
Eclipse
Preventing Speculative Memory-error Abuse with Artificial Data Dependencies

Neophytos Christou Alexander J. Gaidis Vaggelis Atlidakis Vasileios P. Kemerlis
October 17, 2024

Secure Systems Laboratory (SSL)
Department of Computer Science
Brown University

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 0 / 11

mailto:neophytos_christou@brown.edu
mailto:agaidis@cs.brown.edu
https://vatlidak.github.io
https://cs.brown.edu/~vpk
https://gitlab.com/brown-ssl/
https://cs.brown.edu
https://www.brown.edu
mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Speculative Memory-error Abuse

Speculative Memory-error Abuse (SMA) Attacks Overview

• Combine memory errors with speculative execution attacks
▶ Leverage memory errors to architecturally corrupt memory
▶ Cause the CPU to use the corrupted data during speculative execution
▶ Bypass memory-safety-based mitigations while inhibiting detection

(e.g., avoid crashes)

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 1 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps

1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d

3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000
fptr

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps
1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d

3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000
fptr

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps
1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d
3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000

fptr

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps
1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d

3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000

fptr

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps
1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d
3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000

fptr
No signal!

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps
1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d
3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000

fptr

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps
1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d
3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000

fptr
No signal!

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps
1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d
3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000

fptr

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps
1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d
3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000

fptr
No signal!

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps
1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d
3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000

fptr

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps
1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d
3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000

fptr
No signal!

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps
1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d
3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000

fptr

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps
1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d
3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000

fptr

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

SMA Attack Example – Speculative Probing1

if (condition) {
fptr();

}

Attack Steps
1. Train branch

2. Architecturally corrupt fptr, flip condition

▶ Corrupted fptr → speculatively deref.’d
3. Check for cache activity (side channel)

4. Repeat until cache activity is detected

Program code

0x10000

0x11000

0x12000

0x13000

0x20000

0x21000

fptr

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 2 / 11

Problem

Attacker-controlled data is used during speculative execution
caused by a mispredicted conditional branch

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Overview

Insight
CPUs cannot execute instructions with unresolved data dependencies

Even when executing speculatively

Eclipse Approach

Compiler-assisted mitigation
Analyze program to identify SMA-Capable (SMAC) instructions

Ü Instructions that can be leveraged to carry out a SMA attack
Ü Can be speculatively executed as a result of a misprediction of a

preceding conditional branch
Instrument code to introduce artificial data dependencies on the
identified SMAC instructions

Prevent instructions from operating on attacker-controlled data during
speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 3 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Overview

Insight
CPUs cannot execute instructions with unresolved data dependencies

Even when executing speculatively

Eclipse Approach

Compiler-assisted mitigation
Analyze program to identify SMA-Capable (SMAC) instructions

Ü Instructions that can be leveraged to carry out a SMA attack
Ü Can be speculatively executed as a result of a misprediction of a

preceding conditional branch
Instrument code to introduce artificial data dependencies on the
identified SMAC instructions

Prevent instructions from operating on attacker-controlled data during
speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 3 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Overview

Insight
CPUs cannot execute instructions with unresolved data dependencies

Even when executing speculatively

Eclipse Approach
Compiler-assisted mitigation

Analyze program to identify SMA-Capable (SMAC) instructions
Ü Instructions that can be leveraged to carry out a SMA attack
Ü Can be speculatively executed as a result of a misprediction of a

preceding conditional branch
Instrument code to introduce artificial data dependencies on the
identified SMAC instructions

Prevent instructions from operating on attacker-controlled data during
speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 3 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Overview

Insight
CPUs cannot execute instructions with unresolved data dependencies

Even when executing speculatively

Eclipse Approach
Compiler-assisted mitigation
Analyze program to identify SMA-Capable (SMAC) instructions

Ü Instructions that can be leveraged to carry out a SMA attack
Ü Can be speculatively executed as a result of a misprediction of a

preceding conditional branch

Instrument code to introduce artificial data dependencies on the
identified SMAC instructions

Prevent instructions from operating on attacker-controlled data during
speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 3 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Overview

Insight
CPUs cannot execute instructions with unresolved data dependencies

Even when executing speculatively

Eclipse Approach
Compiler-assisted mitigation
Analyze program to identify SMA-Capable (SMAC) instructions

Ü Instructions that can be leveraged to carry out a SMA attack
Ü Can be speculatively executed as a result of a misprediction of a

preceding conditional branch
Instrument code to introduce artificial data dependencies on the
identified SMAC instructions

Prevent instructions from operating on attacker-controlled data during
speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 3 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

if (condition) {
fptr();

}
...

target:
...

cmpl $0x0, %rax
je no_call
callq *%rcx
.no_call:
...

target:
...

Register State

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

if (condition) {
fptr();

}
...

target:
...

cmpl $0x0, %rax Modifies rflags
je no_call
callq *%rcx
.no_call:
...

target:
...

Register State
rax (condition): unknown

rflags: unknown

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

if (condition) {
fptr();

}
...

target:
...

cmpl $0x0, %rax Modifies rflags

je no_call Depends on rflags
callq *%rcx
.no_call:
...

target:
...

Register State
rax (condition): unknown
rflags: unknown

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

if (condition) {
fptr();

}
...

target:
...

cmpl $0x0, %rax
je no_call
callq *%rcx
.no_call:
...

target:
...

Register State
rax (condition): unknown
rflags: unknown
rcx (fptr): target

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

if (condition) {
fptr();

}
...

target:
...

cmpl $0x0, %rax
je no_call
callq *%rcx
.no_call:
...

target:
...

