.20%
Redis (SET/s) ~0% 0.17%  3.20%
Nginx (1KB) 1.00% 0.67% 2.00%
Nginx (100KB) 0.65% 0.10% 3.73%
Nginx (1MB) 0.36% 0.78% 3.52%
MariaDB 0.42% 1.60% 10.16%

» Eclipse incurs up to 8.61% overhead in real-world applications 2
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

! L.MBench kernel microbenchmarks

> ~0%—-7.95% latency overhead
> < 3.04% bandwidth degradation

L' Phoronix Test Suite macrobenchmarks

> Negligible overhead (< 2%) on various benchmarks (Nginx, MariaDB,
TensorFlow, Linux kernel build, OpenSSL, Glibc)

@
BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Security Evaluation

[ [
Speculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.

BROWN
2 PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 10/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Security Evaluation

© Applied Eclipse to the Linux kernel

v/ Demonstrated that Eclipse blocks the original Speculative Probing
(SP)! attack that de-randomizes KASLR

1Speculati\/e Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020.
2 PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 10/11



mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Security Evaluation

© Applied Eclipse to the Linux kernel

v/ Demonstrated that Eclipse blocks the original Speculative Probing
(SP)! attack that de-randomizes KASLR

© Applied Eclipse against original PACMAN? attack
pp p g g

© Deployed Eclipse on a proof-of-concept userland SP attack on ARM
v/ Demonstrated that Eclipse stops both PACMAN and SP on ARM

[ [
1 Qjy
Speculative Probing: Hacking Blind in the Spectre Era. Goktas, et al., CCS 2020. BROWN
2 PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 10/11


mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Conclusion

© Eclipse: compiler-assisted mitigation against SMA attacks

oS Introduce artificial data dependencies to prevent SMAC instructions
from using attacker-controlled data during speculative execution

Lo

BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 11/11



https://gitlab.com/brown-ssl/eclipse/
mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Conclusion

© Eclipse: compiler-assisted mitigation against SMA attacks
oS Introduce artificial data dependencies to prevent SMAC instructions
from using attacker-controlled data during speculative execution
LM Evaluated security effectiveness and performance overhead

v/ Sucessfully prevents SMA attacks such as SP and PACMAN
v/ Real-world applications — up to ~8.6% overhead
v Linux kernel — negligible overhead

BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 11/11


https://gitlab.com/brown-ssl/eclipse/
mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Conclusion

© Eclipse: compiler-assisted mitigation against SMA attacks

oS Introduce artificial data dependencies to prevent SMAC instructions
from using attacker-controlled data during speculative execution

LM Evaluated security effectiveness and performance overhead

v/ Sucessfully prevents SMA attacks such as SP and PACMAN
v/ Real-world applications — up to ~8.6% overhead
v Linux kernel — negligible overhead

Y https://gitlab.com/brown-ssl/eclipse/

BROWN

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 11/11


https://gitlab.com/brown-ssl/eclipse/
mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Speculative Execution Attacks

» Optimization technique in modern CPUs




Speculative Execution Attacks

» Optimization technique in modern CPUs

» Control-flow target not resolved yet — outcome of control-flow




Speculative Execution Attacks

» Optimization technique in modern CPUs

» Control-flow target not resolved yet — outcome of control-flow

® Correct prediction — gained cycles




Speculative Execution Attacks

» Optimization technique in modern CPUs

» Control-flow target not resolved yet — predict outcome of control-flow
® Correct prediction — gained cycles
® Wrong prediction — architectural state (e.g., registers) is rolled back,

but leaves traces on micro-architectural buffers (e.g., cache)




Speculative Execution Attacks

» Optimization technique in modern CPUs
» Control-flow target not resolved yet — outcome of control-flow

® Correct prediction — gained cycles
® Wrong prediction — architectural state (e.g., registers) is rolled back,

R Spectre Attacks

Take advantage of speculative execution to sensitive program data:




Speculative Execution Attacks

» Optimization technique in modern CPUs
» Control-flow target not resolved yet — outcome of control-flow

® Correct prediction — gained cycles
® Wrong prediction — architectural state (e.g., registers) is rolled back,

R Spectre Attacks

Take advantage of speculative execution to sensitive program data:

Mistrain or tamper-with a CPU predictor



Speculative Execution Attacks

» Optimization technique in modern CPUs
» Control-flow target not resolved yet — outcome of control-flow

