
Synoptic visualizations give viewers a syn-
opsis of all flow features simultaneously.

Good examples of 2D synoptic visualizations are weath-
er maps from both TV news reports and online Web

pages. The human visual system
is adept at finding patterns with-
in larger contexts, and we
hypothesize that synoptic visu-
alization methods will help users
find unexpected features more
quickly and thus speed the
understanding of complex 3D
time-varying flows.

Particle Flurries (PF) is our
effort toward a synoptic visual-
ization of complex pulsatile 3D
flow. Our group’s ongoing study
of the correlation between arte-
rial blood flow and lesions as

well as our research into the mechanics, dynamics, and
evolution of animal flight (described in the “Visual-
ization in Biomedical Research” sidebar) motivated
this work. Our approach was inspired by videos of par-
ticles animating through a vessel. The video’s flat view
raised questions about the precise behavior of the com-
plex 3D flow, such as how particles move in the third
dimension and what their movement is relative to the
vessel wall. An immersive viewing environment
promised to more effectively display complex 3D struc-
tures, thus our primary challenge was to design an
effective 3D visualization based on the motivational
2D visualization style. 

PF tries to satisfy four goals:

� represent all flow features,
� depict flow at artery surfaces,
� allow user interaction, and
� avoid visually overwhelming the viewer.

Feature Article

Particle Flurries is an

interactive approach to 3D

flow visualization. The

approach produces a

“synoptic visualization” and

is used to examine both

internal and external flows.

Jason S. Sobel, Andrew S. Forsberg, 
David H. Laidlaw, Robert C. Zeleznik, 
Daniel F. Keefe, Igor Pivkin, George E. Karniadakis,
Peter Richardson, and Sharon Swartz
Brown University

Particle Flurries
Synoptic 3D Pulsatile Flow Visualization

76 March/April 2004 Published by the IEEE Computer Society 0272-1716/04/$20.00 © 2004 IEEE

Visualization in Biomedical Research
Our research group comprises cardiologists,

bioengineers, evolutionary biologists, and
computer scientists working together to test the
hypothesis that the location of atherosclerotic
disease is correlated with the arterial blood flow
characteristics. Pathological study has shown that
plaque formation is not random; thus biomedical
engineers are investigating whether it’s related to
the local details of blood flow.1,2 Blood flow
interaction, both with substances carried in the
flow and present or generated in the vessel wall,
can accelerate or decelerate atherosclerosis’ local
progress. Understanding the interaction between
the flow and the surface can help us understand
the cause of detrimental medical conditions, as
well as their prevention and treatment.

Computational approaches to understanding
arterial flow promise to be extremely valuable
tools, but are currently primitive. Real-world
problem specifications and simulation models can’t

account for all physical components of a real flow.
Furthermore, the data’s scale and complexity make
it difficult to understand the simulations produced. 

Another interest for our group is the mechanics,
dynamics, and evolution of animal flight. Our goal
is to better understand how flight works in
different species and how flight techniques
evolved. The broader impact of our work includes
the design of better flying machines. We focus on
bats, which offer tremendous genetic diversity via
a thousand different species. Bats are much more
agile, complex, and varied than birds and fly at a
greater range of speeds.
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This article describes the overall design of PF and dis-
cusses the system we constructed to test PF and its asso-
ciated tools. We demonstrate our techniques with
simulations of blood flow through an artery (an inter-
nal flow) and air flow around a bat flapping its wings
(an external flow). Many other published flow visual-
ization approaches exist (see the “Related Work in 3D
Flow Visualization” sidebar) and could be comple-
mentary to PF for some data sets. 

Interestingly, the choices we made in developing an
effective virtual design for PF (for example, immersive
viewing, the vessel wall texture, rendering thousands
of haloed motion-blurred particles) are inappropriate
for paper and video viewing of PF. Adapting a 2D con-
cept to 3D or vice versa can introduce problems. To illus-
trate, the static monoscopic images in this article can’t
recreate the immersive experience of PF. A more sur-
prising example is that if we disabled only stereo view-
ing in PF, viewers instantly lost their spatial sense of the
flow other than that there was movement in a down-
stream direction. 