Register State
rax (condition): unknown
rflags: unknown
rcx (fptr): target

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

state = 0;
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11

mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11

or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

state = 0;

poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11

mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r11 (state): 0

r12 (poison): -1

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

state = 0;
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax Modifies rflags
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r11 (state): 0
r12 (poison): -1
rax (condition): unknown

rflags: unknown

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

state = 0;
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax Modifies rflags

je no_call Depends on rflags
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r11 (state): 0
r12 (poison): -1
rax (condition): unknown
rflags: unknown

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

state = 0;
poison = -1;
if (condition) {

state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call Depends on rflags

cmove %r12, %r11 Depends on rflags
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): unknown
rflags (impicit): unknown
r11 (state): unknown

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

state = 0;
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call Depends on rflags

cmove %r12, %r11 Depends on rflags

or %r11, %rcx Depends on r11
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): unknown
rflags: unknown
r11 (state): unknown
rcx (fptr): unknown

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

state = 0;
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call Depends on rflags

cmove %r12, %r11 Depends on rflags

or %r11, %rcx Depends on r11

callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): unknown
rflags: unknown
r11 (state): unknown
rcx (fptr): unknown

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

state = 0;
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): 0

rflags: resolved

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

state = 0;
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): 0
rflags: resolved

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Instrumentation

state = 0;
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): 0
rflags: resolved

: Non-speculative execution
: Speculative execution

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 4 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Design – SMAC Instruction Identification

Eclipse Design – Identifying SMAC Indirect Branches
• Iterate each instruction in a function
• When encountering an indirect branch:

▶ Remove block from the function’s Control-flow Graph (CFG)
▶ Is the CFG still fully connected?

• If yes, classify the indirect branch as SMAC

Identifying Preceding Conditional Branches
• Reiterate the CFG backwards, starting from each block containing a

SMAC indirect branch
▶ Keep track of all encountered conditional branches

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 5 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Design – SMAC Instruction Identification

Eclipse Design – Identifying SMAC Indirect Branches
• Iterate each instruction in a function
• When encountering an indirect branch:

▶ Remove block from the function’s Control-flow Graph (CFG)
▶ Is the CFG still fully connected?

• If yes, classify the indirect branch as SMAC

Identifying Preceding Conditional Branches
• Reiterate the CFG backwards, starting from each block containing a

SMAC indirect branch
▶ Keep track of all encountered conditional branches

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 5 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Design – Instrumentation

Register Initialization
Initialize a state and a poison register → 0 and −1, respectively

Capturing Data Dependencies
For each tracked conditional branch, inject a conditional move
instruction at each edge

• Taken edge → opposite conditional code
• Not-taken edge → same conditional code

Linking Data Dependencies
Before each SMAC indirect branch, inject an or instruction

• Source operand → state register
• Destination operand → register used by indirect branch

mov $0, %r12

mov $-1, %r11

...

.bb1

...
je .bb3

.bb2

cmovne %r11, %r12

...

or %r12, %rdx

jmp *%rdx

.bb3

ret

.bb4

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 6 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Design – Instrumentation

Register Initialization
Initialize a state and a poison register → 0 and −1, respectively

Capturing Data Dependencies
For each tracked conditional branch, inject a conditional move
instruction at each edge

• Taken edge → opposite conditional code
• Not-taken edge → same conditional code

Linking Data Dependencies
Before each SMAC indirect branch, inject an or instruction

• Source operand → state register
• Destination operand → register used by indirect branch

mov $0, %r12

mov $-1, %r11
...

.bb1

...
je .bb3

.bb2

cmovne %r11, %r12

...

or %r12, %rdx

jmp *%rdx

.bb3

ret

.bb4

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 6 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Design – Instrumentation

Register Initialization
Initialize a state and a poison register → 0 and −1, respectively

Capturing Data Dependencies
For each tracked conditional branch, inject a conditional move
instruction at each edge

• Taken edge → opposite conditional code
• Not-taken edge → same conditional code

Linking Data Dependencies
Before each SMAC indirect branch, inject an or instruction

• Source operand → state register
• Destination operand → register used by indirect branch

mov $0, %r12

mov $-1, %r11
...

.bb1

...
je .bb3

.bb2

cmovne %r11, %r12
...

or %r12, %rdx

jmp *%rdx

.bb3

ret

.bb4

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 6 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Eclipse Design – Instrumentation

Register Initialization
Initialize a state and a poison register → 0 and −1, respectively

Capturing Data Dependencies
For each tracked conditional branch, inject a conditional move
instruction at each edge

• Taken edge → opposite conditional code
• Not-taken edge → same conditional code

Linking Data Dependencies
Before each SMAC indirect branch, inject an or instruction

• Source operand → state register
• Destination operand → register used by indirect branch

mov $0, %r12

mov $-1, %r11
...

.bb1

...
je .bb3

.bb2

cmovne %r11, %r12
...

or %r12, %rdx

jmp *%rdx

.bb3

ret

.bb4

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 6 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Other SMA Attacks

Speculative Probing1

An SMA attack that can bypass certain information-hiding-based
memory-error mitigations (e.g., (K)ASLR, XOM, etc.)

PACMAN2

An SMA attack that can be used to bypass ARM’s Pointer Authentication

SPEAR3

Demonstrates how SMA attacks can be used to bypass several hardening
schemes (e.g., LLVM’s SSP, GCC’s VTV, etc.)

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
2PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.
3Bypassing memory safety mechanisms through speculative control flow hijacks. Mambretti et al., EuroS&P 2021.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 7 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Other SMA Attacks

Speculative Probing1

An SMA attack that can bypass certain information-hiding-based
memory-error mitigations (e.g., (K)ASLR, XOM, etc.)

PACMAN2

An SMA attack that can be used to bypass ARM’s Pointer Authentication

SPEAR3

Demonstrates how SMA attacks can be used to bypass several hardening
schemes (e.g., LLVM’s SSP, GCC’s VTV, etc.)

