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1 Abstract

Weakly supervised learning reduces the need for large amounts of la-
beled data to train deep learning models by using weak supervision
on large quantities of unlabeled data. Many existing approaches to
learn from weak supervision sources assume that they provide inde-
pendent views of the target classification task. This assumption is un-
realistic and frequently violated in practice. Other weakly supervised
learning methods that do not make these assumptions lack guaran-
tees on their performance. In this thesis, we present two methods
with performance guarantees to learn from weak supervision sources
without any such strong assumptions on their distributions.

Our first approach is limited to binary classification tasks and uses
unlabeled data to estimate statistical quantities of the weak super-
vision sources. Then, it uses these information to solve a linear pro-
gram that computes a worst-case error bound for the majority vote
of a subset of weak supervision sources. Our second approach solves
multi class classification tasks; we provide an adversarial training
method that uses a linear program to select an adversarial labeling
of the data after each gradient update.

We provide experimental results on natural image datasets for both
binary and multi class classification tasks, comparing our approaches
to classical methods that make independence assumptions and other
recent weakly supervised learning approaches that do not provide
theoretical guarantees on performance.

2 Introduction

Most of this thesis consists of two joint works: one with Alessio Mazzetto,
Andrew Park, Eli Upfal, and Stephen H Bach (Mazzetto et al., 2021) that
will appear in AISTATS 2021 and one with Cyrus Cousins, Alessio Mazzetto,
Stephen H Bach, and Eli Upfal (Cousins* et al., 2021) that is submitted and
currently under anonymous review.

Recent state-of-the-art machine learning and deep learning models have shown
incredible generalization performance due to an incredibly large number of pa-
rameters. However, training these modern approaches requires large amounts
of labeled data. These labeled data serve as a bottleneck to machine learning
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applications in many domains, as they can be expensive or sometimes impos-
sible to obtain. For example, medical records and EHR data exist in large
quantities, but hiring experts and doctors to categorize or label these data can
be extremely costly. Therefore, many fields in machine learning have attempted
to leverage large amounts of unlabeled data or auxiliary forms of information
to get around this bottleneck.

One such field of research is weakly supervised learning, which uses weak su-
pervision sources to provide noisy information about the desired target task.
A common form of weak supervision sources are hand designed heuristics, as
used in (Ratner et al., 2016, 2017; Safranchik et al., 2020), which consist of
simple rules that make imperfect classifications of the data. These sources of
supervision tend to be less informative as humans cannot easily produce suffi-
ciently complex rules that capture the information required for computer vision
tasks. Other recent works consider more complex forms of weak supervision
by training models on related tasks and transferring that external information
onto the target task (Bach et al., 2017; Varma et al., 2019; Bach et al., 2019).
As the underlying distributions that these models are trained on are related
but inherently different, the transfer applications of these classifiers produce
noisy labels that serve as a weak supervision. However, these models still learn
to extract features from their original tasks, so they are usually more effective
and accurate than hand-engineered heuristics.

In this work, we focus on the challenge to devise ways to smartly combine
different weak supervision sources to produce a strong classifier without access
to large amounts of ground-truth labels of the target task. Many existing ap-
proaches tackle this problem by making strong assumptions about the weak
supervision sources (Dawid and Skene, 1979; Ratner et al., 2016; Zhang et al.,
2016). A common assumption is that they provide independent views of the
data, and prior work has developed optimal ways to learn a weighted vote
(Nitzan and Paroush, 1982). However, this assumption is not realistic in prac-
tice and is frequently violated.

When considering hand-engineered heuristics as weak supervision, this issue
can be addressed by modifying the heuristics to produce more independent
forms of weak supervision. On the other hand, when weak supervision sources
are models trained on related tasks, they cannot be easily modified. Consider
an image classification task between different animal classes. We can train
models to serve as weak supervision sources by learning high-level information
about animals (i.e. color, body structure). However, resulting classifiers that
learn if an animal has flippers and if an animal lives in water will capture
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similar views of information, which implies that their errors will not be inde-
pendent. These classifiers cannot be easily altered and thus require alternative
aggregation methods that do not make such strong assumptions. Recent ap-
proaches (Arachie and Huang, 2019a,b) do not make any strong assumptions
and frame this weak supervision source aggregation problem in an adversarial
training setting. These methods focus on an empirical analysis of performance
and do not provide theoretical guarantees about their methodologies’ conver-
gence or performance (Arachie and Huang, 2019a).

