
Scaling Out Without Partitioning

Phil Bernstein & Colin Reid
Microsoft Corporation

A Novel Transactional Record Manager 

for Shared Raw Flash

© 2009 Microsoft Corporation

HPTS 2009
October 26, 2009



What is Hyder?

2

It’s an incubation, i.e. research project.

A software stack for transactional record management

• Stores [key, value] pairs, which are accessed within transactions

• It’s a standard interface that underlies all database systems

Functionality
• Records: Stored [key, value] pairs
• Record operations: Insert, Delete, Update, 

Get record where field = X; Get next
• Transactions: Start, Commit, Abort

Why build another one?
• Make it easier to scale out for large-scale web services
• Exploit technology trends: flash memory, high-speed networks



Network

Scaling Out with Partitioning

3

Internet

Database
Partition

App

$

Log

Data

Web Server

App $

$

• Database is partitioned across 
multiple servers

• For scalability, avoid distributed 
transactions

• Several layers of caching

• App is responsible for 

– cache coherence

– consistency of cross-partition 
queries

• Must carefully configure to 
balance the load

$ $ $ $

Web Server

App $

Web Server

App $

Database
Partition

App

$

Log

Data

Database
Partition

App

$

Log

Data

Database
Partition

App

$

Log

Data



Network

Hyder Scales Out Without Partitioning

4

Internet
• The log is the database

• No partitioning is required

– Servers share a reliable, 
distributed log

• Database is multi-versioned, so 
server caches are trivially coherent

– Servers can fetch pages from 
the log or other servers’ caches

Hyder Log

Web 
Server

Hyder
$

App

Web 
Server

Hyder
$

App

Web 
Server

Hyder
$

App



Hyder Runs in the Application Process

5

• Simple high performance 
programming model

• No need for client and server 
caches, plus a cache server

• Avoids the expense of RPC’s to a 
database server

Network

Internet

Hyder Log

Web 
Server

Hyder
$

App

Web 
Server

Hyder
$

App

Web 
Server

Hyder
$

App



Enabling Hardware Assumptions

• I/O operations are now cheap and abundant
– Raw flash offers at least 104 more IOPS/GB than HDD

 Can spread the database across a log, with less physical contiguity

• Cheap high-performance data center networks
– 1Gbps broadcast, with 10Gbps coming soon

– Round-trip latencies already under 25 μs on 10 GigE

 Can have many servers sharing storage, with high performance

• Large, cheap, 64-bit addressable memories
– Commodity web servers can maintain huge in-memory caches

 Reduces the rate that Hyder needs to access the log

• Many-core web servers
– Computation can be squandered 

 Hyder uses it to maintain consistent views of the database….
6



The Hyder Stack

• Segments, stripes and streams
Highly available, load balanced and
self-managing log structured storage

7

• Optimistic transaction protocol
Supports standard isolation levels

• Persistent programming language
LINQ or SQL layered on Hyder

• Custom controller interface
Flash units are append-only

• Multi-versioned binary search tree
Mapped to log-structured storage



Hyder Stores its Database in a Log

• Log uses RAID erasure coding for reliability

8



Database is a Binary Search Tree

9

G

B

A

H

C I

D

A D C B I H G

Binary
Search
Tree

Tree is marshaled into the log



D

Update
D’s value

Binary Tree is Multi-versioned

10

G

B

A

H

C I

D

• Copy on write

• To update a node, replace nodes up to the root

C

B

G



Transaction Execution
• Each server has a cache of the last committed database state

• A transaction reads a snapshot and generates an intention log 
record

11

A D C B I H G

Transaction execution
1. Get pointer to snapshot
2. Generate updates locally
3. Append intention log record

D C B G

Snapshot

G

B

C

D

DB cache

G

B

C

D

H

IA

last committed



Log Updates are Broadcast

12

Broadcast 
intention

Broadcast 
ack



Transaction Commit
• Every server executes a roll-forward of the log

• When it processes an intention log record, 

– it checks whether the transaction experienced a conflict

– if not, the transaction committed and the server merges the 
intention into its last committed state

• All servers make the same commit/abort decisions

13

A D C B I H G D C B G

transaction T

Did a committed transaction write 
into T’s readset or writeset here?

Snapshot



Hyder Transaction Flow

14

Transaction starts with a
recent consistent snapshot

Transaction
executes on
application

server

Transaction “intention”
is appended to the log

and partially broadcast
to other servers

Intention
is durably
stored in

the log

Intention
log sequence
is broadcast
to all servers

Messages
are received

over UDP
and parsed 
in parallel

Each server
sequentially
merges each

intention into
the committed

state cache

Optimistic concurrency
violation causes transaction to

abort and optionally retry



Performance 
• The system scales out without partitioning

• System-wide throughput of update transactions is bounded by
the slowed step in the update pipeline
– 15K update transactions per second possible over 1 Gigabit Ethernet

– 150K update transactions per second expected on 10 Gigabit Ethernet

– Conflict detection & merge can do about 300K update transactions per second

• Abort rate on write-hot data is bounded by txn’s conflict zone
– Which is determined by end-to-end transaction latency.

– About 200 μs in our prototype  ~ 1500 update TPS if all txns conflict

15

A D C B I H G D C B G

Minimize the length of the conflict zone



Major Technologies
• Flash is append-only. Custom controller has 

mechanisms for synchronization & fault tolerance

• Storage is striped, with a self-adaptive algorithm 
for storage allocation and load balancing

• Fault-tolerant protocol for a totally ordered log

• Fast algorithm for conflict detection and merging 
of intention records into last-committed state

16



Status

• Most parts have been prototyped.

– But there’s a long way to go.

• We’re working on papers

– HTPS abstracts are the first.

17