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
2PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.
3Bypassing memory safety mechanisms through speculative control flow hijacks. Mambretti et al., EuroS&P 2021.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 7 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Other SMA Attacks

Speculative Probing1

An SMA attack that can bypass certain information-hiding-based
memory-error mitigations (e.g., (K)ASLR, XOM, etc.)

PACMAN2

An SMA attack that can be used to bypass ARM’s Pointer Authentication

SPEAR3

Demonstrates how SMA attacks can be used to bypass several hardening
schemes (e.g., LLVM’s SSP, GCC’s VTV, etc.)

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
2PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.
3Bypassing memory safety mechanisms through speculative control flow hijacks. Mambretti et al., EuroS&P 2021.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 7 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Other SMA Attacks

Speculative Probing1

An SMA attack that can bypass certain information-hiding-based
memory-error mitigations (e.g., (K)ASLR, XOM, etc.)

PACMAN2

An SMA attack that can be used to bypass ARM’s Pointer Authentication

SPEAR3

Demonstrates how SMA attacks can be used to bypass several hardening
schemes (e.g., LLVM’s SSP, GCC’s VTV, etc.)

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
2PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.
3Bypassing memory safety mechanisms through speculative control flow hijacks. Mambretti et al., EuroS&P 2021.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 7 / 11

Common Pattern

Attacker architecturally corrupts memory, then causes a SMAC
instruction to be speculatively executed

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Generalizing Eclipse

Eclipse is not tied to any particular architecture or SMA attack

Other Architectures
Eclipse can be applied to any architecture that provides instructions
for capturing and linking data dependencies
▶ e.g., Eclipse can be applied against SP on ARM using the csetm

(capturing) and orr instructions (linking)

Other SMA Attacks
Eclipse can be deployed against any SMA attack
▶ Data dependencies will be linked onto different SMAC instructions

Deployed Eclipse against the ARM-specific PACMAN1 attack
▶ SMAC are ARM PA authentication instructions (e.g., autia)

1PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 8 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Generalizing Eclipse

Eclipse is not tied to any particular architecture or SMA attack

Other Architectures
Eclipse can be applied to any architecture that provides instructions
for capturing and linking data dependencies
▶ e.g., Eclipse can be applied against SP on ARM using the csetm

(capturing) and orr instructions (linking)

Other SMA Attacks
Eclipse can be deployed against any SMA attack
▶ Data dependencies will be linked onto different SMAC instructions

Deployed Eclipse against the ARM-specific PACMAN1 attack
▶ SMAC are ARM PA authentication instructions (e.g., autia)

1PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 8 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Generalizing Eclipse

Eclipse is not tied to any particular architecture or SMA attack

Other Architectures
Eclipse can be applied to any architecture that provides instructions
for capturing and linking data dependencies
▶ e.g., Eclipse can be applied against SP on ARM using the csetm

(capturing) and orr instructions (linking)

Other SMA Attacks
Eclipse can be deployed against any SMA attack
▶ Data dependencies will be linked onto different SMAC instructions

Deployed Eclipse against the ARM-specific PACMAN1 attack
▶ SMAC are ARM PA authentication instructions (e.g., autia)

1PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.
neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 8 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

Alternative Mitigations

▶ Eclipse-lfence: Eclipse variant which mitigates SP by injecting
serializing instructions (i.e., lfence) before SMAC indirect branches
▶ Not out-of-the-box! Relies on Eclipse to identify SMAC instructions

▶ Speculative Load Hardening (SLH): Out-of-the-box mitigation against
Spectre-PHT, also prevents SP
▶ More generic mitigation, hardens all load instructions in a function

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

Alternative Mitigations

▶ Eclipse-lfence: Eclipse variant which mitigates SP by injecting
serializing instructions (i.e., lfence) before SMAC indirect branches
▶ Not out-of-the-box! Relies on Eclipse to identify SMAC instructions

▶ Speculative Load Hardening (SLH): Out-of-the-box mitigation against
Spectre-PHT, also prevents SP
▶ More generic mitigation, hardens all load instructions in a function

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

Alternative Mitigations

▶ Eclipse-lfence: Eclipse variant which mitigates SP by injecting
serializing instructions (i.e., lfence) before SMAC indirect branches
▶ Not out-of-the-box! Relies on Eclipse to identify SMAC instructions

▶ Speculative Load Hardening (SLH): Out-of-the-box mitigation against
Spectre-PHT, also prevents SP
▶ More generic mitigation, hardens all load instructions in a function

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

Userland Performance: SPEC CPU 2017

Benchmark Eclipse Eclipse-lfence SLH

600.perlbench_s 4.31% 4.26% 50.82%
602.gcc_s 0.74% 0.76% 49.74%
605.mcf_s 6.52% 26.73% 58.59%
619.lbm_s 0.42% 0.35% 2.62%
620.omnetpp_s 9.05% 22.94% 33.49%
623.xalancbmk_s 8.49% 11.69% 154.36%
625.x264_s 3.85% 10.67% 26.58%
631.deepsjeng_s 0.23% 0.19% 31.49%
638.imagick_s 9.53% ≈0% 97.74%
641.leela_s 1.21% 1.23% 20.03%
644.nab_s 0.29% 0.72% 31.36%
657.xz_s ≈0% 0.13% 54.26%

▶ Eclipse outperforms alternative approaches,
incurring up to 9.53% overhead

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

Userland Performance: SPEC CPU 2017

Benchmark Eclipse Eclipse-lfence SLH

600.perlbench_s 4.31% 4.26% 50.82%
602.gcc_s 0.74% 0.76% 49.74%
605.mcf_s 6.52% 26.73% 58.59%
619.lbm_s 0.42% 0.35% 2.62%
620.omnetpp_s 9.05% 22.94% 33.49%
623.xalancbmk_s 8.49% 11.69% 154.36%
625.x264_s 3.85% 10.67% 26.58%
631.deepsjeng_s 0.23% 0.19% 31.49%
638.imagick_s 9.53% ≈0% 97.74%
641.leela_s 1.21% 1.23% 20.03%
644.nab_s 0.29% 0.72% 31.36%
657.xz_s ≈0% 0.13% 54.26%