® Correct prediction — gained cycles
® Wrong prediction — architectural state (e.g., registers) is rolled back,

R Spectre Attacks

Take advantage of speculative execution to sensitive program data:

Mistrain or tamper-with a CPU predictor
Speculatively execute attacker-chosen code that accesses secret data

Prediction was wrong, roll back —
(e.g., cache)



Speculative Execution Attacks

» Optimization technique in modern CPUs
» Control-flow target not resolved yet — outcome of control-flow

® Correct prediction — gained cycles
® Wrong prediction — architectural state (e.g., registers) is rolled back,

R Spectre Attacks

Take advantage of speculative execution to sensitive program data:

Mistrain or tamper-with a CPU predictor
Speculatively execute attacker-chosen code that accesses secret data
Prediction was wrong, roll back —

(e.g., cache)

Extract data using a micro-architectural side channel N



Speculative Probing Attacks

® The vulnerable program contains:

» A bug which allows an attacker to arbitrarily corrupt memory
» A code pointer that is dereferenced conditionally

if (condition) { fptr(; }




Speculative Probing Attacks

® The vulnerable program contains:
» A bug which allows an attacker to arbitrarily corrupt memory
» A code pointer that is dereferenced conditionally
if (condition) { fptr(; }

® The attacker can control both the code pointer and the conditional
branch




Speculative Probing Attacks

® The vulnerable program contains:

» A bug which allows an attacker to arbitrarily corrupt memory
» A code pointer that is dereferenced conditionally

if (condition) { fptr(; }

® The attacker can control both the code pointer and the conditional
branch

® Attacker's goal is to bypass memory corruption mitigations and carry
out an end-to-end exploit

» Achieves this by combining the memory corruption with Spectre-like
primitives




Eclipse Approach: Artificial Data Dependencies

® CPUs do not speculatively execute instructions if they rely on
unresolved data dependencies

» Only the outcomes of control-flow instructions will be speculated




Eclipse Approach: Artificial Data Dependencies

® CPUs do not speculatively execute instructions if they rely on
unresolved data dependencies

» Only the outcomes of control-flow instructions will be speculated
® |ntroduce artificial data dependencies

» Prevent CPU from speculatively dereferencing code pointers




Eclipse Approach: Artificial Data Dependencies

® CPUs do not speculatively execute instructions if they rely on
unresolved data dependencies

» Only the outcomes of control-flow instructions will be speculated
® |ntroduce artificial data dependencies
» Prevent CPU from speculatively dereferencing code pointers
® Speculative execution was caused because the conditional branch had
an unresolved data dependency

» Make value of code pointer dependent on the same data
» Force CPU to wait until data dependency is resolved — speculation
stops




Conditional Moves: Common Data Dependency

® Speculative execution was caused because of the unresolved value of
the rflags register
» Implicitly read by conditional branches to determine whether or not the
branch should be taken




Conditional Moves: Common Data Dependency

® Speculative execution was caused because of the unresolved value of
the rflags register

» Implicitly read by conditional branches to determine whether or not the
branch should be taken

® The x86 conditional move instruction also reads the rflags register

» Determine whether or not the move should be performed
> e.g., cmove %regl, %reg2




Conditional Moves: Common Data Dependency

® Speculative execution was caused because of the unresolved value of
the rflags register

» Implicitly read by conditional branches to determine whether or not the
branch should be taken

® The x86 conditional move instruction also reads the rflags register

» Determine whether or not the move should be performed
> e.g., cmove %regl, %reg2

® Conditional moves are the main building block of our mitigation




Eclipse Instrumentation — Non-speculative Execution

state = 0; /* Why 0? */

poison = -1;

if (condition) {
state = (!condition) 7 poison : state;
fptr |= state;
fptr();

¥

target:

mov $0x0, %ril

mov $OxELEELFFEFFELFEEE, Yrl2
cmpl $0x0, %rax

je no_call

cmove  %ri2, %rit

or %ril, Yrex

callq  *%rcx

.no_call:

target:

[ B Non-speculative execution
: Speculative execution

iz T
= \BUE[H

BR

®

N



Eclipse Instrumentation — Non-speculative Execution

0x0, %
if (condition) { C ! X! !rax -

state = (!condition) 7 poison : state; Je PR (ELES
_ . cmove  %rl2, Yrii
oty IT ERELE or %ril, Y%rex
ZptnOf callg  *jrcx
: .no_call:
target:
target:

