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Abstract

Much of the recent searchable symmetric encryption (SSE) and structured encryption (STE)
literature has centered on the development of encrypted range structures. Such structures solve
the traditional problem where the client queries the server with a range predicate, and the
server responds with the set of records satisfying the given predicate. However, users are often
not directly interested in the records within the queried range, but rather in the result of an
aggregate function applied to some attribute of the records. In these cases, the bandwidth, client-
side computation, and potentially unnecessary leakage incurred from reporting the whole range
makes such schemes problematic to use in settings that necessitate high aggregate computation
performance.

In this thesis, we tackle this challenge by developing ARQ, a systematic framework for cre-
ating cryptographic schemes that handle range aggregate queries (sum, minimum, median, and
mode) over encrypted datasets. Our schemes do not rely on trusted hardware or specialized
cryptographic primitives such as order-preserving or homomorphic encryption. Instead, ARQ
unifies structures from the plaintext data management community with existing structured en-
cryption primitives. We prove how such combinations yield efficient (and secure) constructions
in the encrypted setting. We also propose a series of domain reduction techniques that can
improve the space efficiency of our schemes against sparse datasets at the cost of small leakage.
Our techniques yield more space-efficient encrypted structures for sum and minimum queries
than previous structures presented by Demertzis et al. (ACM Trans. Database Syst. ’18 ); they
also yield the first encrypted range query schemes for approximate median and mode queries.
As part of this work, we designed and implemented a new, open-source, encrypted search li-
brary called Arca and implemented the ARQ framework using this library in order to evaluate
ARQ’s practicality. Our experiments on real-world datasets demonstrate the efficiency of the
schemes derived from the ARQ framework in comparison to prior work.1

∗zespirit@cs.brown.edu
1This thesis contains joint work with Evangelia Anna Markatou and Roberto Tamassia [EMT22] which is currently

under double-blind review.
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Thesis statement: Simple combinations of data structures previously developed in the plain-
text data management community with structured encryption primitives yields efficient (and
secure) constructions for privacy-preserving databases.

1 Introduction

Many computer applications today are outsourced to third-party providers via a deployment
paradigm known as cloud computing. Under this model, a client outsources parts of (or all of)
their application’s storage and computation to a third-party service provider. This strategy has
immense benefits for the client—it alleviates the burden of maintaining one’s own infrastructure
and hardware, and it also allows the client to take advantage of the economies of scale enjoyed
by the service provider. However, this model places a significant amount of trust in the service
provider. In particular, the client must trust the server to not snoop or tamper with the appli-
cation’s data. This assumption can be problematic for applications that utilize highly sensitive
datasets such as medical data, government records, or data requiring high regulatory oversight
(i.e. due to FERPA, HIPPA, PCI DSS, etc.). Such concerns have spurred the development of
privacy-preserving databases that reduce the trust assumptions involved in outsourcing control to
a third-party.

One such class of techniques known as structured encryption (STE) [CGKO06; CK11] allows a
client to outsource (and later, query) an encrypted version of their data to a semi-honest server.
Recent research has focused on improving the practicality of STE by developing specialized struc-
tures that efficiently handle more expressive types of queries, such as range queries. For example,
the BlindSeer construction from [Pap+14], the garbled-circuit-based construction from [BPP16],
and the range tree constructions from [DPPDG16; DPPDGP18; LLWB16; FJKNRS15; ZSLSP18;
WC19; FMET22] are all examples of encrypted range query structures. In these works, range
queries are effectively presented as a simple filter operation, where a predicate is applied to a single
database attribute and the set of records matching the predicate is returned.

Aggregate range queries. Despite the focus on encrypted range structures in recent years, real-
world applications often do not directly require the records in the queried range, but rather the
result of an aggregate function folded over a second record attribute in the queried range. Consider,
for instance, the following SQL query over an employees table, which asks for the median salary
of all employees between the ages 30 and 40:

SELECT MEDIAN(salary) FROM employees WHERE age BETWEEN 30 AND 40;

We call the attribute the filter is composed over the filter attribute and the attribute the aggregation
function is composed over the aggregate attribute. In this example, the filter attribute is age and
the aggregate attribute is salary. To answer this query, the server only needs to output a single
numerical value (the median salary). Integrating aggregate functions directly into queries in this
way can minimize bandwidth as the server only needs to send a constant-size value to the client.

Performance gap for aggregates over encrypted data. Using record-reporting STE schemes
to answer aggregate queries over encrypted data incurs a significant overhead over traditional
“plaintext” data management approaches. In many STE structures, the server cannot compute
the aggregate server-side and must return the entire set of records satisfying the filter. This incurs
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Table 1: Our contributions compared to Demertzis et al. (DPPDGP) [DPPDGP18]. Asymptotics are in
terms of big-O, where m denotes the size of the domain and n is the number of records, and 0 < α < 1 is a
tunable parameter. “Query” refers to query handling runtime at the server and the client independently. We
denote the main tradeoff between our analyzed schemes—whether the schemes are data-oblivious (“DO”)
(Definition 3.4) or optimize storage by taking advantage of sparsity in datasets (“Sparse”).

Schemes
Server Complexity Communication Client Complexity Tradeoff
Storage Query Bandwidth Rounds Storage Query DO Sparse

Sum
DPPDGP-Sum [DPPDGP18] m 1 1 1 1 1 •

Sum+DomainBucket mα + n 1 n 1 n 1 •
Sum+DataBucket mα + n 1 n

mα 1 mα n
mα •

Minimum
DPPDGP-Min1 [DPPDGP18] m logm 1 1 1 1 1 •
DPPDGP-Min2 [DPPDGP18] m+ n log n 1 1 2 1 1 •

LinearMin m 1 1 1 1 1 •

Mode
1/2-ApproxMode m logm 1 1 1 1 d •
1/3-ApproxMode m log logm 1 1 1 1 1 •

Median α-ApproxMedian m
1−α 1 1 1 1 1 •

linear-size bandwidth and requires the client to spend linear resources to decrypt each of the
records before computing the aggregate. Conversely, one may precompute and store the answer to
all possible range queries in an encrypted dictionary. This naive approach achieves constant-size
bandwidth and query time, but prohibitively requires quadratic storage.

Many approaches have been proposed to bridge this performance gap for encrypted databases.
Fully homomorphic encryption (FHE) [Gen09], for example, can allow the server to compute por-
tions of the aggregate before responding to the client. Unfortunately, state-of-the-art FHE schemes
have high performance costs and are prohibitive for real-world applications. As an alternative,
additively homomorphic encryption (AHE) [Pai99] imposes more acceptable performance costs and
allows the server to sum encrypted values prior to sending them to a client. However, AHE does not
allow for non-additive aggregates (e.g. min/max) and still requires the server to spend computation
time to add AHE ciphertexts.

Alternatively, some encrypted range structures (e.g., [FJKNRS15; DPPDG16; DPPDGP18;
FMET22]) may be used to achieve a balance between both naive approaches by storing precomputed
sub-aggregates within the structure. Then, aggregate queries may be answered by returning a poly-
logarithmic subset of sub-aggregates which the user can process to recover a single aggregate. These
schemes can be somewhat more practical for aggregate queries; however, they may incur higher
than necessary storage overhead, especially when the underlying dataset is sparse.

Aside from performance concerns, “naive” STE approaches for handling aggregates may incur
more leakage than necessary. While the ultimate goal of the end user is to compute a single
aggregate value, using standard record-reporting STE schemes as a building block for aggregates
often results in search pattern leakage (whether the same query is made multiple times) and access
pattern leakage (whether the same encrypted record is to respond to multiple queries) that can
eventually lead to data reconstruction attacks [BKM19]. All in all, the performance and security
limitations of existing approaches for handling encrypted range aggregate queries highlights the
need for new constructions.

Contributions. We defend the following thesis statement:

Simple combinations of data structures previously developed in the plaintext data management
community with structured encryption primitives yields efficient (and secure) constructions for
privacy-preserving databases.
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To argue our statement, we develop the following contributions:

• We introduce a general framework for building encrypted aggregate range query schemes,
ARQ, which provably captures the leakage of our schemes. We identify a data-oblivious (DO)
security property which guarantees that data reconstruction attacks are impossible against any
of our schemes that satisfy this property provided that the query distribution is independent of
the data distribution. (Sections 3, 4)

• Using ARQ, we propose novel schemes for encrypted range minimum, approximate
range mode, and approximate range median. Our minimum scheme improves the previously-
best-known O(m+n log n) storage overhead of Demertzis et al.’s 2-round protocol [DPPDGP18]
to a O(m) 1-round protocol at the cost of prohibiting some small queries. To our knowledge,
our approximate mode and median schemes are the first schemes considering these problems in
the STE literature and allow for constant-time and constant-size queries. (Sections 5, 6, 7)

• We propose a series of domain reductions which can be applied to any ARQ scheme to
optimize its storage overhead for sparse databases in exchange for small performance and leakage
tradeoffs. Our reduction techniques can significantly improve the performance of the sum and
minimum constructions by Demertzis et al. [DPPDGP18] on sparse databases. (Section 8)

• We provide a reference implementation of the ARQ framework in Python. Using this imple-
mentation, we conduct an empirical evaluation of our proposed schemes against real-world
datasets in terms of storage, query time, and bandwidth. (Section 9)

Finally, we discuss extensions to this work such as generalizing the schemes to multiple dimen-
sions and handling updates. Table 1 compares our schemes with prior work. Our work showcases
how cryptographers can leverage advances in databases and data structures to develop secure con-
structions for aggregate range queries.

2 Related Work

Encrypted range aggregate queries in STE. Demertzis et al. [DPPDGP18] introduced the
first study of specific STE structures for encrypted range aggregate queries, proposing encrypted
schemes for range sum queries (RSQ) and range minimum queries (RMQ). Their range sum scheme
is based upon the classic prefix sums technique [Ble93] and achieves constant query size and time.
However, the scheme incurs linear server-side storage in the size of the domain (not the number of
records), which can be prohibitive for sparse databases, such as high-precision geospatial databases
that operate over latitude and longitude.