Our approach 
The goal and requirements of synoptic visualization

of 3D pulsatile flow helped guide our work. Our specif-
ic approach was primarily inspired by 2D animations of
particles produced by hydrogen-bubble devices and
analogous physical and computer visualizations.
Although these animations met a number of our require-
ments, they mask the flow’s depth component. We thus
wanted to extend this visualization style to 3D. At a high
level, this involves computing particle paths and ren-
dering them in a 3D viewing environment. This strate-
gy requires interactive display rates, representation of
all flow features, and an effective visualization design.

Precomputing particle paths as pathlines
Advecting thousands of particles is computationally

intensive and impossible to accomplish interactively
with current resources. Precomputing particle paths lets
us animate them quickly at runtime. A path has a simu-
lation start time and a list of points. Synchronizing
advection of many particle paths at runtime is simple
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Related Work in 3D Flow Visualization
Particle Flurries (PF) integrates results on visual

representation from many scientific visualization sources. 

Representation 
Illuminated streamlines improve perception of

streamlines by shading them as a function of light sources
and helped motivate the particle representation and
seeding in PF.1 Fuhrmann and Groller describe a similar
virtual-reality system.2 Unlike these two approaches, we
display unsteady flow, don’t allow pathlines to begin or end
midflow, and cycle among a much larger set of pathlines. 

Analogous to Zhang et al., who carefully choose
representative paths to display tensor-valued volume data,3

we carefully choose particles for displaying 3D flow. Turk
and Banks’ 2D work4 is similarly related. Like line integral
convolution (LIC),5,6 our approach aspires to show the
flow’s global and local behavior, but, unlike LIC, it uses
time, 3D sponges, and stereo viewing. 

Steinman et al.7 produced motivational movies of carotid
blood flow with 3D particle traces, but their viewpoint is
outside the flow volume looking in, and their view is
monoscopic. In our system, the viewer can interactively
navigate inside the flow for a close-up look at flow features.

A single pathline, streamline, or streakline shows a piece
of the puzzle, useful for detailed analysis. However, it’s
impractical for a user to interactively create and position
enough streamlines and streaklines to achieve a synoptic
visualization comparable to PF. 

Extraction
Bryson et al.8 point out that extracting a data set

algorithmically using a precise feature description is more
effective than exploring the data set interactively. To
increase efficiency, PF can work with techniques that
automatically extract higher-level features such as vortex

cores, shocks, and recirculation. 
Automatic extraction techniques don’t exist for all flow

features, and others are still in early development, so
human-in-the-loop exploration is still needed. In some
cases, the low-level particle paths can help explain
particular phenomena.

Exploring flow
Several systems for exploring 3D flow exist. One of the

most widely used is Tecplot (http://www.amtec.com/), a
commercial desktop application. Unlike Tecplot, which
runs on a conventional desktop, our approach relies on
stereo, head tracking, and immersive 3D graphics to
display flow data. 

Bryson’s virtual wind tunnel9 is a clear antecedent to our
work but requires users to manipulate widgets to generate
the visualization. PF provides a complete view quickly; the
user need not do more than navigate the data set.

Kuester et al.10 implements a virtual wind tunnel in a virtual
environment, rendering up to 60,000 particles at 60 frames
per second. Whereas Kuester sought to enable visualization
of arbitrarily large scientific data sets on commodity
hardware with high graphics performance, our goal was to
achieve a synoptic visualization of 3D pulsatile flow. 

Max, Crawfis, and Grant developed hairs, a technique for
visualizing flow near a surface.11 Hairs are similar to our
kelp, but we use different visual anchors and line
calculations and don’t allow data-driven control over colors
and lengths. 

Particle seeding
Like Stalling and Hege12 and Bauer et al.13 use quasi-

random particle seeding to avoid patterns and clusters.
Their approach distributes the seed points for calculating
pathlines, but because it doesn’t account for the pathlines

continued on p. 78



because the time difference between stored points in
our implementation is constant and requires only incre-
menting an index into the array of path points.

Choosing a representative subset of paths
A key issue in synoptic visualization of 3D pulsatile

flow is determining which particle paths to display. To
represent all flow features, we need a set of pathlines
that particles will follow. At a high level, we find this set
by choosing a finite set of 4D seeds (that is, points in
spacetime). For each seed, we compute a pathline that
advects forward and backward until it exits the data set
and then store it as a single pathline combining the two
segments. For practical reasons, we also terminate path-
lines that reach a maximum number of points. At run-
time, we draw a particle first at the most upstream point
of the pathline (not the seed position) and animate it
until it reaches the end of the pathline.