▶ Eclipse outperforms alternative approaches,
incurring up to 9.53% overhead

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

Userland Performance: Real-world Applications

Application Eclipse Eclipse-lfence SLH

SQLite 8.61% 12.72% 55.11%
Redis (GET/s) ≈0% 0.17% 3.20%
Redis (SET/s) ≈0% 0.17% 3.20%
Nginx (1KB) 1.00% 0.67% 2.00%
Nginx (100KB) 0.65% 0.10% 3.73%
Nginx (1MB) 0.36% 0.78% 3.52%
MariaDB 0.42% 1.60% 10.16%

▶ Eclipse incurs up to 8.61% overhead in real-world applications

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

Userland Performance: Real-world Applications

Application Eclipse Eclipse-lfence SLH

SQLite 8.61% 12.72% 55.11%
Redis (GET/s) ≈0% 0.17% 3.20%
Redis (SET/s) ≈0% 0.17% 3.20%
Nginx (1KB) 1.00% 0.67% 2.00%
Nginx (100KB) 0.65% 0.10% 3.73%
Nginx (1MB) 0.36% 0.78% 3.52%
MariaDB 0.42% 1.60% 10.16%

▶ Eclipse incurs up to 8.61% overhead in real-world applications

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Performance Evaluation

Kernel Performance

LMBench kernel microbenchmarks
▶ ≈0%–7.95% latency overhead
▶ < 3.04% bandwidth degradation

Phoronix Test Suite macrobenchmarks
▶ Negligible overhead (< 2%) on various benchmarks (Nginx, MariaDB,

TensorFlow, Linux kernel build, OpenSSL, Glibc)

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 9 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Security Evaluation

x86-64
Applied Eclipse to the Linux kernel
Demonstrated that Eclipse blocks the original Speculative Probing
(SP)1 attack that de-randomizes KASLR

ARM
Applied Eclipse against original PACMAN2 attack
Deployed Eclipse on a proof-of-concept userland SP attack on ARM
Demonstrated that Eclipse stops both PACMAN and SP on ARM

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
2PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 10 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Security Evaluation

x86-64
Applied Eclipse to the Linux kernel
Demonstrated that Eclipse blocks the original Speculative Probing
(SP)1 attack that de-randomizes KASLR

ARM
Applied Eclipse against original PACMAN2 attack
Deployed Eclipse on a proof-of-concept userland SP attack on ARM
Demonstrated that Eclipse stops both PACMAN and SP on ARM

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
2PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 10 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Security Evaluation

x86-64
Applied Eclipse to the Linux kernel
Demonstrated that Eclipse blocks the original Speculative Probing
(SP)1 attack that de-randomizes KASLR

ARM
Applied Eclipse against original PACMAN2 attack
Deployed Eclipse on a proof-of-concept userland SP attack on ARM
Demonstrated that Eclipse stops both PACMAN and SP on ARM

1Speculative Probing: Hacking Blind in the Spectre Era. Göktas, et al., CCS 2020.
2PACMAN: Attacking ARM Pointer Authentication with Speculative Execution. Ravichandran et al., ISCA 2022.

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 10 / 11

mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Conclusion

Eclipse: compiler-assisted mitigation against SMA attacks
Introduce artificial data dependencies to prevent SMAC instructions
from using attacker-controlled data during speculative execution

Evaluated security effectiveness and performance overhead
Sucessfully prevents SMA attacks such as SP and PACMAN
Real-world applications → up to ≈8.6% overhead
Linux kernel → negligible overhead

https://gitlab.com/brown-ssl/eclipse/

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 11 / 11

https://gitlab.com/brown-ssl/eclipse/
mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Conclusion

Eclipse: compiler-assisted mitigation against SMA attacks
Introduce artificial data dependencies to prevent SMAC instructions
from using attacker-controlled data during speculative execution

Evaluated security effectiveness and performance overhead
Sucessfully prevents SMA attacks such as SP and PACMAN
Real-world applications → up to ≈8.6% overhead
Linux kernel → negligible overhead

https://gitlab.com/brown-ssl/eclipse/

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 11 / 11

https://gitlab.com/brown-ssl/eclipse/
mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Conclusion

Eclipse: compiler-assisted mitigation against SMA attacks
Introduce artificial data dependencies to prevent SMAC instructions
from using attacker-controlled data during speculative execution

Evaluated security effectiveness and performance overhead
Sucessfully prevents SMA attacks such as SP and PACMAN
Real-world applications → up to ≈8.6% overhead
Linux kernel → negligible overhead

https://gitlab.com/brown-ssl/eclipse/

neophytos_christou@brown.edu (Brown University) Eclipse ACM CCS 2024 11 / 11

https://gitlab.com/brown-ssl/eclipse/
mailto:neophytos_christou@brown.edu
https://cs.brown.edu

Speculative Execution Attacks

Speculative Execution
▶ Optimization technique in modern CPUs

▶ Control-flow target not resolved yet → predict outcome of control-flow

• Correct prediction → gained cycles
• Wrong prediction → architectural state (e.g., registers) is rolled back,

but leaves traces on micro-architectural buffers (e.g., cache)

Spectre Attacks
Take advantage of speculative execution to leak sensitive program data:

1. Mistrain or tamper-with a CPU predictor
2. Speculatively execute attacker-chosen code that accesses secret data

▶ Prediction was wrong, roll back → data remains in micro-architectural
buffers (e.g., cache)

3. Extract data using a micro-architectural side channel

Speculative Execution Attacks

Speculative Execution
▶ Optimization technique in modern CPUs

▶ Control-flow target not resolved yet → predict outcome of control-flow

• Correct prediction → gained cycles
• Wrong prediction → architectural state (e.g., registers) is rolled back,

but leaves traces on micro-architectural buffers (e.g., cache)