For the range minimum problem, Demertzis et al. proposed two schemes which were based upon
the sparse table technique by Bender et al. [BFPSS05]. Like the RSQ scheme, both RMQ schemes
achieve constant client-side storage, constant bandwidth queries, and constant time queries. The
first RMQ scheme incurs linearithmic storage in the size of the domain. The second RMQ scheme
incurs a smaller O(m + n log n) storage requirement, where m is the size of the domain and n is
the number of records, at the expense of an additional round trip query. However, even with the
storage optimization of the second scheme, the O(m) factor in the storage asymptotics still may be
prohibitive for sparse databases. To our knowledge, we propose the first STE schemes for encrypted
median and mode queries.
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Encrypted SQL. Many works have been proposed to support aggregate functions over encrypted
SQL databases via various forms of homomorphic encryption and property preserving encryption.
A notable example is Popa et al.’s CryptDB, the first system to support standard SQL opera-
tions over encrypted data [PRZB11]. CryptDB uses several specialized encryption schemes such as
order-preserving encryption (OPE) tailored to each of the SQL operators; of interest to this work
in particular is their use of additively homomorphic encryption (AHE) to support aggregation op-
erations [Pai99]. Applications of AHE for encrypted sum aggregates have appeared in many other
“secure” database works [Ara+13; Gro+14; HIM04; KM18; TKMZ13]. However, as previously
mentioned, AHE does not support aggregate queries that cannot be computed additively. As such,
many of these works do not support fundamental aggregate queries such as minimum, median, and
mode. Additionally, while OPE may be used to derive simple solutions to rank-based range aggre-
gates (e.g., median queries), many works have demonstrated that OPE leaks enough information to
allow for powerful, yet practical data-recovery attacks [NKW15; DDC16; GSBNR17; BGCRS18].

Other encrypted database works rely on trusted hardware to answer more types of aggregates.
For instance, the stronger security modes of Arasu et al.’s Cipherbase supports aggregations using
custom, trusted field-programmable gate arrays (FPGAs) [Ara+13]. Cipherbase computes sum
aggregates over columns encrypted with AES by sending the encrypted values to the FPGAs to
be decrypted and summed. Then, the result is reencrypted before releasing it to the untrusted
environment. Other works use trusted enclaves such as Intel SGX. However, the security guarantees
of such hardware are complex and often such systems are memory-limited. Furthermore, in the
specific case of Intel SGX, significant leakage attacks have been discovered against SGX (e.g.,
[SKGY20]) that have led to the deprecation of SGX on certain Intel processors [Int21]. In this
work, we do not rely on specialized hardware or hardware security assumptions.

Leakage-abuse attacks on encrypted range structures. An important property of a struc-
tured encryption scheme is its leakage, or what information is leaked to the adversary when the
scheme’s operations are invoked. Islam et al. introduced the first study of leakage-abuse attacks in
the searchable encryption setting [IKK12]. In their work, the authors demonstrated how to perform
query-recovery attacks by exploiting access pattern leakage, where the adversary detects when two
queries access the same (encrypted) file identifier. Follow-up work such as Cash et al. [CGPR15]
and Zhang et al. [ZKP16] exploited access pattern leakage to launch query-recovery attacks with
similar impact under different assumptions. Recent works have also demonstrated how to combine
access and search pattern leakage to perform query-recovery [OK21].

Range queries, in particular, may allow for more severe data-recovery attacks. Kellaris et al.
[KKNO16] were the first to develop generic reconstruction attacks against one-dimensional range
query schemes. Many follow-up works demonstrated more powerful one-dimensional attacks under
varying assumptions (see. e.g., [GLMP18; LMP18; GLMP19; GJW19; KPT20; KPT21]), and
a recent line of work has yielded reconstruction attacks in higher dimensions [Fal+20; MFST20;
FMET22].

3 Preliminaries

Notation. {0, 1}ℓ denotes the set of all binary strings of length ℓ. {0, 1}∗ denotes the set of all
finite binary strings. ⊥ represents the empty string. x ← A represents the output x of procedure
A. Given a set S, the cardinality of S is denoted #S. The set of numbers {0, 1, . . . , x − 1} is
denoted [x].
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Basic structures. Our protocols make use of several basic data structures whose notation and
syntax we define here. A dictionary DX of size s is a collection of s key-value pairs. vi := DX[ℓi]
denotes the retrieval of the value vi associated with the label ℓi. DX[ℓi] := v denotes the assignment
of value vi to label ℓi. A multimap MM of size s is a collection of s key-tuple pairs. ti := MM[ℓi]
denotes the retrieval of the tuple ti associated with the label ℓi. MM[ℓi] := ti denotes the assignment
of tuple ti to label ℓi. The length of each tuple ti may vary within the multimap.

Given an arbitrary data structure DS, we refer to the act of retrieving the value associated with
a particular label in some data structure DS as querying DS. We refer to the set of labels that can
be used to query DS as the query space of DS and the set of possible outputs as the response space
of DS. We write DS : Q→ R to denote that Q is DS’s query space and R is DS’s response space.
We denote the number of key-value pairs in DS as |DS|; we refer to this number as DS’s size.

Tables. We use tables as the main input to our STE schemes. A table DB is a two-dimensional
array where each row is a record and each column is an attribute represented by a unique positive
integer. We assume that each attribute has a finite domain of possible values. Every record r ∈ DB
is a tuple indexed by the integers representing each of the attributes in DB. In this work, we
primarily consider one-dimensional queries, so we assume that every record has one filter attribute
and one aggregate attribute for simplicity. Given a domain value xi, we use DB(xi) to denote the
set of records with filter attribute value xi. We also use DB←(xi) to denote the record with filter
attribute value closest or equal to, but not greater than, xi; similarly, DB→(xi) denotes the record
with filter attribute value closest or equal to, but not less than, xi. Finally, we use n to refer to
the number of records in a table DB and m to refer to the domain size of DB’s filter attribute.

Structured encryption. A structured encryption (STE) scheme encrypts a data structure DS
(e.g., dictionary) so that a client can outsource an encrypted form of the structure to an untrusted
server and privately query it using a secret key K. We adopt our STE definitions from the work
of Chase and Kamara [CK11], which generalized the SSE definitions of Curtmola et al. [CGKO06].

An important distinction is between response-revealing STE schemes, where the response to the
query is revealed to the server in plaintext (but not directly the query itself), and response-hiding
schemes, where the response to the query is not revealed to the server. (Note that [CK11] refers
to these two characteristics as ciphertext-output schemes and plaintext-output schemes, though we
use the more commonly used “response-revealing” / “response-hiding” terminology in this work.)
In this work, we exclusively refer to response-hiding STE schemes, defined below.

Definition 3.1 (Response-hiding STE [CK11]). A STE scheme Σ = (Setup,Token,Query, Resolve)
consists of four polynomial-time algorithms that work as follows:

• (K,EDS) ← Setup(1k,DS) is a probablistic algorithm run by the client. It takes as input a
security parameter 1k and a plaintext data structure DS. It then outputs a key K and an
encrypted data structure EDS.

• tk ← Token(K,Q) is a deterministic algorithm run by the client when it issues a query. It
takes as input a key K and a query Q and outputs a token tk.

• ct ← Query(EDS, tk) is a deterministic algorithm run by the server to respond to queries. It
takes as input the encrypted data structure EDS and a query token tk and outputs a response
ct (which may be ⊥).

• R ← Resolve(K, ct) is a deterministic algorithm that takes as input the secret key K and a
ciphertext ct and outputs a plaintext response R.
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A response-hiding STE scheme Σ is correct if, for all k ∈ N, for all poly(k)-size structures DS :
Q → R, for all poly(k)-size sequences of queries Q1, . . . , Qs where Qi ∈ Q, for all tki output by
Token(K,Qi), Resolve(K,Query(EDS, tki)) = DS[Qi] with all but negligible probability.

Definition 3.1 applies to non-interactive STE schemes, which can be queried by sending the
server a single search token. Some STE protocols are interactive, which means that executing a
query requires the server and the client to engage in a two-party protocol involving more than one
round of communication.

Definition 3.2 (Interactive STE). A interactive STE scheme Σ = (Setup,Query) consists of two
polynomial-time algorithms where Setup is the same as it was in Definition 3.1 and Query is as
follows:

• (R,⊥)← QueryC,S((K,Q),EDS) is a two party protocol algorithm run between the client and
the server. It takes as input from the client a key K and a query Q and as input from the
server an encrypted structure. It outputs a plaintext result R to the client and nothing to the
server.

An interactive STE scheme Σ is correct if, for all k ∈ N, for all poly(k)-size structures DS : Q→ R,
for all poly(k)-size sequences of queries Q1, . . . , Qm where Qi ∈ Q, QueryC,S((K,Qi),EDS) =
DS[Qi] with all but negligible probability.

Security definitions. To prove security of an STE protocol Σ, we define leakage functions that
precisely define what information is leaked to the adversary by the different operations of Σ: LS,
the setup leakage, or what is leaked by the Setup operation, and LQ, the query leakage, or what is
leaked by the Query algorithm. We show that no information beyond these functions is leaked by
proving that an adversary can only distinguish between two experiments with negligible probability :
the real world, in which the actual STE protocol is used against the adversary, and the ideal world,
which attempts to simulate the real world only based on the leakage LS and LQ.

In this work, the adversary is semi-honest, meaning that the adversary does not deviate from the
execution of the protocol, and is adaptive, meaning that the adversary may choose query operations
at will and can attempt to learn information from or modify their query strategy based on the query
transcript.

Definition 3.3 (Adaptive semantic security [CK11]). Let Σ = (Setup,Token,Query,Resolve) be
a response-hiding structured encryption scheme for the data structure DS : Q → R. Also, let A
be a stateful adversary, S be a simulator, LS and LQ be setup and query leakage functions, and
z ∈ {0, 1}∗. Given the following probabilistic experiments:

RealΣ,A(k): Given z, A outputs a (plaintext) structure DS. The challenger executes (K,EDS) ←
Setup(1k,DS) and outputs EDS to A. A then adaptively chooses m = poly(k) queries
Q1, . . . , Qm. For each query Qi, the challenger executes tki ← Token(K,Qi) and outputs
token tki to A. Finally, A returns a bit b that is output by the experiment.

IdealΣ,A,S(k): Given z, A outputs a (plaintext) structure DS. The challenger outputs z and the
setup leakage LS(DS) to the simulator S. S returns an encrypted data structure EDS to A. A
then adaptively chooses m = poly(k) queries Q1, . . . , Qm. For each query Qi, the challenger
gives LQ(DS, Qi) to S, and S outputs a token tki to A. Finally, A returns a bit b that is
output by the experiment.
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We say that Σ is adaptively (LS,LQ)-semantically secure if, for all ppt adversaries A, there exists
a ppt simulator S where

|Pr[RealΣ,A(k) = 1]− Pr[IdealΣ,A,S(k) = 1]| ≤ negl(k).

The definition of adaptive semantic security for interactive STE schemes is identical to Definition
3.3 except that in the real experiment, for each query Qi, the challenger C executes the two-
party protocol QueryC,A((K,Qi),EDS) with A, then outputs ⊥ to A. Additionally, in the ideal
experiment, S may output a sequence of tokens to A for each query Qi.

Data-oblivious structure (DO). Throughout our work, we observe that the reduced expres-
siveness of aggregate structures (they do not return the records in the queried range) means that
aggregate structures do not necessarily suffer from the same types of leakage as SSE structures (i.e.,
volume pattern, search pattern, and access pattern to individual records). As such, we are interested
in precisely capturing when such a scheme avoids these kinds of data-dependent leakage patterns,
as this would imply that the scheme is secure against all previously known data-reconstruction
attacks.