Our goal that all features be represented requires that
some particles pass through every possible feature.
Because computer simulation requires a discrete
description of the flow problem, a constant (possibly
anisotropic) distance, D, exists below which no addi-
tional features can exist. In our arterial blood flow data
set, which we computed using 1 flow codes,
D is a function of the polynomial order of ’s
spectral elements and the element density within the
volume. Because particles follow pathlines, we’ll meet

our goal if we can compute a set of pathlines such that
every point on one pathline is no further than D from a
point on any other pathline. 

We can meet this condition by adding seeds to fill gaps,
sometimes at the cost of some redundancy in particle
path coverage. We could use a simple seeding imple-
mentation that places seeds at fixed intervals of D on a
regular grid, but this approach typically produces many
similar pathlines. Instead, we used a Poisson-disk-based
strategy for seeding. Figure 1 illustrates the technique,
and Figure 2 shows pseudocode for the algorithm. 

Specifically, a sweep plane steps in increments of D
along the coordinate system axis that is most closely
aligned with the primary flow direction. At each step, a
2D Poisson-disk seeding algorithm with radius D adds
seeds to the plane approximately normal to the flow
direction. (The plane already has seeds at each point
where an already calculated pathline intersects the
plane.) Each new plane might therefore need only a few
additional seed points. We compute a pathline extending
forward and backward for each new seed and then store
it on disk as a list of points. Note that it’s easy to use the
stored data to compute the position and time of any point
along the path because we record the constant integra-
tion step used and the start time of a path. This algorithm
repeats until the plane reaches the end of the flow. 

The implementation’s data structure represents all
sweep plane positions in space and time. Thus, for each
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when choosing seed points, it would generate many more
pathlines than our method.

Visualization
Vis5D (http://www.ssec.wisc.edu/~billh/vis5d.html), pV3

(http://raphael.mit.edu/pv3/pv3.html), CAVE5D (http://
www.ccpo.odu.edu/~cave5d/homepage.html), AVS
(http://www.avs.com), and SCIRun (http://software.
sci.utah.edu/scirun.html) all provide visualization
functionality, but visualizations like PF haven’t been
produced with them, and none of the systems
automatically provides a synoptic initial visualization. 

Forsberg et al.14 also construct flow visualizations, but
through user-controlled widgets; our approach generates
the visualization automatically.
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plane in space, multiple instances exist that differ in the
instant in time the plane represents and, consequently,
the set of pathlines passing through it. This is important
because different pathlines can pass through a particu-
lar plane at different times, and the algorithm must
know where to add seeds to ensure completeness.

To meet a targeted distribution goal, standard Pois-
son-disk seeding fills a space with points by considering
the placement of previous points. Our algorithm fills a
4D space with lines (or pathlines) by considering where
previous lines were placed. The overhead of the path-
line-set data structure and intersection and distance test-
ing can make the Poisson-disk method slower than the
fixed-interval method. However, for our artery data set
and D equal to 1 unit (the artery diameter is 8 units),
the fixed-interval approach produced 62,880 seeds over
16 time steps and the Poisson-disk approach produced
4,041 seeds—a 93-percent reduction.

Visual design
Visualizing time-varying fluid flow with animated

particles requires designing a representation for parti-
cles, choosing a path for them to follow, and deciding
other particle-animation details.

Representation. A particle always follows a pre-
computed pathline from the inflow to the outflow. We
represent a particle as a motion-blurred OpenGL line-
strip surrounded by a black halo, as Figure 3 shows. We
create the black halo by enabling z-buffering, setting the
GL line width to a thicker value (we use three pixels),
turning on antialiasing, and drawing the particle lines
before any other geometry. Other techniques could pro-
duce a similar effect, such as 2D texture mapping, or
drawing two lines—first, a colored line with gradual
alpha blending at its edges, and then a thicker black line
slightly behind it.

The points defining the OpenGL line-strip are a five-
vertex window on a precomputed pathline, with the ver-
tices equally spaced in time. The center vertex has
100-percent opacity, the end points have 0-percent opac-
ity, and the other points are interpolated between these
extremes. The window advances in sync with a global
timer, giving the appearance of an animated particle.
We find this representation to be more effective than
using a 3D geometry to represent particles because it 
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1 Simplified illustration of the Poisson-disk seeding
algorithm without the time dimension. A plane sweeps
from the inflow to the outflow. At each step, the algo-
rithm adds seeds to fill gaps: (a) the three initial seeds,
(b) one seed is added to fill a gap, and (c) another seed
is added.