Spectre Attacks
Take advantage of speculative execution to leak sensitive program data:

1. Mistrain or tamper-with a CPU predictor
2. Speculatively execute attacker-chosen code that accesses secret data

▶ Prediction was wrong, roll back → data remains in micro-architectural
buffers (e.g., cache)

3. Extract data using a micro-architectural side channel

Speculative Execution Attacks

Speculative Execution
▶ Optimization technique in modern CPUs

▶ Control-flow target not resolved yet → predict outcome of control-flow
• Correct prediction → gained cycles

• Wrong prediction → architectural state (e.g., registers) is rolled back,
but leaves traces on micro-architectural buffers (e.g., cache)

Spectre Attacks
Take advantage of speculative execution to leak sensitive program data:

1. Mistrain or tamper-with a CPU predictor
2. Speculatively execute attacker-chosen code that accesses secret data

▶ Prediction was wrong, roll back → data remains in micro-architectural
buffers (e.g., cache)

3. Extract data using a micro-architectural side channel

Speculative Execution Attacks

Speculative Execution
▶ Optimization technique in modern CPUs

▶ Control-flow target not resolved yet → predict outcome of control-flow
• Correct prediction → gained cycles
• Wrong prediction → architectural state (e.g., registers) is rolled back,

but leaves traces on micro-architectural buffers (e.g., cache)

Spectre Attacks
Take advantage of speculative execution to leak sensitive program data:

1. Mistrain or tamper-with a CPU predictor
2. Speculatively execute attacker-chosen code that accesses secret data

▶ Prediction was wrong, roll back → data remains in micro-architectural
buffers (e.g., cache)

3. Extract data using a micro-architectural side channel

Speculative Execution Attacks

Speculative Execution
▶ Optimization technique in modern CPUs

▶ Control-flow target not resolved yet → predict outcome of control-flow
• Correct prediction → gained cycles
• Wrong prediction → architectural state (e.g., registers) is rolled back,

but leaves traces on micro-architectural buffers (e.g., cache)

Spectre Attacks
Take advantage of speculative execution to leak sensitive program data:

1. Mistrain or tamper-with a CPU predictor
2. Speculatively execute attacker-chosen code that accesses secret data

▶ Prediction was wrong, roll back → data remains in micro-architectural
buffers (e.g., cache)

3. Extract data using a micro-architectural side channel

Speculative Execution Attacks

Speculative Execution
▶ Optimization technique in modern CPUs

▶ Control-flow target not resolved yet → predict outcome of control-flow
• Correct prediction → gained cycles
• Wrong prediction → architectural state (e.g., registers) is rolled back,

but leaves traces on micro-architectural buffers (e.g., cache)

Spectre Attacks
Take advantage of speculative execution to leak sensitive program data:

1. Mistrain or tamper-with a CPU predictor

2. Speculatively execute attacker-chosen code that accesses secret data
▶ Prediction was wrong, roll back → data remains in micro-architectural

buffers (e.g., cache)

3. Extract data using a micro-architectural side channel

Speculative Execution Attacks

Speculative Execution
▶ Optimization technique in modern CPUs

▶ Control-flow target not resolved yet → predict outcome of control-flow
• Correct prediction → gained cycles
• Wrong prediction → architectural state (e.g., registers) is rolled back,

but leaves traces on micro-architectural buffers (e.g., cache)

Spectre Attacks
Take advantage of speculative execution to leak sensitive program data:

1. Mistrain or tamper-with a CPU predictor
2. Speculatively execute attacker-chosen code that accesses secret data

▶ Prediction was wrong, roll back → data remains in micro-architectural
buffers (e.g., cache)

3. Extract data using a micro-architectural side channel

Speculative Execution Attacks

Speculative Execution
▶ Optimization technique in modern CPUs

▶ Control-flow target not resolved yet → predict outcome of control-flow
• Correct prediction → gained cycles
• Wrong prediction → architectural state (e.g., registers) is rolled back,

but leaves traces on micro-architectural buffers (e.g., cache)

Spectre Attacks
Take advantage of speculative execution to leak sensitive program data:

1. Mistrain or tamper-with a CPU predictor
2. Speculatively execute attacker-chosen code that accesses secret data

▶ Prediction was wrong, roll back → data remains in micro-architectural
buffers (e.g., cache)

3. Extract data using a micro-architectural side channel

Speculative Probing Attacks

• The vulnerable program contains:
▶ A bug which allows an attacker to arbitrarily corrupt memory
▶ A code pointer that is dereferenced conditionally

if (condition) { fptr(); }

• The attacker can control both the code pointer and the conditional
branch

• Attacker’s goal is to bypass memory corruption mitigations and carry
out an end-to-end exploit
▶ Achieves this by combining the memory corruption with Spectre-like

primitives

Speculative Probing Attacks

• The vulnerable program contains:
▶ A bug which allows an attacker to arbitrarily corrupt memory
▶ A code pointer that is dereferenced conditionally

if (condition) { fptr(); }

• The attacker can control both the code pointer and the conditional
branch

• Attacker’s goal is to bypass memory corruption mitigations and carry
out an end-to-end exploit
▶ Achieves this by combining the memory corruption with Spectre-like

primitives

Speculative Probing Attacks

• The vulnerable program contains:
▶ A bug which allows an attacker to arbitrarily corrupt memory
▶ A code pointer that is dereferenced conditionally

if (condition) { fptr(); }

• The attacker can control both the code pointer and the conditional
branch

• Attacker’s goal is to bypass memory corruption mitigations and carry
out an end-to-end exploit
▶ Achieves this by combining the memory corruption with Spectre-like

primitives

Eclipse Approach: Artificial Data Dependencies

• CPUs do not speculatively execute instructions if they rely on
unresolved data dependencies
▶ Only the outcomes of control-flow instructions will be speculated