We thus formulate a definition tailored to the encrypted aggregate range problem that we call
data-obliviousness (DO). This property is similar to the standard definition used in the the data-
oblivious algorithm literature (e.g., [BSA13; GOT12]). However, our definition differs in that it
makes no statement about the information leaked by different query transcripts. At a high-level,
a STE scheme is DO if its setup leakage LS reveals nothing about the plaintext structure other
than (potentially) the size of the structure and if its query leakage LQ reveals nothing other than
(potentially) the size of the structure and information about the queries themselves.

Definition 3.4 (Data-oblivious STE structure). Let Σ = (Setup,Token,Query,Resolve) be an adap-
tively (LS,LQ)-semantically secure, response-hiding, structured encryption scheme for the data
structure DS : Q → R. We say that Σ is data-oblivious (DO) if there exists functions f and
g such that LS(DS) = f(|DS|) and LQ(DS, Q) = g(|DS| , Q).

The DO definition for interactive STE schemes is identical to Definition 3.4 except Σ =
(Setup,Query). The DO property guarantees that data reconstruction attacks are impossible if
the queries to Σ are independent of the underlying data distribution (a standard assumption in the
reconstruction attacks literature). This is because the information leaked by Σ is solely a function
of the size of the encrypted data structure and the queries.

4 ARQ: A General Framework

In addition to defining new, secure schemes for encrypted databases, another primary goal of
this work is to identify features of existing plaintext aggregate range query schemes that make
them suitable for the encrypted setting. To do this, we introduce a general syntax for plaintext
aggregate range query schemes. We then show how to derive a framework for building provably-
secure, encrypted aggregate range supporting schemes from this syntax. Our framework allows us
to provably characterize the leakage of any aggregate range scheme that falls within our syntax.
Finally, we introduce a data independence definition that captures a set of plaintext aggregate range
query schemes that may be combined with any standard STE scheme to produce a provably DO
scheme.

Before presenting our framework, we first define our syntax for plaintext aggregate range query
schemes. All of the plaintext schemes that we analyze in this work, including those previously
analyzed by Demertzis et al. [DPPDGP18], fit into this syntax.
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Let Σ = (Setup,Token,Query,Resolve) be a response-hiding STE scheme, (S,Q,R) be an aggregate range
query scheme, S be a server, and C be a client. Consider the interactive encrypted aggregate range
query scheme ARQΣ,S,Q,R = (Setup,Query) defined as follows:

• (K,EDS)← Setup(1k,DB):

1. compute DS← S(DB);
2. compute (K,EDS)← Σ.Setup(1k,DS);

3. output (K,EDS);

• R← QueryC,S(K,Q):

1. C sets st← ⊥ and R← ⊥;
2. C computes U ← Q(m,Q);

3. while U ̸= ⊥,
(a) for all ui ∈ U ,

i. C computes stki ← Σ.Token(K,ui);

ii. C sends stki to server;

(b) for all stki,

i. S computes cti ← Σ.Query(stki,EDS);

ii. S sends cti to client;

(c) initialize set S;

(d) for all cti,

i. C computes si ← Σ.Resolve(K, cti);

ii. C adds si to S;

(e) C computes and sets (st, R, U)← R(st, Q, S);

4. C outputs R;

Figure 1: The ARQ framework.

Definition 4.1 (Aggregate range query scheme). An aggregate range query scheme Π = (S,Q,R)
for a database DB consists of three polynomial-time, deterministic algorithms that work as follows:

• DS← S(DB) takes as input a database DB and outputs an index structure DS : U→ S.

• U ← Q(m,Q) takes as input the domain size m and a query Q. It outputs a initial set of
subqueries U ⊆ U to be issued to DS.

• (st′, R, U) ← R(st,m,Q, S) aggregates a set of responses from DS. It takes as input prior
state st (which may be ⊥), the domain size m, the initial query Q, and a set of responses
S ⊆ S. It then outputs new state st′, an aggregate R (which may be ⊥), and a set of additional
subqueries to be issued U (which may be ⊥).

We note that R takes Q as input since the method for aggregating subresults may differ based
on the initial query. Additionally, R is stateful in order to support interactive protocols requiring
multiple rounds of communication.

We now describe ARQΣ,S,Q,R, our framework for encrypted aggregate range query schemes.
ARQΣ,S,Q,R is an interactive STE scheme parameterized by an aggregate range query scheme
(S,Q,R) and a response-hiding STE scheme Σ on data structure S(DB), and the full framework is
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defined in Figure 1. (For brevity, we refer toARQΣ,S,Q,R asARQ in the paper when the parameters
are implied from context.) In ARQ, the client converts their database DB into a aggregate query
index DS← S(DB). Then, Σ.Setup is used to encrypt DS. When the client performs a range query,
they use Q and Σ.Token to determine which search tokens to send to the server. Finally, the client
decrypts the responses and passes the responses to R. R may output another set of subqueries to
issue to the server; otherwise, R outputs the final aggregate to the client.

Theorem 4.2. If (S,Q,R) is an aggregate range query scheme, and Σ is an adaptively (LΣS ,LΣQ)-
secure, response-hiding STE scheme on data structure S(DB), then ARQΣ,S,Q,R is adaptively
(LS,LQ)-secure, where

LS(DB) = LΣS (DS)
and

LQ(DB, Q) =
(
LΣQ(DS, u)

)
u∈Λ

.

Here, Λ is the union of Ui’s, where Ui is the instantiation of U on the ith loop of QueryC,S.

Proof. Let SΣ be the simulator guaranteed to exist by the adaptive security of Σ and consider the
ARQ simulator S that works as follows. Given LS(DB), S simulates the encrypted index EDS by
computing EDS ← SΣ(LS(DB)). Given LQ(DB, Q), for each LΣQ(DS, u) in LQ(DB, Q), S outputs

SΣ(LΣQ(DS, u)).
We now show that, for all ppt adversaries A,

Pr
break

= |Pr[RealARQ,A = 1]− Pr[IdealARQ,A,S = 1]|

is negligible. The only difference between RealARQ,A and IdealARQ,A,S is that all applications of
Σ.Setup and Σ.Token have been replaced with invocations of Σ’s simulator SΣ. Thus, in order for
the adaptive semantic security of Σ to hold, Prbreak must be negligible.

4.1 Data Independence

Motivated by the strong guarantees of our DO property (Definition 3.4), we would like to identify
properties of aggregate range query schemes and STE schemes that result in an instantiation of
ARQ that satisfies the DO requirements. To do this, we first introduce a notion of data indepen-
dence over a plaintext aggregate range query scheme. Intuitively, if (S,Q,R) is data independent,
then the size of all responses to queries is identical given input databases DB of the same size and
the subqueries generated by Q and R do not depend on the original table DB passed to S.

Definition 4.3 (Data independence). Let (S,Q,R) be a plaintext aggregate range query scheme,
(DB0,DB1) be a pair of tables of size m = |DB0| = |DB1|, and T = Q1, . . . , Qs be a query transcript.
Then, for each Q ∈ T , let U ← Q(m,Q). Then, for i ∈ {0, 1}, let

DSi ← S(DBi),

Si:0 ← {DSi[u] | u ∈ U}, and

(sti:0, Ri:0, Ui:0)← R(⊥,m,Qi, Si:0).

Then, for j > 0,

(sti:j , Ri:j , Ui:j)←

{
R(sti:j−1,m,Qi, Si:j−1) if Ui:j−1 ̸= ⊥
(⊥, Ri:j−1,⊥) if Ui:j−1 = ⊥

We say that (S,Q,R) is a data independent aggregate range query scheme if all of these conditions
are true:
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(C1) |DS0| = |DS1| and

(C2) U0:j = U1:j for all j > 0.

Implications of data independence. We first outline one interesting implication of the data
independence definition that implies that any data independent scheme requires at most one round
of communication.

Corollary 4.4 (sketch). Let Π be an interactive plaintext aggregate range query scheme. If Π
satisfies data independence, Π may be converted into a non-interactive scheme with identical func-
tionality.

We provide a formal definition and proof of this property in Appendix A. The contrapositive of
Corollary 4.4 provides an important insight—namely, that plaintext aggregate range query schemes
that cannot be converted into a non-interactive, equivalent scheme will not satisfy data indepen-
dence. As we describe later in this work, this observation allows us to prune several plaintext
aggregate range query schemes in our search for plaintext schemes that can produce DO-satisfying,
ARQ-based encrypted schemes.

From a security perspective, our notion of data independence captures a class of plaintext
aggregate range query schemes that can be combined with the ARQ framework and a suitable
choice of Σ to produce a encrypted aggregate range scheme that satisfies our DO security property.
Specifically, the following theorem states that, if (S,Q,R) is data independent and Σ is a DO,
response-hiding STE encryption scheme over the data structure output by S, then ARQΣ,S,Q,R is
DO.

Theorem 4.5. Let (S,Q,R) be a data independent aggregate range query scheme where S outputs
data structure DS with query space U and response space S given some input database DB. Also,
let Σ be a DO, response-hiding STE scheme for data structure DS : U→ S. Then, the interactive
STE scheme ARQΣ,S,Q,R is DO.

Proof. First, we observe that the DO property of Σ implies there exist functions f and g such that
LΣS (DS) = f(|DS|), LΣQ(DS, Q) = g(|DS|, Q), and Σ is adaptively (LΣS ,LΣQ)-secure. We now need to
show that there exist functions h and j such that LS(DB) = h(|DB|), LQ(DB, Q) = j(|DB|, Q), and
ARQΣ,S,Q,R is adaptively (LΣS ,LΣQ)-secure.

• LS: By (C1) of Definition 4.3, we know that every database of the same size |DB| results in
an aggregate index structure of the same size |DS|. Thus, there exists some function f ′ such
that |DS| = f ′(|DB|). By Theorem 4.2, LS(DB) = LΣS (DS) = f(|DS|) = f(f ′(|DB|)). Thus,
defining h = f ◦ f ′ gives us LS(DB) = h(|DB|) as desired.

• LQ: By definition of Σ, LQ(DB, Q) = (g(|DS|, Q))q∈U. We just showed that there exists some
function f ′ such that |DS| = f ′(|DB|), so we know that LQ(DB, Q) = (g(f ′(|DB|), Q))q∈U.
Also, by (C2) of Definition 4.3, we know that (S,Q,R) always generates the same subqueries
for the aggregate index DS for a given query Q regardless of the underlying contents of DB; in
other words, the Λ term of the leakage is a function of Q and nothing else. Thus, we know that
there must exist a function j such that LQ(DB, Q) = (g(f ′(|DB|), Q))q∈Λ = j(|DB|, Q).