Therefore, we present two performance-guaranteed approaches to combine
weak supervision sources. The first approach (Mazzetto et al., 2021) is re-
stricted to binary classification tasks and uses labeled data to estimate error
rates of each weak supervision source and large quantities of unlabeled data to
estimate their pairwise differences or their overall output distributions. Then,
it uses a linear program to analytically compute a worst-case error bound on
the expected error of a majority vote of weak supervision sources. The second
approach (Cousins* et al., 2021) generalizes to multi class classification tasks by
an adversarial training approach. It trains a classifier by adversarially selecting
labels that maximize the risk of the current classifier after each gradient up-
date through a linear program. This linear program is constrained by possible
intervals of weak supervision source accuracies; when evaluating the weak su-
pervision sources on the selected labels, their accuracies must fall within these
intervals. We present the essential methodology for these approaches and fo-
cus on the experimental details and results on various image classification tasks.

Finally, we provide a brief discussion about potential future work explaining
other methods that train an additional discriminative models when using the
outputs of the combination of weak supervision sources as pseudolabels for
additional unlabeled data.

3 Related Work

Combining different noisy information sources has been widely studied in many
different subfields of statistics and machine learning. In this section, we ad-
dress prior work and discuss their limitations and differences from our methods.

The broad field of ensemble learning looks to combine different classifiers in
the hopes of producing a stronger aggregated classifier. The seminal work of
bagging, or bootstrap aggregating, (Breiman, 1996) trains multiple versions
of classifiers using a bootstrapped sampling technique and aggregates them
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together to produce a classifier that has reduced variance, especially in cases
where the different samples have significant impact on the performance of the
learnt classifiers. The other classical ensemble method is boosting (Schapire,
1990), which looks to aggregate a large numbers of weak classifiers to construct
a strong classifier. This line of work has spawned many different approaches to
boosting (Freund, 1995; Chen and Guestrin, 2016; Badirli et al., 2020) using
different base hypothesis classes and optimization schemes. Both boosting and
bagging use large amounts of labeled data to aggregate the weaker classifiers
and use classifiers that are trained with respect to the target class. Our setting
differs as the weak supervision sources can be trained on different target tasks,
and we estimate the properties of our weak supervision sources with only few
labeled data.

Many works in weakly supervised learning make the assumption that the weak
supervision sources are independent when conditioned on the true label (Rat-
ner et al., 2016, 2017) and use the Dawid Skene model (Dawid and Skene,
1979) to produce an optimal weighted vote under this assumption. However,
many works note that this assumption is unrealistic and look to relax this
independence assumption; these approaches look to estimate the structural de-
pendencies of weak supervision sources in an unsupervised fashion (Bach et al.,
2017; Varma et al., 2019). A limitation of these approaches is that they require
these underlying structures to be declared. In addition, it may be difficult to
verify the validity or presence of these structural dependencies in the setting
with limited labels. The methods presented in this thesis do not make any
independence assumptions and do not require prior knowledge about the un-
derlying structure of the weak supervision.

Recent works have framed the task of learning from weak supervision sources
without any assumptions as an adversarial learning task. The first of these
methods is ALL (Adversarial Label Learning) (Arachie and Huang, 2019a),
which is restricted to binary classification settings and provides a general frame-
work for the adversarial training. This approach requires estimates of the weak
supervision source errors on the target task and uses these errors as constraints
to a minimax optimization problem. This approach uses a SGD training pro-
cess where at each time step, a set of adversarial labels are produced that
maximizes the error of the classifier that satisfies the error constraints of the
weak supervision sources. The generalized ALL (Arachie and Huang, 2019b)
generalizes this approach to multi class settings. These works note that if
the estimates of weak supervision sources are exact, then the objective of the
minimax formulation provides a upper bound on the error rate of the trained
classifier. However, both methods do not provide convergence guarantees and
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do not provide guarantees for a method to select a model satisfying this true
minimax bound.

4 Methods

In this section, we describe the methodology presented in joint work (Mazzetto
et al., 2021; Cousins* et al., 2021) which we will refer to as PGMV (Performance-
Guaranteed Majority Vote) and AMCL (Adversarial Multi Class Learning)
respectively.

4.1 Preliminaries

Let X be our domain, and let Y = {0, 1} for the setting of PGMV. For AMCL,
let Y be the space of one-hot vectors of k classes for AMCL. Then, we can de-
fine our distribution as D = X ×Y . Let our set of n weak supervision sources
be denoted as S = {`1, ..., `n} where each `i : X → Y . We can consider the
function `S to be the mapping of some element x in our domain to the outputs
of all of our weak superivsion sources, or `S(x) = (`1(x), ..., `n(x)). We note
that PGMV requires that our weak supervision sources map to the same set of
classes Y as our target task. For AMCL, we do not have this requirement and
can use other additional forms of weak supervision that have been trained on
a wider variety of tasks.