• Introduce artificial data dependencies
▶ Prevent CPU from speculatively dereferencing code pointers

• Speculative execution was caused because the conditional branch had
an unresolved data dependency
▶ Make value of code pointer dependent on the same data
▶ Force CPU to wait until data dependency is resolved → speculation

stops

Eclipse Approach: Artificial Data Dependencies

• CPUs do not speculatively execute instructions if they rely on
unresolved data dependencies
▶ Only the outcomes of control-flow instructions will be speculated

• Introduce artificial data dependencies
▶ Prevent CPU from speculatively dereferencing code pointers

• Speculative execution was caused because the conditional branch had
an unresolved data dependency
▶ Make value of code pointer dependent on the same data
▶ Force CPU to wait until data dependency is resolved → speculation

stops

Eclipse Approach: Artificial Data Dependencies

• CPUs do not speculatively execute instructions if they rely on
unresolved data dependencies
▶ Only the outcomes of control-flow instructions will be speculated

• Introduce artificial data dependencies
▶ Prevent CPU from speculatively dereferencing code pointers

• Speculative execution was caused because the conditional branch had
an unresolved data dependency
▶ Make value of code pointer dependent on the same data
▶ Force CPU to wait until data dependency is resolved → speculation

stops

Conditional Moves: Common Data Dependency

• Speculative execution was caused because of the unresolved value of
the rflags register
▶ Implicitly read by conditional branches to determine whether or not the

branch should be taken

• The x86 conditional move instruction also reads the rflags register
▶ Determine whether or not the move should be performed
▶ e.g., cmove %reg1, %reg2

• Conditional moves are the main building block of our mitigation

Conditional Moves: Common Data Dependency

• Speculative execution was caused because of the unresolved value of
the rflags register
▶ Implicitly read by conditional branches to determine whether or not the

branch should be taken
• The x86 conditional move instruction also reads the rflags register

▶ Determine whether or not the move should be performed
▶ e.g., cmove %reg1, %reg2

• Conditional moves are the main building block of our mitigation

Conditional Moves: Common Data Dependency

• Speculative execution was caused because of the unresolved value of
the rflags register
▶ Implicitly read by conditional branches to determine whether or not the

branch should be taken
• The x86 conditional move instruction also reads the rflags register

▶ Determine whether or not the move should be performed
▶ e.g., cmove %reg1, %reg2

• Conditional moves are the main building block of our mitigation

Eclipse Instrumentation – Non-speculative Execution

state = 0; /* Why 0? */
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Non-speculative Execution

state = 0; /* Why 0? */

poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11

mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r11 (state): 0

r12 (poison): -1

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Non-speculative Execution

state = 0; /* Why 0? */
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r11 (state): 0
r12 (poison): -1
rax (condition): 1

rflags: resolved

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Non-speculative Execution

state = 0; /* Why 0? */
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r11 (state): 0
r12 (poison): -1
rax (condition): 1
rflags: resolved

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Non-speculative Execution

state = 0; /* Why 0? */
poison = -1;
if (condition) {

state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): 1
rflags: resolved
r11 (state): 0

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Non-speculative Execution

state = 0; /* Why 0? */
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): 1
rflags: resolved
r11 (state): 0
rcx (fptr): target

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Non-speculative Execution

state = 0; /* Why 0? */
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): 1
rflags: resolved
r11 (state): 0
rcx (fptr): target

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Non-speculative Execution

state = 0; /* Why 0? */
poison = -1;
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): 1
rflags: resolved
r11 (state): 0
rcx (fptr): target

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Poisoning the Code Pointer

state = 0;
poison = -1; /* Why -1? */
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Poisoning the Code Pointer

state = 0;

poison = -1; /* Why -1? */
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11

mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r11 (state): 0
r12 (poison): -1

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Poisoning the Code Pointer

state = 0;
poison = -1; /* Why -1? */
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r11 (state): 0
r12 (poison): -1
rax (condition): unknown

rflags: unknown

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Poisoning the Code Pointer

state = 0;
poison = -1; /* Why -1? */
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r11 (state): 0
r12 (poison): -1
rax (condition): unknown

rflags: unknown

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Poisoning the Code Pointer

state = 0;
poison = -1; /* Why -1? */
if (condition) {

state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): unknown
rflags: unknown
r11 (state): unknown

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Poisoning the Code Pointer

state = 0;
poison = -1; /* Why -1? */
if (condition) {

state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
r11 (state): unknown
rflags: unknown
rax (condition): 0

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Poisoning the Code Pointer

state = 0;
poison = -1; /* Why -1? */
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): 0
rflags: resolved

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Poisoning the Code Pointer

state = 0;
poison = -1; /* Why -1? */
if (condition) {

state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): 0
rflags: resolved
r11 (state): -1

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Poisoning the Code Pointer

state = 0;
poison = -1; /* Why -1? */
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): 0
rflags: resolved
r11 (state): -1
rcx (fptr): -1

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Poisoning the Code Pointer

state = 0;
poison = -1; /* Why -1? */
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): 0
rflags: resolved
r11 (state): -1
rcx (fptr): -1

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Poisoning the Code Pointer

state = 0;
poison = -1; /* Why -1? */
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): 0
rflags: resolved

: Non-speculative execution
: Speculative execution

Eclipse Instrumentation – Poisoning the Code Pointer

state = 0;
poison = -1; /* Why -1? */
if (condition) {
state = (!condition) ? poison : state;
fptr |= state;
fptr();

}
...

target:
...

mov $0x0, %r11
mov $0xffffffffffffffff, %r12
cmpl $0x0, %rax
je no_call
cmove %r12, %r11
or %r11, %rcx
callq *%rcx
.no_call:
...

target:
...

Register State
r12 (poison): -1
rax (condition): 0
rflags: resolved

: Non-speculative execution
: Speculative execution

Why Poison the Branch Target?