In the following sections, we present several plaintext aggregate range query schemes using
our syntax from Definition 4.1, then use the ARQ framework to instantiate encrypted variants of
those schemes. In Sections 5, 6, and 7, we also prove the data independence of our chosen plaintext
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aggregate range query schemes, which shows that the resulting ARQ schemes are DO when using
a standard STE scheme, such as Πbas from [Cas+14] (Theorem 4.5).

In each section, we also perform a complexity analysis on concrete instantiations of ARQ.
Since ARQ requires a concrete Σ, our complexity analyses assume that Σ requires storage O(|DS|)
and each query requires constant time and space in the size of DS. An example of such a Σ that
satisfies these complexity assumptions and the leakage profile constraints in Theorem 4.5 is Πbas

from [Cas+14]. While we use Πbas for our complexity analysis, we emphasize that different choices
of Σ may be selected, which may result in different complexity and leakage tradeoffs.

5 Range Minimum Query

We now consider the range minimum query problem. Solutions to the range minimum query
problem can be used to answer other types of range queries in exchange for a constant factor
increase in time and space. We provide examples of such query type transformation techniques for
encrypted databases in Appendix C in lieu of considering specialized structures for those types.

Definition 5.1 (Range minimum query). Given an array A of n numbers and indices i and j
where 0 ≤ i ≤ j < n, the range minimum query returns the smallest element of A in the range
[i, j].

Previous results. Demertzis et al. [DPPDGP18] proposed two approaches to the RMQ problem
which we refer to as DPPDGP-Min1 and DPPDGP-Min2. DPPDGP-Min1 is built directly on
top of the sparse table (ST) technique by Bender et al. [BFPSS05]. Starting from every element in
A, ST precomputes the answer for all queries whose range length is a power of 2 and stores it in an
two-dimensional array M . This produces O(logm) answers for each of the m elements of A. Thus,
the total space of M is O(m logm). To answer a query for an interval [ℓ, r], ST accesses M for the
precomputed answers for the two overlapping intervals that exactly cover [ℓ, r]. It then returns the
minimum of those two answers.

DPPDGP-Min1 encrypts the array generated by ST with an encrypted array scheme to achieve
O(m logm) space with constant-size and time queries. DPPDGP-Min2 is similar to DPPDGP-
Min1, but reduces the overhead on sparse databases to O(m+n log n) in exchange for an additional
round of communication. It does this by first accessing an additional encrypted index that maps
query domain values to the identifier of the record nearest to that domain value. This allows the
ST to be built over the record identifiers, resulting in smaller storage when n < m.

It can be easily shown that DPPDGP-Min1 is DO. However, DPPDGP-Min2 is not DO as
the combinations of access patterns between the first encrypted index and the second encrypted
index differ when the coordinate of points are changed in the input database. Additionally, the
scheme used by DPPDGP-Min2 is interactive and is thus not data independent as implied by
Corollary 4.4.

Survey of existing plaintext structures. Several O(m)-space solutions to the range minimum
query problem exist in the data management literature. However, achieving this storage bound
appears to necessitate the use of various compaction techniques that make them unsuitable for our
security goals. For example, some schemes [DRS12; DS19] use bit-packing techniques that condense
O(m logm) bits to O(m) words through the combination of different components of the structure
into the same word. While these structures, in theory, could be implemented in the STE setting,
practical symmetric encryption algorithms’ use of padding would prevent the use of bit-packing
and thus O(m logm) space would be required.

13



Similarly, other schemes [BF00; BFPSS05; FH06] use a related lookup table technique. At a
high-level, this class of techniques saves space by storing the answers to all possible queries in a
compact lookup table. Then, queries to the structure return a reference to a part of the lookup
table, which must be separately queried to retrieve the actual answer. These kinds of structures are
also unsuitable for our DO security goals for the following reasons: first, Corollary 4.4 implies the
multi-round nature of the lookup table technique makes it impossible for the plaintext scheme to
be data independent, and thus the resulting ARQ scheme will not be DO. More specifically, if two
queries to the structure require the user to query the same component of the lookup table, then the
access pattern leakage on the lookup table reveals that both queries had the same answer. Thus,
the access pattern leakage on the lookup table can change when the contents of the underlying
database changes, which would make the resulting ARQ scheme not DO.

5.1 Our Approach

Modified Fischer-Heun (FH) algorithm. In light of the aforementioned concerns, we describe
how to adapt the scheme of Fischer and Heun [FH06] (FH) in such a way that the resulting plaintext
scheme does not require bit-packing techniques, satisfies the constraints given by Corollary 4.4,
and maintains the O(m) space and O(1) query time requirements in exchange for the restriction
that clients are not allowed to issue range queries with length that is less than some small size s.
(We propose workarounds for the query size limitations in Appendix B.) We then show how our
modifications allow us to easily derive a provably DO encrypted range minimum query scheme.

We first present a slightly simplified version of FH which will be suitable for the description
of our encrypted approach. FH works by first partitioning the table DB into blocks B1, . . . , Bm/s

of size s = logm. Then, an array A of size m/s = m/ logm = O(m) is generated, where A[i] =
⟨min(Bi), indexof(DB,min(Bi))⟩. The ST technique is then applied over A to produce the sparse
table M of size O( m

logm log m
logm) = O(m). Finally, a normalization technique is applied to generate

a lookup table of size O(m) that stores the answers to all possible queries on arrays of size s. (We
elide the details of this part of the scheme, since it does not affect our approach.) Queries are
answered by taking the minimum of the minima for the following three ranges:

1. From ℓ to the end of ℓ’s block using the normalization table to find the index of the minimum,
then using A to retrieve the actual minimum.

2. The range spanning all blocks between ℓ’s block and r’s block using M (does not require
accessing A).

3. From the beginning of r’s block to r using the normalization table, then using A for the actual
minimum.

However, directly transforming the FH scheme into an STE structure results in problematic leakage
from the lookup table invoked in subproblems 1 and 3.

Thus, we now introduce ΠLinearMin, our modified FH scheme. Figure 2 outlines the algorithm for
the scheme, and Figures 3 and 4 provide an example of the scheme. Our scheme is exactly the same
as in the FH algorithm except with the following modifications. First, the user is prevented from
making some queries that are smaller than s—in particular, those queries that lie entirely within a
block Bi.

2 This allows us to avoid using the lookup tables from the original FH scheme. However,
with a simple modification, we can still answer arbitrary queries of size at least s. To do this, we

2As an example, a database of size m = 264 has block size s = 64, and so some (but not all) queries of size smaller
than 64 are not permissible with this scheme.
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Let SparseTable(A) denote an application of the ST algorithm [BFPSS05] on array A. Consider the
aggregate range query scheme ΠLinearMin = (S,Q,R) defined as follows:

• DS← S(DB):

1. initialize arrays A, Lleft, and Lright;

2. compute s = logm/4;

3. partition DB into blocks B1, . . . , Bm/s of size s;

4. for i ∈ [m/s], set A[i] := min(Bi);

5. compute M ← SparseTable(A);

6. for i ∈ [m],

(a) compute block index b of index i;

(b) set Lleft[i] := minsb≤k≤i DB[k];

(c) set Lright[i] := mini≤k≤s(b+1)−1 DB[k];

7. output DS← (M,Lleft,Lright);

• U ← Q(m,Q):

1. parse (ℓ, r)← Q;

2. if r − ℓ < s, abort;

3. compute bℓ ←
⌈
ℓ
s

⌉
and br ←

⌊
r
s

⌋
;

4. set q1 ← ℓ and q2 ← r;

5. if br − bℓ > 1,

(a) compute h← ⌊log(br − bℓ + 1)⌋;
(b) compute q3 ← (bℓ, h);

(c) compute q4 ← (br − 2h + 1, bℓ);

(d) output (q1, q2, q3, q4);

6. else,

(a) output U ← (q1, q2);

• (st′, R, U)← R(st,m,Q, S):

1. output (⊥,min(S),⊥);

Figure 2: The plaintext ΠLinearMin scheme used to instantiate the encrypted LinearMin scheme.

15



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 1 2 3 3 4 3 1 2 4 5 6 7 0

0 2 1 0

0 0 0 0

0 1 0 0

0 2 1 0

22

21

20

0 1 2 3

0 0 0 0 2 2 2 2 3 1 1 1 5 5 5 0

0 0 1 1 2 3 3 4 1 1 2 4 0 0 0 0

DB

A′

M

Lleft

Lright

Figure 3: Minimum scheme on database of size m = 16.

create two arrays Lleft and Lright of size m which we use to precompute one-sided queries within
each block Bi. Specifically, given index i in block index b, we assign Lleft[i] := minsb≤k≤iDB[k] and
Lright[i] := mini≤k≤s(b+1)−1DB[k]. We can then answer a query [ℓ, r] by retrieving the answers for
at most three of the following subproblems:

1. From ℓ to the end of ℓ’s block using Lright.

2. The range spanning all blocks between ℓ’s block and r’s block using M .

3. From the beginning of r’s block to r using Lleft.

Since any query of size s or greater must touch or overlap at least one block boundary, we may
answer any query of size s or greater using the precomputed structures defined above and thus all
queries are answerable in constant time. Queries that are smaller than size s also may be answered
provided that they touch or overlap at least one block boundary.

LinearMin: A New Linear-Space Scheme. Combination of ΠLinearMin = (S,Q,R) with the
ARQ framework results in a provably secure scheme, LinearMin = ARQΣ,S,Q,R, for the encrypted
range minimum problem with the leakage profile given in Theorem 4.2.

Lemma 5.2. ΠLinearMin is data independent.

Proof (sketch). Given any pair of databases (DB0,DB1), S always outputs M , Lleft, and Lright with
the same respective size regardless of whether or not DB0 or DB1 is chosen. Thus, |DS0| = |DS1|.
Additionally, given a query Q, Q always outputs the same set of subqueries U0 for Q (as it is
deterministic and has no knowledge of the underlying DB). This implies that the size of the initial
subresponse set S0 is identical for both databases. Also, R always outputs ⊥ for Uj for j > 0, so
we know that U0:j = U1:j for all j > 0.
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Figure 4: Example of how to answer the minimum query [2, 12] using the structure in Figure 3.

Theorem 5.3. Given the plaintext minimum aggregate range query scheme ΠLinearMin = (S,Q,R),
and a response-hiding STE scheme Σ on data structure DS with storage space O(|DS|) and constant
query time and space, the scheme LinearMin = ARQΣ,S,Q,R is DO and requires O(m) storage,
O(1) query time at both the client and server, and O(1) bandwidth in the size of the database domain
m.

Theorem 5.3 follows by Lemma 5.2 and from a similar argument to that of Fischer and Heun
[FH06].