(a)

(b)

(c)

(1) for each slice (s) 
(2) for each timestep (t) 
(3) create seeds for (s, t) using a Poisson-disk

distribution considering existing seeds
marked “old’’

(4) mark each of these seeds as “new’’
(5) end 

(6) for each timestep (t) 
(7) calculate a pathline forward and backward

for each seed in (s, t) marked as “new’’

(8) for each pathline created (p) 
(9) for each slice (s1) 
(10) determine the point of intersection (i) 

where p intersects s1 
(11) determine the timestep (t1) at i 
(12) add i as a seed in (s1, t1) 
(13) mark this seed as “old’’
(14) end 
(15) end 
(16) end 
(17) end

2 Pseudocode for one of our pathline calculation
algorithms.

3 Close-up of the rendering of several haloed motion-blurred particles.
This representation for particles reduced occlusion of distant particles,
animated more smoothly, reinforced the front-to-back ordering of parti-
cles, and provided good visual cues for stereo convergence.



� reduces occlusion of distant particles, 
� reinforces front-to-back particle ordering, 
� provides good visual cues for stereo convergence, and 
� provides a smooth motion-blurred rendering style. 

We assign bright colors randomly to help differentiate
individual particles.

Particle release and advection. PF maintains
a set of active particles. At a user-controlled rate, par-
ticles move one step along its path. To keep the visual-
ization synchronized, we select new particles for the
set based on their initial position and start time. To
address our interactive and complexity requirements,

we release a user-controllable vari-
able number of particles each
frame. Fifteen additional particles
per time step works well with our
artery data set. Different viewers
have different needs, however, so
these parameters can be modified
interactively. In addition, particle
attributes can influence particle
release behavior. For example, the
viewer can release particles with
equal probability or tune the visu-
alization by increasing the proba-
bility of releasing particles with low
average speed or low minimum
velocity. Particle color could be
mapped to other flow data quanti-
ties, but this design decision may
impact the clarity of particle
movement.

Tuning particle release.

When we turn particle release bias-
ing on, the release algorithm com-

putes a normalized scalar value m ranging from 0 to 1
for each pathline. We can use several metrics—for
example, we compute average velocity as m = v/Vmax,
where v is a particle’s average velocity and Vmax is the
maximum inflow velocity. Until the algorithm has
released the target number of particles for a given frame,
it selects and releases a random particle if r < (s ∗ m)p

where r is a random number between 0 and 1, and s and
p are interactively controlled by the user. The variable s
controls the range of values between 0 and 1, and p shifts
how the particles chosen are emphasized: for p < 1, low
values are more often chosen, for p > 1, high values are
more often chosen.

Visualizing the boundary surface. To clearly
represent the curving boundary surface and let users
see flow on the other side of a vessel wall, we render the
geometry with a chicken-wire style texture, as Figure 4
shows. The chicken wire is composed of a thinly woven,
fully opaque pattern interpolated with fully transpar-
ent sections, revealing structure without totally obscur-
ing the flurries. Interrante et al.’s work,2 which showed
that opaque textures are more effective than semi-
transparent textures in conveying surface shape and
interior features, inspired our choice of texture.

Flow near geometries. Flow behavior near the
boundary surface geometry is interesting because it’s
where the flow and the surface interact. We draw kelp at
the surface to highlight flow behavior near surfaces, as
Figure 5 shows. Kelp consists of an oriented glyph at a
surface anchor point and a streamline that uses a point
in the flow just normal to the anchor point as its seed. A
streamline is an integral path through the instantaneous
flow field at a point in time, and so changes as the flow
changes. We color the glyph with scalar flow data, such
as pressure, and draw a streamline with length propor-
tional to the flow’s speed just normal to the anchor point
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4 Artist-enhanced illustration of a fully immersed user in an artery just upstream of a bifurca-
tion. The vessel wall geometry is rendered as a chicken-wire mesh to reveal its structure and
the objects behind it, and to give the user a spatial reference without obscuring the pathlines.

5 Kelp in the artery shows flow information near the vessel walls. Although
not animated in this illustration, the kelp near the bifurcation ebb and flow
in response to the simulated heartbeat.