[ B Non-speculative execution
: Speculative execution

ri1 (state): 0

[ [0
BROWN

r12 (poison): -1



Eclipse Instrumentation — Non-speculative Execution

state = 0; /* Why 0? */
poison = -

state (!condition) 7 poison : state;
fptr |= state;
fptr();

}

target:

ril (state): 0
ri2 (poison): -1

rax (condition): 1

rflags: resolved

mov $0x0, %ril

mov iOXffffffffffffffff, hri2
Je no_ca

cmove  %ri2, Yrii

or %ril, Yrex
callg  *rcx
.no_call:

target:

[ B Non-speculative execution
: Speculative execution

iz T
= \BUE[H

BR

®



Eclipse Instrumentation — Non-speculative Execution

mov $0x0, %ril
mov SOXTEEFELLLFFFFLLLS, Yrl2
cmpl $0x frax

state = 0; /* Why 0? */
poison =

state (!condition) 7 poison : state;

cmove %ri12, %rii
fptr |= state; 3 L

tptr Qs or %ril, Yrcex
3 Bas callg *%rcx
.no_call:
target: o

[ B Non-speculative execution
: Speculative execution

ri1 (state): 0

ri2 (poison): -1 Eé
rax (condition): 1 (@ [
rflags: resolved BROWN



Eclipse Instrumentation — Non-speculative Execution

mov $0x0, %ril
= . ?
S = 0 4 [y 6F & nov $OXEEEELLEEELELLLEE, Yrl2
poison = -1; o
cmpl $0x0, Y%rax

if (condition) {

no_call

fptr |= state;

or hril, Jrcx
fptr(); :
3 ptrO; callg *%rcx
.no_call:
target: e

[ B Non-speculative execution
: Speculative execution

ri2 (poison): -1

rax (condition): 1 E“E
rflags: resolved T [
ri1l (state): 0 BROWN



Eclipse Instrumentation — Non-speculative Execution

state = 0; /* Why 0?2 */ mov $0x0, %ril
poison = -1; mov SOxfEFEELLLLFFFEEES, Yrl2
if (condition) { fmpl $0x0, %rax

state = (!condition) 7 poison : state; Je no_call

cmove i 12| ‘irll

a0k callqg  */rcx
1 .no_call:
varget: target:

_ L) B0 HUFAD GO

: Speculative execution
ri2 (poison): -1

rax (condition): 1 &E
rflags: resolved [ [0
riil (state): 0 1
rcx (fptr): target BROWN



Eclipse Instrumentation — Non-speculative Execution

state = 0; /* Why 0% */ mov $0x0, %ri1
poison = -1; mov SOxfEFEELLLLFFFEEES, Yrl2
if (condition) { fmpl $0x0, %rax

state = (!condition) 7 poison : state; Je no_call

cmove  %ri2, Yrii

fptr |= state; T
Ad AdSd

target:

target:

: Speculative execution

r12 (poison): -1

rax (condition): 1 &E
rflags: resolved [ [
ril (state): 0

BROWN

rcx (fptr): target



Eclipse Instrumentation — Non-speculative Execution

state = 0; /* Why 02 */ mov $0x0, %ril
q ’1 g e mov $OxfEFELFFEFFEEFFEE, Yrl2
poison = -1; N
1 0x0
if (condition) { (‘:mp $0x0, Yrax
s q Jje no_call
state = (!condition) 7 poison : state; B )
cmove  %ril2, Yril
fptr |= state; . N
or hril, Yrcx
fptr(); 5
3 callq  *%rcx
.no_call:

: Speculative execution

r12 (poison): -1

rax (condition): 1 &E
rflags: resolved [ [
ril (state): 0

BROWN

rcx (fptr): target



Eclipse Instrumentation — Poisoning the Code Pointer

state = 0;

poison = -1; /* Why -12 */

if (condition) {
state = (!condition) 7 poison : state;
fptr |= state;
fptrQ);

¥

target:

mov $0x0, %ril

mov $OxELEELFFEFFELFEEE, Yrl2
cmpl $0x0, %rax

je no_call

cmove  %ri2, %rit

or %ril, Yrex

callq  *%rcx

.no_call:

target:

[ B Non-speculative execution
: Speculative execution

iz T
= \BUE[H

BR

®

N



Eclipse Instrumentation — Poisoning the Code Pointer

T R BN
s C 0x0, Arax
if (condition) {

state = (!condition) 7 poison : state; Je PR (ELES
_ . cmove  %rl2, Yrii
oty IT ERELE or %ril, Y%rex
ZptnOf callg  *jrcx
: .no_call
target:
target:

[ B Non-speculative execution
ril (state): O @ [
r12 (poison): -1 ey

BROWN




Eclipse Instrumentation — Poisoning the Code Pointer

state
poison

-1; /* Why -12 */

state = (!condition) 7 poison : state;
fptr |= state;
fptrQ);

¥

target:

ril (state): 0
ri2 (poison): -1

rax (condition): unknown

rflags: unknown

mov $0x0, %ril

mov iOXffffffffffffffff, hri2
Je no_ca

cmove  %ri2, Yrii

or %ril, Yrex
callg  *rcx
.no_call:

target:

[ B Non-speculative execution
: Speculative execution

3 ElEps
= \BUE[H

BR N



Eclipse Instrumentation — Poisoning the Code Pointer

mov $0x0, %ril
mov SOXTEEFELLLFFFFLLLS, Yrl2
cmpl $0x frax

state
poison

-1; /* Why -12 */

state = (!condition) 7 poison : state;

%ri2, Yril
e - cmove  r hr

fptrQ); or %ril, Yrcx
} F ’ callq *Yrcx
.no_call:
target: —

: Speculative execution

ril (state): 0

r12 (poison): -1 &
S [ [0

rax (condition): unknown o

rflags: unknown BROWN



Eclipse Instrumentation — Poisoning the Code Pointer

state = 0; mov $0x0, %ril
e o oy /2 B <6 o mov  $OXEEEFEFffffffffff, Yrl2
if (condition) { (?mpl $0x0, Yrax

je no_call

state = (!condition) ? poison : state;
cmove  %ri2, Yjrii

95 1o S or Jril, Jrcx
fptr(); "
3 17 ’ callq  */rcx
.no_call:
target: target:

[ B Non-speculative execution
: Speculative execution

ri2 (poison): -1

rax (condition): unknown E:“E
rflags: unknown (@ [
ri1l (state): unknown BROWN



Eclipse Instrumentation — Poisoning the Code Pointer

state = 0; mov $0x0, %ril
e o oy /2 B <6 o mov  $OXEEEFEFffffffffff, Yrl2
if (condition) { (?mpl $0x0, Yrax

je no_call

state = (!condition) ? poison : state;
cmove  %ri2, Yjrii

95 1o S or Jril, Jrcx
fptr(); "
3 17 ’ callq  */rcx
.no_call:
target: target:

[ B Non-speculative execution
: Speculative execution

ri2 (poison): -1

ri1l (state): unknown E:“E
rflags: unknown (@ [
rax (condition): 0 BROWN



Eclipse Instrumentation — Poisoning the Code Pointer

state
poison

-1; /* Why -12 */

state = (!condition) 7 poison : state;
fptr |= state;
fptrQ);

¥

target:

r12 (poison): -1
rax (condition): 0
rflags: resolved

mov $0x0, %ril

mov iOXffffffffffffffff, hri2
Je no_ca

cmove  %ri2, Yrii

or %ril, Yrex
callg  *rcx
.no_call:

target:

[ B Non-speculative execution
: Speculative execution

iz T
= \BUE[H

BR

®

N



Eclipse Instrumentation — Poisoning the Code Pointer

state = 0; mov $0x0, %ril
e o oy /2 B <6 o mov  $OXEEEFEFffffffffff, Yrl2
if (condition) { (?mpl $0x0, Yrax

je no_call

state = (!condition) ? poison : state;
cmove  %ri2, Yjrii

95 1o S or Jril, Jrcx
fptr(); "
3 17 ’ callq  */rcx
.no_call:
target: target:

[ B Non-speculative execution
: Speculative execution

ri2 (poison): -1

rax (condition): 0 E}E
rflags: resolved (@ [
ri1 (state): -1 BROWN



Eclipse Instrumentation — Poisoning the Code Pointer

state
poison = -1; /* Why -12 */
if (condition) {

state = (!condition) 7 poison : state;

fptr |= state;

fptrQ;
}

target:

r12 (poison): -1
rax (condition): 0
rflags: resolved
ril (state): -1
rcex (fptr): -1

mov $0x0, %ril

mov $OxELEELFFEFFELFEEE, Yrl2
cmpl $0x0, %rax

je no_call

cmove  %ri12, Yrii

or %r1l, Y%rex

callq  *%rcx

.no_call:

target:

[ B Non-speculative execution

: Speculative execution

iz ElNVA
= \ellelsi/

®



Eclipse Instrumentation — Poisoning the Code Pointer

state
poison = -1; /* Why -12 */
if (condition) {
state = (!condition) 7 poison : state;
fptr |= state;

fptr();

target:

r12 (poison): -1
rax (condition): 0
rflags: resolved
ril (state): -1
rcx (fptr): -1

mov $0x0, %ril
mov $OxELEELFFEFFELFEEE, Yrl2
cmpl $0x0, %rax
je no_call
cmove  %ri2, %rit
or %ril, %rex
callg  *%rcx
.no_call:
target:

[ B Non-speculative execution
: Speculative execution

iz T
= \BUE[H

BR

®

N



Eclipse Instrumentation — Poisoning the Code Pointer

state
poison

-1; /* Why -12 */

state = (!condition) 7 poison : state;
fptr |= state;
fptrQ);

¥

target:

r12 (poison): -1
rax (condition): 0
rflags: resolved

mov $0x0, %ril
mov SOXTEEFELLLFFFFLLLS, Yrl2
cmpl $0x frax

cmove  %ri2, Yrii

or %ril, Yrcex
callg *%rcx
.no_call:

target:

[ B Non-speculative execution
: Speculative execution

=] EIE

= \BUE[H

BR

®

N



Eclipse Instrumentation — Poisoning the Code Pointer

state = 0;

poison = -1; /* Why -12 */

if (condition) {
state = (!condition) 7 poison : state;
fptr |= state;
fptrQ);

¥

target:

r12 (poison): -1
rax (condition): 0
rflags: resolved

target:

$0x0, %ril
$OxELEELFFEFFELFEEE, Yrl2
$0x0, %rax

no_call

%ri12, %rii

%ril, Y%rcx

*/rCX

[ B Non-speculative execution
: Speculative execution

faz] EIFEN
= \ellel§

BR

®



Why Poison the Branch Target?

® The data dependency we introduce delays the execution of the
indirect branch until rflags is resolved
» Poisoning seems redundant since when rflags is resolved, the target of
conditional branch becomes known




Why Poison the Branch Target?

® The data dependency we introduce delays the execution of the
indirect branch until rflags is resolved
» Poisoning seems redundant since when rflags is resolved, the target of
conditional branch becomes known
® However, the ordering of the instructions is not guaranteed
» When rflags is resolved, the conditional move and the indirect branch
may execute before the conditional branch
» Corrupted pointer may still be dereferenced




Why Poison the Branch Target?

® The data dependency we introduce delays the execution of the
indirect branch until rflags is resolved

» Poisoning seems redundant since when rflags is resolved, the target of
conditional branch becomes known

® However, the ordering of the instructions is not guaranteed

» When rflags is resolved, the conditional move and the indirect branch
may execute before the conditional branch
» Corrupted pointer may still be dereferenced

® Poisoning the pointer guarantees it will dereference a bad address




Spectre mitigations

® Reduce the effectiveness of side-channels

» Prevent speculative execution from leaving traces in cache

BROWN



Spectre mitigations

® Reduce the effectiveness of side-channels

» Prevent speculative execution from leaving traces in cache
® Prevent speculative execution

» LFENCEs, Retpolines, ..




Spectre mitigations

® Reduce the effectiveness of side-channels

» Prevent speculative execution from leaving traces in cache
® Prevent speculative execution

» LFENCEs, Retpolines, ..
® Prevent predictor poisoning

» Indirect Branch Restricted Speculation (IBRS), Single Thread Indirect
Branch Prediction (STIBP), ..




Spectre mitigations

Reduce the effectiveness of side-channels

» Prevent speculative execution from leaving traces in cache
® Prevent speculative execution
» LFENCEs, Retpolines, ..