6 Range Mode Query

In this section, we propose a novel scheme for the encrypted approximate range mode query problem,
which asks for the element with the maximum number of occurrences in a given range of an array.
The current state-of-the-art storage bound for constant-time range mode queries over static arrays
is O(n2 log logn/ log2 n) [PG09]. Given the near-quadratic storage requirement of exact range mode
query schemes, we instead consider an approximate version of the range mode query problem. Such
approximations are available in several database implementations to improve performance (e.g., the
APPROXIMATE MEDIAN and APPROXIMATE MODE functions in Vertica [Foc21]). Introduced by Bose et
al. [BKMT05], the approximate range mode query problem asks us to return an element of the
queried range whose frequency is at least 0 < α < 1 times that of the frequency of the actual mode
of A′.

Definition 6.1 (α-approximate mode query). Given an array A of size n and indices i and j
where 0 ≤ i ≤ j < n, let A′ be the multiset of elements comprised of all elements of A between
the indices i and j (inclusive). We say that an element x ∈ A′ is an α-approximate mode of A′ if
freq(x, [i, j]) ≥ α · freq(x, [i, j]) where freq(x, [i, j]) returns the frequency of x in the range [i, j] and
0 < α < 1. The α-approximate range mode query returns an α-approximate mode of A′.

Observe that the accuracy of the approximation increases as α tends to 1.
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Let BKMTApproxMin(k,DB) denote an application of the BKMT algorithm with k intervals [BFPSS05]
and let IntervalSelect(A) denote an application of the AS interval selection algorithm [AS87] on query
Q. Consider the aggregate range query scheme Π1/2-ApproxMode = (S,Q,R) defined as follows:

• DS← S(DB):

1. compute M ← BKMTApproxMin( 12 ,DB);

2. output DS← (M);

• U ← Q(m,Q):

1. parse (ℓ, r)← x;

2. compute (q1, q2)← IntervalSelect(ℓ, r);

3. output (q1, q2);

• (st′, R, U)← R(st,m,Q, S):

1. compute (R, f)← argmax(x,fx)∈S fx;

2. output (⊥, R,⊥);

Figure 5: The plaintext Π1/2-ApproxMode scheme used to instantiate the encrypted 1/2−ApproxMode
scheme.

Survey of existing plaintext structures. Several solutions have been proposed that deal with
the approximate range mode problem with varying degrees of efficiency. Many of these schemes
use bit-packing techniques [GJLT10; NT14; EHMNS19] that, as explained previously, we can not
directly translate to STE structures. Additionally, while some recent schemes achieve lower storage
requirements than our chosen approach, their query algorithms require non-constant query time
[EHMNS19]. In all cases we examined, non-constant time queries were due to 1) queries requiring at
least 2 round trips to the structure and 2) subsequent accesses to the query structure depended on
the result of the initial access. These features meant that the schemes would not be data indepen-
dent as changes to the underlying database would result in different access patterns; additionally, as
shown by Corollary 4.4, the interactivity of the scheme makes the schemes non-data-independent.

6.1 Our Approach

The BKMT scheme. Given the above constraints, we focus our attention on the structures
developed by Bose, Kranakis, Morin, and Tang (BKMT) [BKMT05]. The BKMT scheme relies on
the following technical theorem.

Theorem 6.2 (Mode partition [BKMT05]). If {B1, . . . , Bk} is a k-partition of the range [ℓ, r],
then

argmax
p

mode(Bp) ≥
mode([ℓ, r])

k
,

where mode is the function that returns the mode of the input range on A. Then, of the k submodes
mode(B1), . . . ,mode(Bk), the mode with the highest frequency is an 1/k-approximate mode of [ℓ, r].

Yao [Yao82] and Alon and Schieber [AS87] provide the necessary k-partitioning scheme for
Theorem 6.2. We refer to this technique as the AS technique. AS is similar to the previously
mentioned ST technique except that, in AS, the k-intervals in a given partition do not overlap.
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Figure 6: The BKMT scheme on database of size m = 16. Adjacent shaded and non-shaded areas in the
same row of M denote which domain values of DB are used to compute the intervals at that level. The first
item of each tuple in M is a mode (element); the second item of the tuple is the mode’s frequency. As an
example, consider the query [1, 5]. This query falls entirely within the first half of the array, but not entirely
within the halves of the first half, so we will retrieve entries from row 22. Then, we retrieve the entries from
row 22 that correspond to our query’s endpoints—in this case, M [22][1] = (1, 3) and M [22][5] = (2, 1). We
then pick the tuple whose second element is greater, which gives us (1, 3). The first element of this tuple is
the 1/2-approximate mode.

This change allows for the partitioning scheme to be generic for any value of k (as opposed to the
ST technique, which is only defined over 2 intervals).

Here, we describe the partitioning algorithm for the case when k = 2 to highlight the differences
between the AS approach and the ST approach. For k = 2, AS splits the array at point h = 2⌊logm⌋

into two blocks. Then, for 1 ≤ i ≤ h, AS precomputes the answers to all intervals [i, h]. Similarly,
for h+ 1 ≤ j ≤ n, AS precomputes the answers to all intervals [h+ 1, j]. These intervals allow us
to answer any query [ℓ, r] that intersects the halfway point h. To answer queries that fall entirely
within one half of the array (i.e. where r ≤ h or ℓ ≤ h + 1), AS recursively processes each half
of the array with the same algorithm. This process produces a hierarchical table where each level
represents m intervals computed at one of the O(logm) recursive steps.

The BKMT solution for 1/k-approximate range mode queries follows as a combination of The-
orem 6.2 and the AS technique. At setup time, we generate a k-interval AS table M that stores
the mode of each interval and the mode’s frequency. Then, to answer a query [ℓ, r], we query the
k non-overlapping intervals in M that exactly cover [ℓ, r] to retrieve their modes. By Theorem 6.2,
the mode with the highest frequency of all k modes is a 1/k-approximate mode of [ℓ, r]. This
scheme is described in Figure 5.

1/2-ApproxMode: A New Encrypted Mode Scheme. Combination of Π1/2-ApproxMode =
(S,Q,R) with the ARQ framework results in a provably secure scheme, 1/2-ApproxMode =
ARQΣ,S,Q,R, for the encrypted range mode problem with the leakage profile given in Theorem 4.2.

Lemma 6.3. Π1/2-ApproxMode is data independent.

Lemma 6.3 can be proved similarly to Lemma 5.2.

Theorem 6.4. Given the plaintext mode aggregate range query scheme Π1/2-ApproxMode = (S,Q,R),
and a response-hiding STE scheme Σ on data structure DS with storage space O(|DS|) and con-
stant query time and space, the scheme 1/2-ApproxMode = ARQΣ,S,Q,R is DO and requires

19



O(m logm) storage, O(1) query time at both the client and server, and O(1) bandwidth in the size
of the database domain m.

Theorem 6.4 follows by Lemma 6.3 and from the analysis in [BKMT05].

1/3-ApproxMode. The description of 1/3-ApproxMode, a scheme for answering encrypted
1/3-approximate range mode queries, is equivalent to that of 1/2-ApproxMode except we instan-
tiate ARQ with a modified variant of Π1/2-ApproxMode that uses a 3-interval AS table and queries
involve computing three interval covers instead of two. (We direct the reader to [AS87] for the
full description of the k-interval partition algorithm for k > 2.) This change improves the storage
requirement to O(m log logm) in exchange for a wider approximation. Given the similarity between
1/3-ApproxMode and 1/2-ApproxMode, we omit the full description of this approach.

7 Range Median Query

In this section, we consider and propose a novel encrypted scheme for the encrypted approximate
range median query problem. Like the range mode problem, the exact range median query problem
has near-quadratic storage overhead for constant-time queries. The current state-of-the-art solution
for constant-time range mode queries on static datasets by Petersen requires O(n2 log(k) n/ log n)
storage, where k is an arbitrary constant and log(k) is the iterated logarithm function [Pet08]. Thus,
just as in our discussion of the range mode query problem, we instead concentrate on solutions for
the approximate version of the problem introduced by Bose et al. [BKMT05]. Given 0 < α < 1, the
α-approximate median query asks for an element of the queried range whose rank is within ±α/2
of the rank of the true median.

Definition 7.1 (Approximate median query). Given an array A of n numbers and indices i and j
where 0 ≤ i ≤ j < n, let A′ be the multiset of elements comprised of all elements of A between the
indices i and j (inclusive). Given 0 < α < 1, we say that an element x ∈ A′ is an α-approximate
median of A′ if the percentile rank of x ∈ A′, denoted rx, satisfies

rx ∈
[
1

2
− 1− α

2
,
1

2
+

1− α

2

]
.

The α-approximate range median query returns an α-approximate median of A′.

Note that in the above definition, the accuracy of the approximation increases as α tends to 1.

7.1 Our Approach

The BKMT scheme. We describe the tunable α-approximate median query structure from Bose,
Kranakis, Morin, and Tang (BKMT) [BKMT05] which we refer to as Πα-ApproxMedian. Figure 7
describes the scheme and Figure 8 illustrates an example. The BKMT algorithm relies on the
following observation about the median: given a sufficiently long query interval, the effects of the
elements in a small prefix and suffix of the interval are minimal on the median and thus can be
ignored. Thus, we can avoid precomputing some sub-medians while still achieving the desired
approximation.

Given a table DB with domain size m = 2k for some k ≥ 1, BKMT creates a hierarchical
set of arrays T1, . . . , Tk as follows. For 1 ≤ i ≤ k, we partition DB into 2i blocks of size m/2i.
Then, Ti contains 2

i entries Ti[j], each of which corresponds to the jth block of size m/2i, denoted
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Let BKMTApproxMed(α,DB) denote an application of the BKMT α-approximate median algorithm over
table DB [BFPSS05]. Consider the aggregate range query scheme Πα-ApproxMedian = (S,Q,R) defined
as follows:

• DS← S(DB):

1. initialize dictionary DX;

2. compute k ← ⌈logm⌉ and p←
⌊
2(1+α)
1−α

⌋
;

3. compute (T1, . . . , Tk)← BKMTApproxMed(α,DB);

4. for all 1 ≤ i ≤ k, for all 1 ≤ j ≤ 2i, for all 1 ≤ x ≤ p, set DX[⟨i, j, x⟩] := Ti[j][x];

5. output DS← (DX);

• U ← Q(m,Q):

1. parse (ℓ, r)← x;

2. compute L← r − ℓ+ 1;

3. compute i←
⌈
log (1+α)m

(1−α)L

⌉
;

4. compute bℓ =
⌈
2iℓ
m

⌉
and br =

⌊
2ir
m

⌋
;

5. output U ← (⟨i, bℓ, br − bℓ⟩);

• (st′, R, U)← R(st,m,Q, S):

1. output (⊥, S,⊥);

Figure 7: The plaintext Πα-ApproxMedian scheme used to instantiate the encrypted α-ApproxMedian
scheme.