(the flow at the anchor point is always zero and there-
fore not useful to show). At runtime pulsatile flows cause
the kelp to ebb and flow, helping to identify regions of
interest—for example, locations of flow reversal or high
or low shear stress. Finally, as with particle paths, we
precompute the kelp seed points and streamlines to
achieve runtime interactivity.

User interaction
Scientists can modify particle color and release behav-

ior by creating virtual paint strokes, or sponges, directly
in the data volume using the cavepainting3 metaphor.
Before creating a sponge, a user can select a color from
the hue saturation value (HSV) color space using a color
selector widget. Particles passing through a sponge
accrue the sponge’s color. 

Red, white, and blue sponges have special behaviors: 

� A red sponge deletes particles that pass through it. 
� A white sponge acts as a particle

emitter, releasing particles into
the flow. 

� A blue sponge prevents a particle
from being released into the flow
unless it will eventually pass
through the sponge. 

This functionality runs at interac-
tive rates because we use a 3D lookup
table the size of the data set’s bound-
ing box with a sample spacing of
about 1/15th the diameter of the
artery. Even this somewhat coarse
sampling rate worked well. The
release algorithm could quickly
query the table for pointers to the set
of paths that passed through the
voxel containing a particular point.
Deleting sponges restores deleted
pathlines and resets the particles’
random colors that changed via
sponges. The user navigates by phys-
ically walking around the space (the
head-tracked view reflects the chang-
ing viewing position), double click-
ing the wand button to automatically
fly between stored viewpoints, using
the wand to point and fly in a partic-
ular direction, or grabbing the world
with a wand button press and subse-
quently translating and rotating the world with hand
movements.

Test results
We’ve applied our system to four flow data sets com-

puted by Karniadakis’s group’s flow codes.
Three were arterial blood flow data sets with varying
peak inflow rates, and one was a time-varying simula-
tion of airflow past a bat’s flapping wings. We derived
the arterial flow data from a prescribed idealized artery
geometry and simulated it computationally. 

We derived the bat flow data by motion capturing the

geometry of a bat flying in a wind tunnel. We meshed a
volume around the captured geometry and calculated
flow velocities within that volume. Figure 6 shows an
image of a flying bat with reflective markers, which
helped create a 3D model of the bat. Figure 7 shows a
time series of the bat model flying as particle flurries
flow around it. 

We implemented PF using an SGI Onyx2 driving a four-
wall Cave. We achieved an average frame rate of 10
frames per second. We expect to achieve just under a 10-
times speedup on commodity graphics hardware such as
3Dlabs Wildcat 6210s. Precomputation of the artery data
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6 Snapshot of a bat flying in a wind tunnel with small
reflective markers on its body. Motion capture tech-
niques helped create a 3D bat model for use in comput-
ing data sets of simulated 3D airflow past the bat’s
flapping wings. 

7 A time series of the bat model flying and particle flurries visualizing simulated 3D flow
around it. The bat model is facing roughly toward the camera, and the primary direction of air
flow is away from the camera into the distance.



set’s pathlines and kelp required several hours and 265
Mbytes of uncompressed disk space for 50 time steps.

Domain specialists have logged tens of hours in the
artery data set and are eager to spend more time explor-
ing the flow. All viewers have appreciated the flow just
by looking at and navigating through the particle flur-
ries. Some use sponges to annotate or modify the flow
to highlight specific features. 

In the artery, one fluids researcher used sponges to
delete flow through the center of the artery because it
was less interesting; to assign different colors to side
branch flow and main branch flow; to color an area of
recirculation near the side branch and subsequently dis-
cover where it flowed from; to carefully study a subset
of flow near the floor of the main branch; to increase the
frame rate by releasing particles from midway down the
main branch; to color two columns of flow near the end
of the artery with contrasting colors to emphasize
swirling flow; and to create a yellow sponge in the side
branch to discover the shape of the area at the inflow that
eventually passed through the side branch.

At certain times in the periodic flow, fluids
researchers saw examples of expected flow features
such as backflow in the side branch, particles reenter-
ing the main branch’s flow after initially moving down
the side branch, and counter-rotating vortices in the
artery’s curved main branch. They also found unex-
pected flow patterns such as a volume of space just
downstream from the bifurcation in the main branch
that few particles could enter at certain times of the
flow, and particles that moved diagonally along the
main branch wall downstream of the bifurcation when
it was expected that they wouldn’t have a vertical com-
ponent. Finally, we found problems with the simula-
tion parameters, such as an inadequate amount of flow
moving into the side branch in an early run. 

