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What is Hyder?
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It’s an incubation, i.e. research project.

A software stack for transactional record management

• Stores [key, value] pairs, which are accessed within transactions

• It’s a standard interface that underlies all database systems

Functionality
• Records: Stored [key, value] pairs
• Record operations: Insert, Delete, Update, 

Get record where field = X; Get next
• Transactions: Start, Commit, Abort

Why build another one?
• Make it easier to scale out for large-scale web services
• Exploit technology trends: flash memory, high-speed networks
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Scaling Out with Partitioning
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• Database is partitioned across 
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• For scalability, avoid distributed 
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Network

Hyder Scales Out Without Partitioning
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Internet
• The log is the database

• No partitioning is required

– Servers share a reliable, 
distributed log

• Database is multi-versioned, so 
server caches are trivially coherent

– Servers can fetch pages from 
the log or other servers’ caches
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Hyder Runs in the Application Process
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• Simple high performance 
programming model

• No need for client and server 
caches, plus a cache server

• Avoids the expense of RPC’s to a 
database server
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Enabling Hardware Assumptions

• I/O operations are now cheap and abundant
– Raw flash offers at least 104 more IOPS/GB than HDD

 Can spread the database across a log, with less physical contiguity

• Cheap high-performance data center networks
– 1Gbps broadcast, with 10Gbps coming soon

– Round-trip latencies already under 25 μs on 10 GigE

 Can have many servers sharing storage, with high performance

• Large, cheap, 64-bit addressable memories
– Commodity web servers can maintain huge in-memory caches

 Reduces the rate that Hyder needs to access the log

• Many-core web servers
– Computation can be squandered 

 Hyder uses it to maintain consistent views of the database….
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The Hyder Stack

• Segments, stripes and streams
Highly available, load balanced and
self-managing log structured storage
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• Optimistic transaction protocol
Supports standard isolation levels

• Persistent programming language
LINQ or SQL layered on Hyder

• Custom controller interface
Flash units are append-only

• Multi-versioned binary search tree
Mapped to log-structured storage



Hyder Stores its Database in a Log

• Log uses RAID erasure coding for reliability
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Database is a Binary Search Tree
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D

Update
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Binary Tree is Multi-versioned

10

G

B

A

H

C I

D

• Copy on write

• To update a node, replace nodes up to the root

C

B

G



Transaction Execution
• Each server has a cache of the last committed database state

• A transaction reads a snapshot and generates an intention log 
record
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Log Updates are Broadcast
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Transaction Commit
• Every server executes a roll-forward of the log

• When it processes an intention log record, 

– it checks whether the transaction experienced a conflict

– if not, the transaction committed and the server merges the 
intention into its last committed state

• All servers make the same commit/abort decisions

13

A D C B I H G D C B G

transaction T

Did a committed transaction write 
into T’s readset or writeset here?

Snapshot



Hyder Transaction Flow
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Performance 
• The system scales out without partitioning

• System-wide throughput of update transactions is bounded by
the slowed step in the update pipeline
– 15K update transactions per second possible over 1 Gigabit Ethernet

– 150K update transactions per second expected on 10 Gigabit Ethernet

– Conflict detection & merge can do about 300K update transactions per second

• Abort rate on write-hot data is bounded by txn’s conflict zone
– Which is determined by end-to-end transaction latency.

– About 200 μs in our prototype  ~ 1500 update TPS if all txns conflict

15

A D C B I H G D C B G

Minimize the length of the conflict zone



Major Technologies
• Flash is append-only. Custom controller has 

mechanisms for synchronization & fault tolerance

• Storage is striped, with a self-adaptive algorithm 
for storage allocation and load balancing

• Fault-tolerant protocol for a totally ordered log

• Fast algorithm for conflict detection and merging 
of intention records into last-committed state
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Status

• Most parts have been prototyped.

– But there’s a long way to go.

• We’re working on papers

– HTPS abstracts are the first.
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