Bi:j . Then, each Ti[j] is a list containing p =
⌊
2(1+α)
1−α

⌋
elements of DB, where, for all 1 ≤ x ≤ p,

Ti[j][x] := median
(⋃

0≤q≤x−1Bi:(j+q)

)
.

Each array Ti contains 2i lists, each containing
⌊
2(1+α)
1−α

⌋
elements. Thus, each Ti is of size

O(2
i(1+α)
1−α ). There are logm arrays, so the total space needed to store them is

∑logm
i=1 O

(
2i(1+α)
1−α

)
=

O
(
m(1+α)
1−α

)
= O

(
m

1−α

)
. Answering a query [ℓ, r] can be done in O(1) by accessing a single element

in T using the following algorithm:

1. Given the length of the query L = r − ℓ+ 1, locate array Ti by computing i =
⌈
log (1+α)m

(1−α)L

⌉
.

2. Compute block indices of ℓ and r as bℓ =
⌈
2iℓ
m

⌉
and br =

⌊
2ir
m

⌋
.

3. Output Ti[bℓ][br − bℓ] = median
(⋃

0≤q≤br Bi:(bℓ+q)

)
.

It easily follows that answering queries with the above algorithm takes O(1) time.

α-ApproxMedian: A New Encrypted Median Scheme. Combination of Πα-ApproxMedian =
(S,Q,R) with the ARQ framework results in a provably secure scheme, α-ApproxMedian =
ARQΣ,S,Q,R, for the encrypted range median problem with the leakage profile given in Theorem
4.2.
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Figure 8: α-ApproxMedian scheme on DB of size m = 16, α = 1
8 .

Lemma 7.2. Πα-ApproxMedian is data independent.

Lemma 7.2 can be proved similarly to Lemma 5.2.

Theorem 7.3. Given the plaintext median aggregate range query scheme Πα-ApproxMedian = (S,Q,R),
and a response-hiding STE scheme Σ on data structure DS with storage space O(|DS|) and con-
stant query time and space, the scheme α-ApproxMedian = ARQΣ,S,Q,R is DO and requires
O( m

1−α) storage, O(1) query time at both the client and server, and O(1) bandwidth in the size of
the database domain m.

Theorem 7.3 follows by Lemma 7.2 and from the analysis in [BKMT05].

8 Exploiting Sparsity via Domain Reductions

We now present several techniques that optimize the space requirements of encrypted aggregate
range query structures for sparse databases. We refer to our techniques as domain reductions, as
they allow the client to reduce the size of the domain that the aggregate structure is built over.
Our reductions act as compilers that convert the query space of an encrypted data structure to a
smaller domain space, while still allowing the client to make queries in the original query space.
In general, all of our reductions enable the client to efficiently find the ID of the record whose
query attribute is closest to the client’s desired query. Our domain reductions result in significantly
reduced storage, with different tradeoffs between query performance and leakage.
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Definition 8.1 (Domain reduction). Given a data structure DS : Q→ R, a domain-transforming
data structure from Q to Q∗ is a data structure DS∗ = (DS1,DS2) where DS1 : Q → Q∗ and
DS2 : Q

∗ → R. If |Q∗| < |Q|, we then say that DS∗ is a domain-reducing data structure.

Our domain reduction schemes are presented in terms of the plaintext aggregate range query
syntax from Definition 4.1, though the reductions themselves are parameterized by a secondary
aggregate range scheme. Defining our reductions in this way allows us to immediately apply the
ARQ framework to our reductions to derive encrypted aggregate range query schemes.

The DomainBucket reduction. Figure 10 illustrates an example of the DomainBucket re-
duction, and the algorithm is defined in Figure 9. The reduction takes as input the domain size
m, the database DB, and a tunable constant 0 < α < 1. Given a database DB with domain D, we
partition the domain space into non-overlapping “buckets” where each bucket has equal size. More
precisely, we instantiate a multimap MM with keys

{
[imα, ((i+ 1)mα)− 1]

∣∣ i ∈ [m1−α]
}
, where

the ith label holds tuples corresponding to the all of the records in the range [imα, ((i+1)mα)−1].
Each tuple has two elements, the record’s original domain value and the ordered ID of the record
(i.e., the transformed domain).

We also store two additional records in each bucket that we refer to as the “backwards/forwards
lookup” portion of each bucket. The first such record corresponds to the record that is closest to the
left endpoint of the bucket, but is not within the bucket range itself; the second record is similar,
but for the right endpoint of the bucket. This allows the client to receive a valid answer to a query
in a single round of communication, even if their original query falls in a bucket with no records.

When making a query to the structure, the client sends a search token corresponding to the
bucket containing the domain point. The server responds with the entire bucket. The client then
does a linear pass to find the record ID of the closest element to x.

Complexity. DomainBucket requires only a constant-size search token corresponding to the
desired bucket range of size mα. However, the response bandwidth from the server to the client
is potentially linear—consider a database where all of the records are in a single bucket range,
and thus a query to that range will return O(n) records. Thus, the worst-case client computation
complexity is O(n), as such a database would require the client to sort through all O(n) records to
recover the nearest populated domain point.

The DataBucket reduction. The volume leakage and the worst-case-linear bandwidth of the
DomainBucket scheme motivates our second domain reduction construction, DataBucket (Fig-
ure 11). We elide the formal protocol description due to the scheme’s similarities with the Do-
mainBucket scheme. DataBucket is identical to the DomainBucket scheme except that each
bucket contains the same number of records. Then, the client maintains O(mα) storage to restore
these buckets in future queries. Each bucket volume is at most one less than the largest bucket
volume, and so the remaining buckets are padded with ⊥ to ensure that the bucket volumes are
indistinguishable. This brings the bandwidth complexity in the worst case from O(m) to O(mα)
(i.e. the maximum size of a bucket).

8.1 Example: Range Sum Queries

In this section, we discuss the encrypted range sum query problem. With our domain reduction
schemes in hand, we use this section as an example of how our domain reductions can be used to de-
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Let Π′ = (S′,Q′,R′) be a plaintext aggregate range query scheme. Consider the aggregate range query
scheme ΠDomainBucket(S′,Q′,R′) = (S,Q,R) defined as follows:

• DS← S(DB):

1. initialize multimap MM;

2. for all 0 ≤ i ≤ m1−α,

(a) compute ℓ← imα and r ← ((i+ 1)mα)− 1;

(b) compute l1 ← DB←(ℓ− 1) and l2 ← DB→(r + 1);

(c) compute
bucketi ← {⟨j,DB(j)⟩ | j ∈ [ℓ, r]} ∪ {l1, l2};

(d) set MM[⟨ℓ, r⟩] := bucketi;

3. compute DS′ ← S′(DB);
4. output DS← (MM,DS′);

• U ← Q(m,Q):

1. parse (ℓ, r)← Q;

2. compute iℓ ←
⌊

ℓ
m1/α

⌋
and ir ←

⌊
r

m1/α

⌋
;

3. compute Lℓ ← iℓm
α and Rℓ ← ((iℓ + 1)mα)− 1;

4. compute Lr ← irm
α and Rr ← ((ir + 1)mα)− 1;

5. output (⟨Lℓ, Rℓ⟩, ⟨Lr, Rr⟩);

• (st′, R, U)← R(st,m,Q, S):

1. if st = ⊥,
(a) parse (Bℓ, Br)← S;

(b) compute the closest element ℓ to x in bucket Bℓ in the right direction;

(c) compute the closest element r to x in bucket Br in the left direction;

(d) compute U ← Q(m, ⟨ℓ, r⟩);
(e) set st′ ← (⟨ℓ, r⟩,⊥);
(f) output (st′,⊥, U);

2. otherwise,

(a) parse (⟨ℓ, r⟩, stR)← st;

(b) compute (st′R, R, U)← R′(stR,m, ⟨ℓ, r⟩, S);
(c) set st′ ← (⟨ℓ, r⟩, st′R);
(d) output (st′, R, U);

Figure 9: The domain reduction ΠDomainBucket(S′,Q′,R′).
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(47, N) ⊥

MM

Figure 10: DomainBucket example on a database of size m = 64. Highlighted cells represent the lookup
portion of each bucket.

rive optimizations to the encrypted range sum scheme presented by Demertzis et al. [DPPDGP18],
which require O(m) storage.

Definition 8.2 (Range sum query). Given an array A of n numbers and indices i and j where
0 ≤ i ≤ j < n, the range sum query computes

j∑
k=i

A[k],

the sum of all A[k] where i ≤ k ≤ j.

As explained in prior plaintext database works [Ska13], solutions to the range sum query problem
can be used to answer count, average, and variance queries in exchange for a constant factor increase
in time and space. We provide examples of such query type transformation techniques for encrypted
databases in Appendix C in lieu of considering specialized structures for those types.

Previous results. Demertzis et al. [DPPDGP18] presented the first and only encrypted range
sum query STE scheme,DPPDGP-Sum, which was based on the classic prefix sums technique [Ble93].
This technique allows for constant-size and constant-time queries in exchange for O(m) storage. In
this technique, an array A of size m is computed such that, for all x ∈ [m], A[x] :=

∑x
i=0DB(x).

Then, a range sum query [ℓ, r] may be answered in constant time by accessing A[r] and A[ℓ − 1],
then computing

A[r]−A[ℓ− 1] =

r∑
i=0

DB(x)−
ℓ−2∑
i=0

DB(x) =
r∑

i=ℓ−1
DB(x).

The DPPDGP-Sum scheme translates the prefix sums technique to the encrypted range sum
problem by simply encrypting A with an array encryption scheme.

We note that our ARQ framework can be used to derive this scheme and its leakage.
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Figure 11: DataBucket example. Highlighted cells represent the lookup portion of each bucket.

Our derived schemes. Our domain reduction schemes may be compiled directly on top of
DPPDGP-Sum to reveal the asymptotics detailed in Table 1. To do this, we generate the prefix
sums array over the n sorted record IDs in DB as the domain values. (Observe that the “domain”
of this prefix sums array is over the O(n) record IDs of DB.) Then, we apply our choice of domain
reduction scheme to the prefix sums array, which maps from the original domain of size m to the
record ID domain of size O(n). When the client wants to make a query [ℓ, r], they make two
queries to the domain reduction structure—one to find the nearest record ID idℓ on the left of ℓ,
and another to find the nearest record ID idr on the right of r. The client then queries the actual
prefix sums array using [idℓ, idr].

Under our general domain reduction framework, the added structure normally incurs an addi-
tional round of communication. However, for prefix sums, we may avoid the additional round of
communication due to the following: since every record ID has a one-to-one mapping with an entry
in the prefix sums array, we can replace every instance of the record ID in the domain reduction
structure with its entry in the prefix sums array. Now, when the client makes a query to the domain
reduction structure, the structure’s response is the desired sum.

8.2 Tradeoffs and Attacks

Our domain reductions primarily trade increased leakage in exchange for substantially less storage
overhead. In particular, under DataBucket, the client-side storage is significantly smaller than
O(m). For example, when given a dataset with domain size m = 54000000, the client-side storage
is O(7348) for α = 0.5.