Most of our results came from the arterial blood flow
data set, but we also found useful results in our air flow
past a bat data set. Figure 8 shows visualizations for both
data sets. From these data sets we’ve calculated sets of
pathlines. Viewing them in the Cave has revealed some
bugs in both the data and the simulations. Some were in
surprising places, which PF revealed almost immedi-
ately but probably would have been hard to find using a
probing or cross-section method. 

Our evolutionary biologist collaborator is enthusias-
tic about using these tools to continue developing the

motion-capture methodology, to develop and test the
numerical methods for creating the data, and, ulti-
mately, to understand and characterize wake and vortex
structures, which will help us understand how different
species of bats fly.

Design process
Design of PF involved a number of progressions in

pathline computation, rendering, and particle distrib-
ution in the visualization. Other considerations includ-
ed usability, monoscopic versus stereo viewing, and
world scale. At the highest level, PF is an intuitive way
to explore complex pulsatile 3D flow. It isn’t, however,
a stand-alone tool to reveal everything a viewer may
want to see within a data set. We can combine it with a
complementary visualization tool such as streaklines.
Ideally, a full-featured 3D flow visualization system will
include PF and many other tools. 

Pathline computation
Although a fixed-interval seeding algorithm for path-

line computation executes faster and is easier to imple-
ment than the Poisson-disk method, it often calculates
redundant pathlines because pathlines created from
seeds up- and downflow from each other can result in
nearly indistinguishable paths. It can also generate many
more seeds than are necessary. Our Poisson seed-spacing
algorithm has reduced seed counts by 93 percent over
comparable fixed-interval seeding strategies. In the algo-
rithm’s current form, the upstream slices can be over-
sampled because downstream seeds are integrated
backward. Viewers’ reports don’t suggest that this is a
problem, but future work might address this point.

Pathline rendering
Choosing a particle animation led to surprising

results. Our particle representation (see Figure 3)
evolved to help clearly represent the flow in an immer-
sive viewing environment without overwhelming the
viewer. The particle used to animate a pathline didn’t
start as a motion-blurred, haloed, GL line, however. Ini-
tially the user could choose between a coarsely tessel-
lated sphere, a flow-oriented triangle, or a
flow-oriented textured triangle. The main problem with
these geometric representations was their size, which
introduced occlusion and distraction when swept near
users’ eyes. Also, when animated, they introduced alias-
ing. Although approaches to motion-blurring geomet-
ric objects exist, viewer feedback favored a line
representation for particles. Although it was initially a
user-controlled variable, we found most viewers
favored a five-vertex window for particle representa-
tions over longer or shorter representations.

We noticed in one of the videos that inspired our work
that shutter speed caused motion blur in particle move-
ment. This led us to come up with a better line-based
particle representation. Because points on a path are
written out in a constant time interval, slower path seg-
ments will have many points spaced close together, and
fast segments will have fewer points spread further
apart. Because each particle connects the same number
of points, fast particles will be longer than slow ones,
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(a) (b)

8 Particle flurries (a) inside an artery and (b) around a bat. Over a short
time, the particle animation gives a synoptic visualization of the flow fea-
tures. The kelp are the blue and pink lines attached to the artery walls. The
red lines trailing off the bat help show pressure and velocity information
near the geometries.



letting users make relative comparisons. Unfortunate-
ly, slow-moving particles can nearly disappear because
the points become collocated. To fix this, we could
always draw a particle’s line representation some min-
imal length tangent to its pathline. We also considered
inverting the effect such that slow and fast moving flow
were drawn, respectively, with long and short lines.
Halos enhance depth perception,4 although we imple-
ment the halos with real-time antialiasing blending, and
apply them to pulsatile flow visualization.

Particle distribution
Depending on the user’s goals, particle visualization

of flow data can achieve many synoptic visualizations.
Initially, we released randomly colored particles into the
flow with equal coverage throughout the volume. How-
ever, we extended the system to address users’ desire to

control particle color and release strategies as well as
clearly see near-wall flow.