® Prevent predictor poisoning
» Indirect Branch Restricted Speculation (IBRS), Single Thread Indirect
Branch Prediction (STIBP), ..
[

Prevent access to secret data during speculative execution

» Isolate secret data to protected regions




Memory corruption & mitigations

® Attacker corrupts memory — takes control over the control-flow of
the program




Memory corruption & mitigations

® Attacker corrupts memory — takes control over the control-flow of
the program

e Mitigations:




Memory corruption & mitigations

® Attacker corrupts memory — takes control over the control-flow of
the program
e Mitigations:
» Address space layout randomization

® Randomizes the address where various memory segments are loaded

[
E
W

N



Memory corruption & mitigations

® Attacker corrupts memory — takes control over the control-flow of
the program
e Mitigations:
» Address space layout randomization
® Randomizes the address where various memory segments are loaded
» Control flow integrity

® \erifies that control flow is only transferred to valid targets




Memory corruption & mitigations

® Attacker corrupts memory — takes control over the control-flow of
the program
e Mitigations:
» Address space layout randomization
® Randomizes the address where various memory segments are loaded
» Control flow integrity
® \erifies that control flow is only transferred to valid targets

» Stack canaries, Non-executable memory, ..




Preventing Speculative probing

® Spectre mitigations are ineffective




Preventing Speculative probing

® Spectre mitigations are ineffective

» Does not use out-of-bounds values to exploit Spectre v1




Preventing Speculative probing

® Spectre mitigations are ineffective
» Does not use out-of-bounds values to exploit Spectre v1
» Does not rely on indirect branch mispredictions (Spectre v2) since the
pointer is already architecturally corrupted

[
E
W

N



Preventing Speculative probing

® Spectre mitigations are ineffective

» Does not use out-of-bounds values to exploit Spectre v1
» Does not rely on indirect branch mispredictions (Spectre v2) since the
pointer is already architecturally corrupted

® QOther strong defenses also bypassed




Preventing Speculative probing

® Spectre mitigations are ineffective

» Does not use out-of-bounds values to exploit Spectre v1
» Does not rely on indirect branch mispredictions (Spectre v2) since the
pointer is already architecturally corrupted

® QOther strong defenses also bypassed

» (K)ASLR — even fine grained — bypassed with speculative probing




Spectre attacks details — Training phase

Victim:
void foo(int idx)
{
char arrayl[5];
char array2([256]; // Att. controled
VI 74
if (idx < arrayl_len) {
x = array2[arrayl[idx]];

}

Attacker:

foo(1);

foo(1);

foo(1);

foo(1);

foo(1);

// Predictor is now trained
// to take the branch

// arrayl[1235] will be
// speculatively fetched
foo0(1235);

BROWN



Spectre variants

® Different variants depending on which CPU predictor they mistrain




Spectre variants

® Different variants depending on which CPU predictor they mistrain
® Spectre-vl (aka Spectre-BCB)
» Mistrain conditional branch, access out-of-bounds data

if (x < arrayl_size)
y = array2[arrayl[x] * 4096];




Spectre variants

® Different variants depending on which CPU predictor they mistrain
® Spectre-vl (aka Spectre-BCB)
» Mistrain conditional branch, access out-of-bounds data
if (x < arrayl_size)
y = array2[arrayl[x] * 4096];
® Spectre-v2 (aka Spectre-BTB)
» Mistrain Branch Target Buffer, indirect call executes
attacker-controlled target




Spectre variants

Different variants depending on which CPU predictor they mistrain
Spectre-vl (aka Spectre-BCB)

» Mistrain conditional branch, access out-of-bounds data

if (x < arrayl_size)
y = array2[arrayl[x] * 4096];

Spectre-v2 (aka Spectre-BTB)

» Mistrain Branch Target Buffer, indirect call executes

attacker-controlled target

Spectre-RSB (aka ret2spec), Spectre-STL, ..




Spectre attacks details — Speculative execution phase

array1[]
[s [efe[rlefe]

array2[] |
-]

‘ Notcached — .

Not cached — |

array2[115] is now cached

BROWN



Spectre attacks details — Exfiltration phase

Attacker times cache accesses to deduce value of secret byte

array2[]
-t ‘ -]
Miss  Miss Miss  Miss Miss ~ Miss Hjf| Miss Miss  Miss



Prevent Side channels and transient execution

Speculative execution does not influence the cache/TLB etc.