On the other hand, the leakage changes result in schemes that are not provably DO. However,
the lack of the DO property does not mean that the schemes are immediately vulnerable to attacks.
To provide more context surrounding this tradeoff, we now describe potential starting points for
attacks against the domain reductions and what threat model assumptions may be necessary for
such attacks to produce practical impact.

Consider some instantiation of ARQΣ,S,Q,R where (S,Q,R) is derived from a domain reduction
scheme. Definition 8.1 requires that the domain reduction index translates coordinates in the
original query space Q∗ into the query space Q of the aggregate index structure such that |Q∗| <
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Figure 12: Scheme costs on the Gowalla dataset with DPPDGP-Sum [DPPDGP18] ( ), Domain-
Bucket ( ), and DataBucket ( ).
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Figure 13: Scheme costs on the Gowalla dataset with DPPDGP-Min1 [DPPDGP18] ( ), DPPDGP-
Min2 [DPPDGP18] ( ), and LinearMin ( ). There were no significant changes in Query time as the
number of records increased (average Query times—DPPDGP-Min1: 1656 ns; DPPDGP-Min2: 2033 ns;
LinearMin: 3014 ns). There were no significant changes in Resolve time as the number of records increased
(average Resolve times—DPPDGP-Min1: 41508 ns; DPPDGP-Min2: 42058 ns; LinearMin: 121939 ns).

|Q|. By the Pigeonhole Principle, at least two queries to the domain reduction index will be
transformed into the same query to the aggregate index structure. In the specific reductions we
propose in this work, this duplication may reveal information about the density distribution of the
underlying database.

For example, in DataBucket or the implicit domain reduction used in DPPDGP-Min2, if the
adversary knows that the client is issuing every original domain query exactly once and assuming
that Σ has search pattern leakage, they may count how many (encrypted) queries each (encrypted)
bucket receives via the search pattern leakage. Larger numbers of queries issued to the same
bucket (in comparison to the number of queries issued to other buckets) implies that the dataset
has different density levels, with the buckets holding larger numbers of queries corresponding to
a less-dense range in the domain. We note that we are currently not aware of any attack that
allows the adversary to order these encrypted buckets, so while the adversary knows that there
are some less-dense areas of the domain than others, the adversary may not be able to determine
the ordering of these density levels without additional assumptions on the dataset. Furthermore,
attacks that leverage knowledge of the query distribution (e.g., [KPT21; OK21]) can be mitigated
using frequency smoothing techniques (e.g., Pancake [Gru+20]). In Section 10, we discuss more
mitigations and extensions to our work.

9 Empirical Evaluation

We now evaluate how the schemes derived from the ARQ framework perform in practice.
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Figure 14: Density evaluation of DomainBucket (left) and DataBucket (right) on synthetic datasets
(m = 100000) with α = 0.25 ( ), α = 0.50 ( ), and α = 0.75 ( ).

Arca: a new structured encryption library. As part of this work, we designed and im-
plemented a new, open-source, encrypted search library called Arca [Esp22]. Arca is an Python
package designed to allow researchers to easily and rapidly prototype systems that use encrypted
search algorithms. It provides simple cryptographic primitives (which themselves are based on those
provided by the Python cryptography package [Aut18]) and implementations of various structured
encryption schemes. Arca has complete type annotations and passes all strict static type checks
provided by the MyPy type checker. Arca’s code and its associated documentation are available at
https://github.com/cloudsecuritygroup/arca.

We implemented all of the plaintext schemes that we chose in this work as well as the plain-
text schemes used by Demertzis et al. [DPPDGP18]. Then, using Arca, we implemented the
ARQ framework. Combining our implementation of the ARQ framework and our implemen-
tations of the plaintext schemes produced LinearMin, 1/2-ApproxMode, α-ApproxMedian,
DomainBucket, DataBucket, and the encrypted schemes from [DPPDGP18]. These schemes
are included within the Arca library.

Cryptographic primitives. We used the cryptographic primitives provided by the Arca library.
For symmetric encryption, we used AES-256 in CBC mode; for PRFs, we used SHA512. For each
ARQ instantiation, we used Arca’s implementation of the Πbas scheme from [Cas+14] as Σ.

Experimental setup. We ran our experiments as independent, single thread, single process
tasks on a Slurm computing cluster consisting of Intel Xeon E5-2670 and E5-2600 processes. All
experiments were performed in-memory, with each process allotted a maximum of 300 GB of RAM.

Datasets. We use two real-world datasets in our evaluation. Gowalla [CML11] was a location-
based social networking website in which users could share their locations. This dataset contains
a total of 6,442,892 check-ins collected from users between February 2009 and October 2010, with
5,561,630 unique records. The date and time of the check-ins were converted to Unix time integers,
then shifted to domain {0, . . . , 54083068}. These normalized times were used as the query attribute.
Using Gowalla, we demonstrate the effects of increasing number of records on the scheme costs
by randomly partitioning Gowalla into 12 sets of 500,000 points. We ran our schemes on one
partition, then formed a new dataset by adding another partition to the previous partitions and
benchmarked the costs again with the increased number of records.3 We use this dataset (and this
partitioning scheme) to replicate Demertzis et al.’s [DPPDGP18] evaluation of their schemes.

3We were unable to run the DPPDGP-Min1 scheme on any partition set of Gowalla within 8 hours due to the
number of encryptions needed to encrypt the ST. Thus, we instead computed the number of bytes needed to store
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Scheme Index size (MB) Build time (s)

1/2-ApproxMode 219 025.72 20 761.48

α-ApproxMedian 130 459.63 13 603.23

Table 2: Scheme costs on Gowalla, which have effectively constant index size and construction time in the
number of records.

Scheme Index size (MB) Build time (s)

DPPDGP-Sum 1143.54 258.01
DomainBucket 2.13 1.30
DataBucket 2.01 1.11

DPPDGP-Min1 26 301.39 9345.69
DPPDGP-Min2 1160.04 555.01
LinearMin 3231.74 818.05

1/2-ApproxMode 25 157.85 7384.72

α-ApproxMedian 16 307.45 4711.28

Table 3: Scheme costs on the Amazon dataset.

Amazon [NLM19] contains 51,311,621 item ratings from reviews left in the Books section
of Amazon between May 1996 and October 2018. There are 7,837 unique timestamps in the
dataset. We normalized the date and time of the reviews so that the domain of the times was
{0, . . . , 7058880}.

Quantitative evaluation. Figure 12 demonstrates the effectiveness of our domain reductions in
reducing the index size, construction time, and server query time of DPPDGP-Sum, while only
slightly increasing the resolve time at the client. In particular, the DataBucket scheme results
in significantly lower storage and construction overhead than DomainBucket—since m and α
are public parameters and each bucket is the same size, the entire bucket may be encrypted as a
single value which substantially reduces the amount of extra padding incurred by each encryption
operation. The client-side performance tradeoffs with the reductions are made evident in the results
for Resolve, but the runtime is minimally greater than that of DPPDGP-Sum.

For the minimum schemes, Figure 13 demonstrates that our LinearMin scheme (designed for
dense databases) performs significantly better than DPPDGP-Min1 (its direct dense scheme com-
petitor) and better than DPPDGP-Min2 (the scheme designed for “sparse” databases) starting
at 2.5 million records in Gowalla. For the approximate schemes, Table 2 and Table 3 provide
baseline performance benchmarks for the 1/2-ApproxMode and α-ApproxMedian schemes for
α = 0.5. We can see that the storage and build time overhead of both schemes is comparable to
that of DPPDGP-Min1.

In Figure 14, we plot the index size of our DomainBucket and DataBucket schemes under
synthetic databases of different densities, with uniformly distributed data. We observe that the in-
dex size increases as the sparsity decreases, as expected in both cases. Due to the data distribution,
we observe similar performance from the DomainBucket and DataBucket schemes.

the encrypted form of each entry of ST (162 B) and the average time for computing a hash of each entry’s label and
encrypting its value (15356 ns). Then, we computed the # of cells in the ST and extrapolated the index size and
runtime of DPPDGP-Min1 using the previous two metrics. Note that our encryption time estimate is conservative,
as it does not take into account the time it takes to access elements from the large (plaintext) ST array.
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All in all, our experiments and analysis demonstrate that our approach’s theoretical constant-
size and time query overhead is very small in practice. In particular, the overhead will be sig-
nificantly smaller than the linear-time overhead of the strategies used in prior work mentioned in
Section 2.

10 Extensions

10.1 Higher Dimensions

The majority of the aggregate query schemes discussed in this paper easily generalize to d-dimensional
databases of domain size m1 × · · · ×md.

• Sum: For DPPDGP-Sum, a d-dimensional index can be created by using the d-dimensional
prefix sums technique of [Ble93], where an d-dimensional array of size m1×· · ·×md is generated,
and the index (c1, . . . , cd) stores the sum of all of the records in the d-dimensional hypercube
defined by (0, . . . , 0) and (c1, . . . , cd). This requires the client to access 2d entries in the structure.

• Minimum and Mode: For DPPDGP-Min1, DPPDGP-Min2, and LinearMin, we can
construct d indices, one for each dimension, and then constructing a new index where each entry
stores the minimum of the “product” of the ranges represented by each entry of the d dimension-
specific indices. This requires the client to access 2d entries in the final structure. (The same
technique applies to the ApproxMode schemes due to the similarities between the ST and AS
structures.)

These generalizations do not work for the α-ApproxMedian and domain reduction schemes. The
“bucketing” approach of both the median and the domain reduction schemes does not easily extend
to higher dimensions since all such schemes operate by accessing a single entry in the encrypted
structure. One may approximate these constructions using an single range cover -like approach used
by Demertzis et al. [DPPDGP18] in their one-dimensional range search schemes; we leave further
exploration of such extensions to future work.

10.2 Record-Reporting

Applications that desire record-reporting for aggregate functions (specifically min/max and median)
can instead (or additionally) encode the record identifier associated with the given plaintext value.
For example, an encrypted search engine may be interested in identifying the top-k documents with
the highest word count that were generated within a particular date range. One can implement
this via a combination of the query transformations detailed in Section C to reduce the top-k
problem to the minimum scheme; then encoding the record identifier of the document alongside
each precomputed sub-aggregate in the structure. (To retrieve the actual record, a separate, O(n)-
size index can be stored alongside the aggregate structure to map the record ID to the actual
record.)