Sponges. Particles are immediately released through-
out the vessel without any initial interaction. Users con-
trol how many particles to release at each step and the
time between steps, but this only controls particles’ glob-
al density. Sponges, as Figure 9 shows, let users modify
particle color, release, and presence using paint strokes. 

Emphasis. Emphasis controls let scientists focus on
a type of pathline—for example, all slow paths—rather
than all pathlines in a certain area. In practice, empha-
sizing slow flow has let us focus on flow running near
the artery walls or entering the side branch. Emphasis
also lets us focus on particles passing near the bat, which
are far more interesting than the others. We can easily
base emphasis on other metrics—radius of curvature,
proximity to some location, or streamwise recirculation,
for example. Figure 10 illustrates emphasis techniques. 

User-settable parameters and commands
Our implementation has several user-settable para-

meters including release rate, simulation speed scalar,
emphasis type, and two emphasis-related scalar values (a
scaling coefficient and a power). Three commands our
implementation supports are freezing particle motion,
clearing all particles, and deleting all sponges. Current-
ly, users access these parameters and commands using a
conventional keyboard on a table just inside our Cave.
This approach won’t scale much further, and we’ve con-
sidered using a command-line interpreter or a gestural or
more graphical user interface technique in the future.

Particle animation only shows velocity information,
ignoring other flow quantities. To show more informa-
tion near the reference geometry, we initially used
splotches, circular geometries anchored to the reference
geometry and colored to reflect residence times and
pressure gradients, as Figure 11 (next page) shows. We
also use kelp to more directly visualize flow near the ves-
sel wall. Some users prefer viewing the particle anima-
tion and kelp together; others prefer to view one visual
element at a time but quickly toggle between the two.

Stereo viewing
Users can toggle between stereoscopic and mono-
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9 Sponges in the artery. The red sponge on the left has
deleted all flow that doesn’t go through the side
branch, while the yellow sponge on the right has col-
ored all flow entering the side branch.

(a) (b) (c)

10 Comparison of emphasis techniques in the artery. A user can focus on pathlines that share a specific quality using emphasis. (a)
The user emphasizes paths with low minimum velocity and is more likely to release particles that go through the side branch or near
the walls. (b) The user emphasizes no paths and is equally likely to release all particles. (c) The user emphasizes slow paths, releasing
particles near the walls more frequently.



scopic viewing on the fly. In our tests, we typically start-
ed users viewing in stereo; when we toggled them to
monoscopic viewing, they reported difficulty resolving
the depth component of the flow and boundary geom-
etry. When we restored stereo viewing, they could eas-
ily determine the relative depth of particles and their
positions within the boundary geometry. Texturing the
vessel wall with the chicken-wire-like texture also makes
the wall much easier to see when viewed in stereo. The
texture’s hard edges provide excellent visual cues for
stereo convergence whereas a smooth-shaded model
appears cloudy. Making spatial judgments, such as the
distance between a particle and the vessel wall, is much
easier with the textured model than with a nontextured
model. The texture also shows internal flow details from
external viewpoints.

Dynamic world scale
We can dynamically change the scale of the world seen

in PF. This can be a useful control for both internal and
external flows. For external flows, it lets us scale down
the data to produce an overview, or up to study a specif-
ic region. For internal flows, we scale up the data to move
inside a space and comfortably view the data. For the
artery data set, we generally scale the world so the artery
walls appear to be 8 feet apart, letting the viewer physi-
cally move around inside it and minimizing the need for
flying. Smaller diameters all but remove the need to nav-
igate except by head movements and walking, but fus-
ing stereo images when the user moves inside the artery
vessel is difficult. Moreover, the small size makes it hard
for users to appreciate the particle animation details.
Larger scales, such as a 30-foot vessel diameter, decrease
particles’ apparent density, but also dramatically increase
the amount of navigation required to see all the flow.

Conclusion
We believe PF creates an effective synoptic visualiza-

tion for pulsatile fluid flow. In general, we recommend
visualization designers first consider whether a synop-
tic visualization approach might help solve their prob-
lem better than an approach requiring more user
interaction to reveal the same amount of information.

Our future work is aimed at developing a method for
characterizing fluid flow visualization techniques
including PF. We envision a framework in which user

studies, including experts in the scientific domain and
visual designers with an artistic background, would help
evaluate which flow structures a particular visualiza-
tion technique helps viewers see and would allow com-
parisons between visualization techniques. �
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