Building a Data Warehouse For Scalability and Flexibility

Ray Welsh
Business Intelligence Marketing Manager
Informix Software Ltd.

Agenda

- Informix examples of VLDB
- Drivers of growth & evolution
- Failure of traditional methods to meet requirements of growth and evolution
- Technology and methodology directions
- What should research community be working on

Very Large Informix Databases

- First Union Corporation
 - planning for 27 terabytes
- Catalina Marketing
 - 95m records/night
- Telecom Italia
 - 2.5 terabytes
- AOL
 - 4 terabytes & 1000 users
- MCI Colorado
 - 6 terabytes
- Longs Drug Stores
 - 10,000 queries per day

- Kraft
 - 3,000 users
 - 150,000 queries per week
 - 95% under 1 second
- Fleet Bank
 - 4 terabytes
- SmarTone
 - one of Hong Kong's largest DW
- Dominos Pizza
 - 1.2 terabytes
- Sears Roebuck and Co
 - 3.1 terabytes

Very Large Data Warehouses

- Large web site will get 10,000,000 hits per day
- As many as PacificBell (telco) will have calls per day
- A web log contains as much, if not more information, as a telco CDR
- There will be thousands of web sites of this size

Growth in Capacity

- Capacity as defined by TPC-H
 - query throughput, complex queries, large data set
- 5 aspects of growth
 - volume of data
 - number of users
 - complexity of analysis
 - reduction in load times
 - faster response times

Growth in Capacity

- Business drivers of growth
 - realisation that all transaction data is important
 - ability to store and process it all within budget
 - more customers, more products, more sales channels, more customer service
 - decision making pushed down
 - benefits of centralised storage become apparent
 - improved understanding of ROI
 - CRM is the killer app DW needed
 - market pressure to compete in i.Economy

Growth in Capacity

- Technical drivers of growth
 - skills and technology become available to store and process larger volumes
 - the web is generating volumes of data that grow at increasing rates
 - Pre-web: data doubled in 50 years, then 10 years
 - Post-web: data doubled in 1 year.
 - Tomorrow, data volumes could double in 1 hour
 - move from IT push to business pull

Why Detail Data is Important

- Push decision making down the organization's hierarchy
 - Information is needed to make decisions
 - Local autonomy will save money
 - local ordering is more accurate
- Better customer service
 - Transaction history
 - Product shipment tracking
- Deeper understanding of the business
 - Strategic data mining

- In addition to the volume growth, business evolution is driving requirements for greater flexibility
- The business environment is ever changing
 - now approaching web speed
- Changing business environment alters how a successful organisation competes
- Examples of changing environment, leading to greater demand for management and utilization of data;

- Changes to business environment
 - Business velocity is increasing
 - shrinking product cycles
 - faster decision making
 - More power to customers
 - 'Pro-sumers'
 - more choice
 - more information
 - empowered to act
 - Need to offer added value relationship

- New competitors
 - With the web, they are everywhere
 - Web provides low cost to start-up
 - Business intelligence shows niche markets not served
 - coupled with short development times, this speeds up the rate of change within a market

Example

- 1. Mobile phone operator identifies a gap in the market by analyzing customers and their usage
- 2. Design a new product (tariff)
- 3. Market to selected audience
- 4. Monitor sign-up rate and profitability
- All these steps require rapid processing of large volumes of detailed data.
- Also valid in other markets
 - Finance, retail, utilities, government, manufacturing

What Doesn't Work

- Single, monolithic data warehouse
 - big bang approach
 - too expensive
 - too long
 - too complex

What Doesn't Work

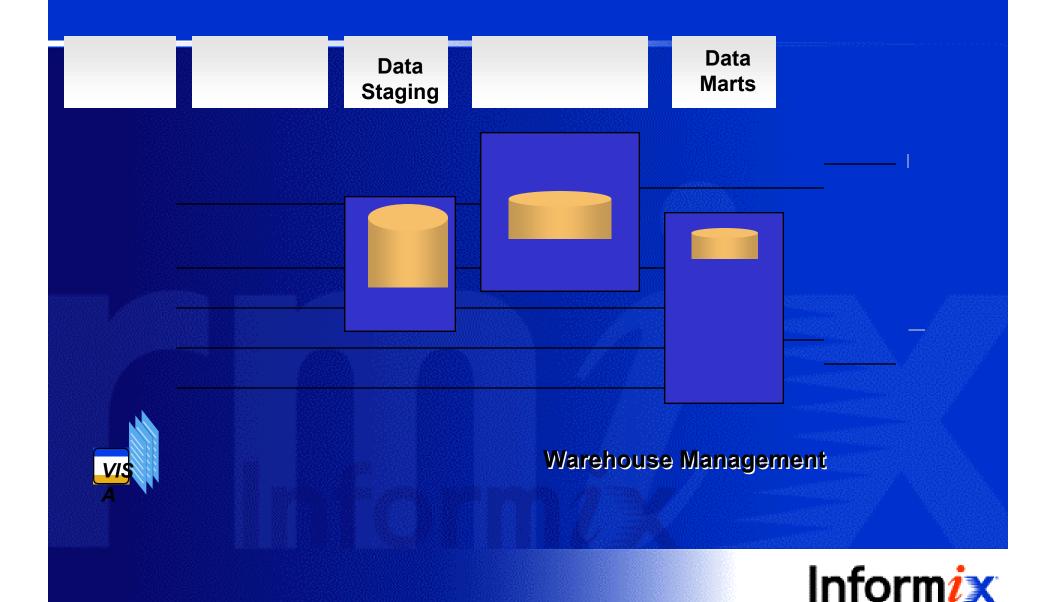
- Multiple, independent data marts
 - individual point of pain solutions
 - no re-use of data & processes
 - no shared definitions
 - 'Islands of information', in a new format

What Does Work

- New technologies and methodologies that manage greater growth & flexibility
- Managing large and rapidly growing volumes of data
- Providing flexibility to serve business environment in web speed
- Combine best of both approaches
 - Rapid deployment of data marts
 - Coordination from data warehouse

What Does Work

- Data Warehouses
 - Improving ETL from sources
 - From ERP, web, other known sources
 - Easier, quicker, cheaper
 - Meta data management
 - More cost effective
 - Use of hardware
 - Proven ROI figures



What Does Work

- Data Marts
 - Responsiveness to user requirements
 - Rapid deployment
 - Flexibility
 - Volume
 - Powerful analysis
 - Some will have a shorter lifetime
 - Dependant on data warehouse
 - Conformed definitions
 - Consistent answers
 - Lower maintenance

An Architecture That Works

What Would Help

- What the research community should be working on
- Business modeling methodologies specific to business intelligence
- More power
 - Indexes
 - Analysis techniques
 - ETL performance
 - High Availability
 - Data Storage
 - Partitioning of data
 - Near-line storage

Summary

- Growth in volume is inevitable
- Growth occurs in several dimensions
- Business has become more dynamic, so have the demands on business intelligence
- Flexibility is as important as scalability

Contact Details

Ray Welsh Informix Software Ltd.

rayw@informix.com www.informix.com