10.3 Updates

We handle updates by combining a client-side update cache (e.g., [WBNM21]) with periodic inter-
mediate Setup and “rebuild” operations. At a high-level, we initialize the cache to have a size of
δ1 (a tunable parameter). Then, when the client wants to add or change a record, they add the
change to their client-side cache without propogating it to the server immediately. On subsequent
range queries, the client is responsible for performing a linear scan of the cache to detect if any of
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the updates fall within the queried range and adjusting the computed aggregate accordingly. Once
the cache size reaches δ1, the client triggers a Setup operation where they generate a new encrypted
structure over only the records in the cache and then send the new structure to the server, which
accumulates multiple such update structures over time. The client stores the keys for the new struc-
ture alongside the previously stored keys and empties the cache. On subsequent queries, the client
generates multiple search tokens for both structures. To avoid a continual increase in the number of
stored structures and search tokens, the client periodically rebuilds the server-side structure when
the number of update structures reaches δ2 by constructing a new, single index based off of queries
to the existing structures on the server. The client then sends the new structure to the server,
which then deletes the previous structures and replaces it with the new index.
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A Formalization and Proof of Corollary 4.4

We first define a technical definition of equivalence of two plaintext aggregate range query schemes.
Our equivalence definition captures when two plaintext aggregate range query schemes output
exactly the same final result when given the same database and the same query.

Definition A.1 (Equivalence of plaintext aggregate range query schemes). Let Π1 = (S1,Q1,R1)
and Π2 = (S2,Q2,R2) be two plaintext aggregate range query schemes. We say that Π1 and Π2 are
equivalent plaintext aggregate range query schemes if, for all k ∈ N, for all poly(k)-size tables DB,
for all poly(k)-size sequences of queries Q1, . . . , Qs, for all queries Q ∈ Q1, . . . , Qs, given

DSi ← Si(DB),
Ui ← Qi(m,Q),

Si:0 ← {DSi[u] | u ∈ Ui},
(sti:0, Ri:0, Ui:0)← Ri(⊥, Q, Si:0), and

(sti:j , Ri:j , Ui:j)←

{
R(sti:j−1, Q, Si:j−1) if Ui:j−1 ̸= ⊥
(⊥, Ri:j−1,⊥) if Ui:j−1 = ⊥

for all j > 0,

then there exists an integer k ≥ 0 where R0:j = R1:j for j ≥ k.

We now prove that if a plaintext aggregate range query scheme is data independent, there exists
an equivalent plaintext aggregate range query scheme that requires only one round of queries to
the aggregate index structure.

Corollary A.2. Let Π = (S,Q,R) be a plaintext aggregate range query scheme. If Π is data
independent, then there exists a scheme Π′ = (S′,Q′,R′) such that Π is equivalent to Π′ and R′
always outputs (st, R, U) where st = ⊥ and U = ⊥.

Proof. By (C2) of Definition 4.3, we know that Π = (S,Q,R) always generates the same subqueries
for the aggregate index DS for a given queryQ regardless of the underlying contents of DB. Then, we
create the following plaintext aggregate range query scheme Π′ = (S′,Q′,R′) that is Π-equivalent.
(We emphasize that (S′,Q′,R′) is not necessarily the most efficient definition of a Π-equivalent
scheme, but our goal with this proof is to simply prove the existence of such a scheme.)

• DS← S′(DB):

1. output S(DB);

• T ← Q′(m,Q):

1. generate random DB′ of size m;

2. compute DS′ ← S(DB′);
3. compute U ← Q(m,Q);

4. initialize sequence T ;

5. initialize state st = ⊥;
6. while U ̸= ⊥,

(a) append all elements in U to T ;

(b) compute V ← {DS′[u] | u ∈ U};
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(c) compute (st, R, U)← R(st,m,Q, V );

7. output T ;

• (st, R, U)← R′(st,m,Q, S):

1. generate random DB′ of size m;

2. compute DS′ ← S(DB′);
3. compute U ← Q(m,Q);

4. initialize empty sequences T and query sizes;

5. initialize state st = ⊥;
6. initialize aggregate R = ⊥;
7. while U ̸= ⊥,

(a) append |U | to query sizes;

(b) append all elements in U to T ;

(c) compute V ← {DS′[u] | u ∈ U};
(d) compute (st, R, U)← R(st,m,Q, V );

8. compute U ← Q(m,Q);

9. set st = ⊥;
10. for size in query sizes,

(a) pop first size elements of T into sequence S′;

(b) compute (st, R, U)← R(st,m,Q, S′);

11. output (⊥, R,⊥);

B Workarounds for Query Size Limitation in LinearMin

One simple solution to minimize the number of queries of size s that are blocked by the scheme is
to recursively apply the scheme again within blocks of size s. This maintains the asymptotics of
the construction (at the expense of a larger coefficient on the storage overhead) and decreases the
threshold where certain queries cannot be answered from s = logm to s′ = log logm.

Additionally, in practical encrypted database deployments, the encrypted minimum structure
would likely be stored alongside a standard encrypted range structure (e.g., [FJKNRS15; DP-
PDGP18; FMET22]). In such settings, when faced with an unanswerable query, the client may
instead simply send a standard range query to the encrypted range structure. Then, the client can
compute the minimum by decrypting the returned records and taking the minimum of the query
attribute. Given that this is required only for some small queries (of size less than s), the client still
may enjoy the performance benefits of the LinearMin scheme on larger queries while incurring
minimal performance overhead for the small queries.

C Query Type Transformations

Transformations from range sum query. Solutions to the encrypted range sum query problem
may be used to answer count, average, and variance queries with a constant factor increase in
storage, bandwidth, and time.
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• Count. We add a “fake” attribute to each record with value 1, and apply the range sum query
technique over this new attribute.

• Average. The client divides the result of a sum query over the desired range by the result of a
count query over the same range.

• Variance. We add a new attribute to each record that holds the square of the desired query
attribute, apply the range sum query technique over this new attribute, and then answer queries
by taking the result of a sum query over the square attribute and subtracting the square of the
result of an average query over the non-squared attribute.

Transformations from range minimum query. Solutions to the encrypted range minimum
query problem may be used to answer maximum, bottom-k, and top-k queries.

• Maximum. We negate the value in the aggregate attribute and apply the range minimum query
technique over the negated attribute. When receiving the result of a query, the client negates
the returned value to return it to its original sign.

• Bottom-k. The technique we use is a generalization of the technique presented by Demertzis et
al. [DPPDGP18]. Instead of creating one aggregate structure, we create k aggregate structures,
where the ith structure stores the element of rank-i (e.g., the first structure stores the true
minimum for each preprocessed range, the second structure stores the value above the minimum
for each preprocessed range, etc.). Additionally, each minimum is stored as a tuple, where the
first element is the minimum value and the second element is an identifier that uniquely identifies
the record that this minimum was associated with. During queries, the client generates O(k)
search tokens for all of the k structures, and O(k) bandwidth is sent back to the client in response.
The client then sorts the returned tokens, removes duplicate record IDs, and picks the lowest k
values.

• Top-k. Follows from a combination of the maximum and bottom-k transformations.

• Range. We use a minimum and maximum structure, which gives us the difference between the
maximum and minimum.

39



D Acknowledgements

When you stand on the shoulders of giants, you can see really far.
Nothing in this thesis would have happened had it not been for Roberto Tamassia, who was

not only my thesis advisor but also my professor for cs1660, the first security course I took at
Brown. I distinctly remember the magical feeling I had when Roberto introduced me to structured
encryption for the first time—in that moment, I discovered a way to unify my interests in algorithms,
data structures, and systems with my love for security. Roberto took a chance on me multiple times
throughout my Brown career, such as when he agreed to advise my thesis during his sabbatical, or
when he supported my last-minute application for the Randy Pausch award, or, and most especially,
when he hired me as a HTA for cs1660 in 2019 and sparked a multi-year dive into the security field.
I also am grateful to Vasilis Kemerlis for serving as the reader to this thesis.

I am also extremely grateful for my CSG and ESL collaborators, all of whom welcomed me into
their research meetings with open arms: Francesca Falzon, Marilyn George, Evangelia Anna
Markatou, Lucy Qin, and Zheguang Zhao. Their mentorship, professionalism, and kindness
transformed an emotionally turbulent period into some of the most intellectually engaging and
inspirational times I’ve had at Brown. I am thankful for all of their time and energy in a time
where energy was often hard to find. I also must thank Seny Kamara, who was the first to open
the door to applied cryptography research in August 2020. Seny’s “Crypto for the People” was
one of the main drivers that caused me to pursue research further in 2020, and I aspire for my own
work to one day be as “cool” and impactful as Seny’s work.

I received several sources of funding that enabled me to devote a significant amount of time to
research in 2021: CrowdStrike Foundation, the Center for Cyber Safety and Education,
and Brown CS’s Randy F. Pausch Computer Science Undergraduate Summer Research
Award. These grants allowed me to multiply many of the results that appear in this thesis as well
as those that appear in other publications.

On a more personal level, 2020 and 2021 were filled with a number of challenges, some obvious
to the world and others much less so. My friendship with my recurring cs1660 and cs2951e family, in
particular, Abigail Siegel and William Schor, helped immensely to get me through the academic
year. Their willingness to listen to my research rambles, share my enthusiasm for new insights, and
just be friends at the end of the day helped me be happy with and proud of my work. I am also
fortunate to have had a fantastic co-MTA and friend, Julia McClellan, whose organization skills
often surpassed my own and to whom much credit is owed for shepherding 1200+ UTAs through
the variety of challenges we encountered. Additionally, Casey Nelson’s unconditional friendship
helped in many ways to push me to the completion of my Brown degrees. Finally, I am thankful to
the many players who joined the “unofficial board game club”, all of whom trusted me with hours
of time so I could (try to) craft interesting, confusing, and hopefully memorable experiences for
them with games, cooking, and storytelling each evening. I hope those sessions were as much of a
community-building respite from work for you all as they were for me.

Lastly, as a small number of people at Brown know, I was diagnosed with and battled Stage IV
cancer for seven months in June 2019. I was extremely lucky to have had a strong support network
of people at Brown CS during this time, including (but not at all limited to) my Brown PLT
colleagues and friends, my MTA supervisor (Thomas Doeppner), my family, and Amy Wang,
Andrew Wagner, Karen Tu, Lisa Phinisee, Nicole Steinberg, and Shawna Huang. In spite
of the many challenges that arose in the months following, they all extended exceptional amounts
of patience, understanding, and support during my treatment and throughout my recovery, and
neither I nor this thesis would have been around today if it wasn’t for their life-saving support.

40


	Introduction
	Related Work
	Preliminaries
	ARQ: A General Framework
	Data Independence

	Range Minimum Query
	Our Approach

	Range Mode Query
	Our Approach

	Range Median Query
	Our Approach

	Exploiting Sparsity via Domain Reductions
	Example: Range Sum Queries
	Tradeoffs and Attacks

	Empirical Evaluation
	Extensions
	Higher Dimensions
	Record-Reporting
	Updates

	Formalization and Proof of Corollary 4.4
	Workarounds for Query Size Limitation in LinearMin
	Query Type Transformations
	Acknowledgements