• The data dependency we introduce delays the execution of the
indirect branch until rflags is resolved
▶ Poisoning seems redundant since when rflags is resolved, the target of

conditional branch becomes known

• However, the ordering of the instructions is not guaranteed
▶ When rflags is resolved, the conditional move and the indirect branch

may execute before the conditional branch
▶ Corrupted pointer may still be dereferenced

• Poisoning the pointer guarantees it will dereference a bad address

Why Poison the Branch Target?

• The data dependency we introduce delays the execution of the
indirect branch until rflags is resolved
▶ Poisoning seems redundant since when rflags is resolved, the target of

conditional branch becomes known
• However, the ordering of the instructions is not guaranteed

▶ When rflags is resolved, the conditional move and the indirect branch
may execute before the conditional branch

▶ Corrupted pointer may still be dereferenced

• Poisoning the pointer guarantees it will dereference a bad address

Why Poison the Branch Target?

• The data dependency we introduce delays the execution of the
indirect branch until rflags is resolved
▶ Poisoning seems redundant since when rflags is resolved, the target of

conditional branch becomes known
• However, the ordering of the instructions is not guaranteed

▶ When rflags is resolved, the conditional move and the indirect branch
may execute before the conditional branch

▶ Corrupted pointer may still be dereferenced
• Poisoning the pointer guarantees it will dereference a bad address

Spectre mitigations

• Reduce the effectiveness of side-channels
▶ Prevent speculative execution from leaving traces in cache

• Prevent speculative execution
▶ LFENCEs, Retpolines, …

• Prevent predictor poisoning
▶ Indirect Branch Restricted Speculation (IBRS), Single Thread Indirect

Branch Prediction (STIBP), …
• Prevent access to secret data during speculative execution

▶ Isolate secret data to protected regions

Spectre mitigations

• Reduce the effectiveness of side-channels
▶ Prevent speculative execution from leaving traces in cache

• Prevent speculative execution
▶ LFENCEs, Retpolines, …

• Prevent predictor poisoning
▶ Indirect Branch Restricted Speculation (IBRS), Single Thread Indirect

Branch Prediction (STIBP), …
• Prevent access to secret data during speculative execution

▶ Isolate secret data to protected regions

Spectre mitigations

• Reduce the effectiveness of side-channels
▶ Prevent speculative execution from leaving traces in cache

• Prevent speculative execution
▶ LFENCEs, Retpolines, …

• Prevent predictor poisoning
▶ Indirect Branch Restricted Speculation (IBRS), Single Thread Indirect

Branch Prediction (STIBP), …

• Prevent access to secret data during speculative execution
▶ Isolate secret data to protected regions

Spectre mitigations

• Reduce the effectiveness of side-channels
▶ Prevent speculative execution from leaving traces in cache

• Prevent speculative execution
▶ LFENCEs, Retpolines, …

• Prevent predictor poisoning
▶ Indirect Branch Restricted Speculation (IBRS), Single Thread Indirect

Branch Prediction (STIBP), …
• Prevent access to secret data during speculative execution

▶ Isolate secret data to protected regions

Memory corruption & mitigations

• Attacker corrupts memory → takes control over the control-flow of
the program

• Mitigations:

▶ Address space layout randomization
• Randomizes the address where various memory segments are loaded

▶ Control flow integrity
• Verifies that control flow is only transferred to valid targets

▶ Stack canaries, Non-executable memory, …

Memory corruption & mitigations

• Attacker corrupts memory → takes control over the control-flow of
the program

• Mitigations:

▶ Address space layout randomization
• Randomizes the address where various memory segments are loaded

▶ Control flow integrity
• Verifies that control flow is only transferred to valid targets

▶ Stack canaries, Non-executable memory, …

Memory corruption & mitigations

• Attacker corrupts memory → takes control over the control-flow of
the program

• Mitigations:
▶ Address space layout randomization

• Randomizes the address where various memory segments are loaded

▶ Control flow integrity
• Verifies that control flow is only transferred to valid targets

▶ Stack canaries, Non-executable memory, …

Memory corruption & mitigations

• Attacker corrupts memory → takes control over the control-flow of
the program

• Mitigations:
▶ Address space layout randomization

• Randomizes the address where various memory segments are loaded
▶ Control flow integrity

• Verifies that control flow is only transferred to valid targets

▶ Stack canaries, Non-executable memory, …

Memory corruption & mitigations

• Attacker corrupts memory → takes control over the control-flow of
the program

• Mitigations:
▶ Address space layout randomization

• Randomizes the address where various memory segments are loaded
▶ Control flow integrity

• Verifies that control flow is only transferred to valid targets
▶ Stack canaries, Non-executable memory, …

Preventing Speculative probing

• Spectre mitigations are ineffective

▶ Does not use out-of-bounds values to exploit Spectre v1
▶ Does not rely on indirect branch mispredictions (Spectre v2) since the

pointer is already architecturally corrupted
• Other strong defenses also bypassed

▶ (K)ASLR — even fine grained — bypassed with speculative probing

Preventing Speculative probing

• Spectre mitigations are ineffective
▶ Does not use out-of-bounds values to exploit Spectre v1

▶ Does not rely on indirect branch mispredictions (Spectre v2) since the
pointer is already architecturally corrupted

• Other strong defenses also bypassed

▶ (K)ASLR — even fine grained — bypassed with speculative probing

Preventing Speculative probing

• Spectre mitigations are ineffective
▶ Does not use out-of-bounds values to exploit Spectre v1
▶ Does not rely on indirect branch mispredictions (Spectre v2) since the

pointer is already architecturally corrupted

• Other strong defenses also bypassed

▶ (K)ASLR — even fine grained — bypassed with speculative probing

Preventing Speculative probing

• Spectre mitigations are ineffective
▶ Does not use out-of-bounds values to exploit Spectre v1
▶ Does not rely on indirect branch mispredictions (Spectre v2) since the

pointer is already architecturally corrupted
• Other strong defenses also bypassed