Hold speculatively accessed data in separate cache

Prevent speculatively cached data from being accessed

Reduce the accuracy of timing mechanisms

Limit sharing of CPU prediction units between users/cores/security
domains

Mask out-of-bounds array indices




Side channels — Common techniques

® Cache side channels
» Prime+Probe: Attacker fills cache, victim accesses secret and evicts
some value from cache, attacker times for cache misses
» Flush+Reload: Attacker cleans cache, victim accesses shared data,
attacker times for cache hits
® Timing of other CPU components

> AVX2 Units power-on timings
» Memory buses




Speculative probing — Gadget probing

Kernel
Memory

data page
with known data

data page

data page

X i
H ) H at instruction purpose
H H L e
B : gﬁ.b 1.mov regx, [A] Load address with known value (V) from A in corrupted page.
T A G E g [2.mov_regY, [regX] Load known value (*V) from address (V).
- H 8% & [3mov_reqz, (8] Load array base (*B) from B in corrupted page.
page with corruptibl © ™ [a-mov_reqq, [regZ+regV]| Access probe target (pt="B+*V) to induce the signal in cache.
function pointer and data 90, Lregzereq¥] & et (B ) to indu ignal |




Speculative probing — Data region probing

y

instruction purpose
1.mov_regX, [pl] |Load probe target (pt) from corrupted page.
2-mov_reqY, [regX] [ Access probe target (pt) to induce the signal in cache

Gadget

Kernel
Memory

Unmapped _unmapped _data page page with corruptible
page page function pointer and data




Speculative probing — Object probing

—_> T pY +<° | instruction purpose
o5 pt H A g =
£@ : & D [Lomov_regX, [p1] ] Load pointer to data-controlled page (p2) from corrupted page.
23 i @ [2.mov_regY, [regX] | Load probe target (pt) from data-controlled page.
= H O [3-mov_regZ, [reqY] | Access probe target (pt) to induce the signal in cache.
readable Jata page data-controlled page with corruptible
page function pointer and data




Speculative probing — Spectre gadget probing

GE' Riray B ) HE - instruction purpose
g E TRl LB @ [L.mov_reoX, [A] Load test target (T) from A in corrupted page.
29 H T A B [2.mov_regY, [regX] Load value to test (*T) from test target (T).
= - 1| g mov_regZ, [B] Load array base (*B) from B in corrupted page.
data page data page  data page fuﬁgtgignwéto';nct‘;’rrgﬁzﬂ:ta -mov_regQ, [regZ+regY]| Access probe target (pt=*B+*T) to induce the signal in cache.




Speculative probing — Memory corruption

® \ulnerability: Heap buffer overflow in Linux kernel
® Can corrupt a struct that:
» Contains a function pointer
» Contains data that can influence a conditional branch before the

function pointer is derefernced

® Several vulnerabilities with similar primitives were reported




Speculative probing — Breaking Coarse-grained ASLR

1.
2.
8
4.

Use code region probing to discover where kernel image was loaded
Use data region probing to discover the kernel heap
Use object probing to locate payload in heap

Trigger the control-flow hijack non-speculatively to mount a ret2usr
attack




Speculative probing — Data-only attack

1. Use code region probing to discover where kernel image was loaded
2. Use spectre gadget probing to locate a spectre gadget

3. Use the spectre gadget to leak the root password hash from memory
4

. Crack root password hash




Speculative probing — Breaking Software-based XoM

e & oS W =

Use code region probing to discover where kernel image was loaded
Use spectre gadget probing to locate a spectre gadget

Use the spectre gadget to leak kernel code

Use data region probing to discover the kernel heap

Use object probing to locate payload in heap

Trigger the control-flow hijack non-speculatively to mount a ret2usr
attack




Speculative probing — Exploit time

® | ocating kernel image — 0.7s

® | ocating kernel heap — 49.2s

® | ocating ROP payload in heap — 67.0s
® | ocating a Spectre gadget — 76.7s

® | eaking root password hash — 107.4s

® | eaking entire kernel code — 56m




SPEAR attacks — Bypassing stack canaries

1. Call target function multiple times to train canary check branch

2. Overwrite saved return address with speculative ROP payload,
corrupting stack canary

3. Evict global canary value to extend speculation window
4. Speculatively return to attacker chosen address

5. Side-channel to extract accessed data




SPEAR attacks — Bypassing CFl (GCC-VTV)

GCC Virtual Table Verification looks up target of indirect branch in a table
containing valid targets

1. Corrupt indirect pointer

2. Evict lookup table address from cache to extend speculation window

3. Perform indirect call, speculatively transferring control flow to
attacker address

4. Extract data with side-channel




	Appendix