▶ (K)ASLR — even fine grained — bypassed with speculative probing

Preventing Speculative probing

• Spectre mitigations are ineffective
▶ Does not use out-of-bounds values to exploit Spectre v1
▶ Does not rely on indirect branch mispredictions (Spectre v2) since the

pointer is already architecturally corrupted
• Other strong defenses also bypassed

▶ (K)ASLR — even fine grained — bypassed with speculative probing

Spectre attacks details — Training phase

Victim:
void foo(int idx)
{

char array1[5];
char array2[256]; // Att. controled
/* ... */
if (idx < array1_len) {

x = array2[array1[idx]];
}

}

Attacker:
foo(1);
foo(1);
foo(1);
foo(1);
foo(1);
// Predictor is now trained
// to take the branch

// array1[1235] will be
// speculatively fetched
foo(1235);

Spectre variants

• Different variants depending on which CPU predictor they mistrain

• Spectre-v1 (aka Spectre-BCB)
▶ Mistrain conditional branch, access out-of-bounds data

if (x < array1_size)
y = array2[array1[x] * 4096];

• Spectre-v2 (aka Spectre-BTB)
▶ Mistrain Branch Target Buffer, indirect call executes

attacker-controlled target
• Spectre-RSB (aka ret2spec), Spectre-STL, …

Spectre variants

• Different variants depending on which CPU predictor they mistrain
• Spectre-v1 (aka Spectre-BCB)

▶ Mistrain conditional branch, access out-of-bounds data
if (x < array1_size)

y = array2[array1[x] * 4096];

• Spectre-v2 (aka Spectre-BTB)
▶ Mistrain Branch Target Buffer, indirect call executes

attacker-controlled target
• Spectre-RSB (aka ret2spec), Spectre-STL, …

Spectre variants

• Different variants depending on which CPU predictor they mistrain
• Spectre-v1 (aka Spectre-BCB)

▶ Mistrain conditional branch, access out-of-bounds data
if (x < array1_size)

y = array2[array1[x] * 4096];
• Spectre-v2 (aka Spectre-BTB)

▶ Mistrain Branch Target Buffer, indirect call executes
attacker-controlled target

• Spectre-RSB (aka ret2spec), Spectre-STL, …

Spectre variants

• Different variants depending on which CPU predictor they mistrain
• Spectre-v1 (aka Spectre-BCB)

▶ Mistrain conditional branch, access out-of-bounds data
if (x < array1_size)

y = array2[array1[x] * 4096];
• Spectre-v2 (aka Spectre-BTB)

▶ Mistrain Branch Target Buffer, indirect call executes
attacker-controlled target

• Spectre-RSB (aka ret2spec), Spectre-STL, …

Spectre attacks details — Speculative execution phase

Spectre attacks details — Exfiltration phase

Attacker times cache accesses to deduce value of secret byte

Prevent Side channels and transient execution

• Speculative execution does not influence the cache/TLB etc.
• Hold speculatively accessed data in separate cache
• Prevent speculatively cached data from being accessed
• Reduce the accuracy of timing mechanisms
• Limit sharing of CPU prediction units between users/cores/security

domains
• Mask out-of-bounds array indices

Side channels — Common techniques

• Cache side channels
▶ Prime+Probe: Attacker fills cache, victim accesses secret and evicts

some value from cache, attacker times for cache misses
▶ Flush+Reload: Attacker cleans cache, victim accesses shared data,

attacker times for cache hits
• Timing of other CPU components

▶ AVX2 Units power-on timings
▶ Memory buses

Speculative probing — Gadget probing

Speculative probing — Data region probing

Speculative probing — Object probing

Speculative probing — Spectre gadget probing

Speculative probing — Memory corruption

• Vulnerability: Heap buffer overflow in Linux kernel
• Can corrupt a struct that:

▶ Contains a function pointer
▶ Contains data that can influence a conditional branch before the

function pointer is derefernced
• Several vulnerabilities with similar primitives were reported

Speculative probing — Breaking Coarse-grained ASLR

1. Use code region probing to discover where kernel image was loaded
2. Use data region probing to discover the kernel heap
3. Use object probing to locate payload in heap
4. Trigger the control-flow hijack non-speculatively to mount a ret2usr

attack

Speculative probing — Data-only attack

1. Use code region probing to discover where kernel image was loaded
2. Use spectre gadget probing to locate a spectre gadget
3. Use the spectre gadget to leak the root password hash from memory
4. Crack root password hash

Speculative probing — Breaking Software-based XoM

1. Use code region probing to discover where kernel image was loaded
2. Use spectre gadget probing to locate a spectre gadget
3. Use the spectre gadget to leak kernel code
4. Use data region probing to discover the kernel heap
5. Use object probing to locate payload in heap
6. Trigger the control-flow hijack non-speculatively to mount a ret2usr

attack

Speculative probing — Exploit time

• Locating kernel image → 0.7s
• Locating kernel heap → 49.2s
• Locating ROP payload in heap → 67.0s
• Locating a Spectre gadget → 76.7s
• Leaking root password hash → 107.4s
• Leaking entire kernel code → 56m

SPEAR attacks — Bypassing stack canaries

1. Call target function multiple times to train canary check branch
2. Overwrite saved return address with speculative ROP payload,

corrupting stack canary
3. Evict global canary value to extend speculation window
4. Speculatively return to attacker chosen address
5. Side-channel to extract accessed data

SPEAR attacks — Bypassing CFI (GCC-VTV)

GCC Virtual Table Verification looks up target of indirect branch in a table
containing valid targets

1. Corrupt indirect pointer
2. Evict lookup table address from cache to extend speculation window
3. Perform indirect call, speculatively transferring control flow to

attacker address
4. Extract data with side-channel

	Appendix