Let the error rates of the weak supervision sources be the vector ε = {ε1, ..., εn},
where εi represents the error rate of weak supervision source `i, or that `i =
Px,y∼D(`i(x) 6= y). Note that this vector of error rates can be estimated ac-
curately with only few labeled data from the target task. Note that in the
binary classification setting of PGMV, we can assume that each of our weak
supervision sources has error εi ≤ 0.5. If any has an error rate greater than
0.5, we can simply reverse its outputs, resulting in a weak supervision source
with error rate less than 0.5.

4.2 PGMV

We compute the error rates and pairwise differences between the weak supervi-
sion sources, which can be estimated with few labeled data and many unlabeled
data. Then, we use this quantities in a linear program to obtain an analytical
bound on the performance of the majority vote of a given subset of weak su-
pervision sources.
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First, we have the error rates ε of our weak supervision sources as defined above.
These can be estimated with a small number of labeled data from the target
task. Next, we consider the pairwise differences between the weak supervision
sources D as the n by n matrix with Di,j = Px∼Dx(`i(x) 6= `j(x)). Let S(ε,D)
be the collection of all feasible sets of weak supervision sources {`1, ..., `n} such
that the error of `i corresponds to εi and the pairwise differences between `i and
`j is equal to Di,j. These quantities can be estimated with only unlabeled data.

Let I = {i1, ..., ik} ⊆ {1, ..., n} be some k-subset of indices of our weak super-
vision sources. We can denote the majority vote function of a subset as MI .
Then, the majority vote of a subset of labelers is the composition of functions
MI ◦ `S, which returns 1 if

∑
j∈I `j >

|I|
2

. We can then define a random vector

a = {a1, ..., ak} ⊆ {0, 1}k that represents whether a given weak supervision
source in our subset I is correct, or that aj = 1 if `ij is correct and 0 otherwise.
This vector will serve as our decision variables in a linear program. We can
analyze the probability of the vector a occurring as

pa = Px∼Dx(a)

= Px,y∼D({`i(x) = y,∀i s.t. ai = 1} ∩ {`j(x) 6= y,∀j s.t. aj = 0})

Then, we can compute a worst case bound on the expected error of the majority
vote of a subset ε(MI ◦ `S) by the following linear program

max
S∈S(ε,D)

ε(MI ◦ `S) = max
∑

a∈{0,1}k:|a|1< k
2

pa

(a)
∑

a∈{0,1}k:aj=0

pa = εij for j = 1, ..., k

(b)
∑

a∈{0,1}k:ah 6=aj

pa = Dih,ij for h 6= j

(c)
∑
a

pa = 1

(d) pa ≥ 0, ∀a

where |a|1 denotes the `1 norm of the vector a. |a|1 < k
2

denotes when less than
half of the outputs are correct or when the majority vote is incorrect. We also
provide an alternative linear program where we consider the output distribu-
tion of the weak supervision sources rather than their pairwise differences; we
refer the reader to (Mazzetto et al., 2021) for this alternative linear program
and more theoretical details.
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Next, we briefly outline a greedy algorithmic approach to select good subsets
of weak supervision sources to use as a majority vote. Starting from each weak
supervision source in our set S, we add the two weak supervision sources that
minimize the above linear program until there is no more improvement in terms
of a tighter worst-case bound. In our experiments, we terminate this algorithm
when we have achieved a subset of size 9. This method allows us to consider
larger subsets of weak supervision sources efficiently, while only expanding our
search to large subsets that achieve a tighter worst-case bound than the smaller
subsets of size 3.

4.3 AMCL

Inspired by ALL, we provide a multi class approach to learn from weak su-
pervision sources that also provides theoretical guarantees. Here, we change
our constraint of their error rates of our weak supervision sources to potential
ranges of their error rates δ = {δ1, ..., δn} where each δi is some interval. As
before, we have access to some small amount of labeled data from the target
task, which allows us to estimate these quantities.

Let H be our hypothesis class where H = {hθ|θ ∈ Θ}, or where each h is a
parametric classifier. Let PΘ be a projection function that maps any value θ̃
into our valid parameter space Θ. Let the risk of our classifier be defined as
some function R. In our work and experiments. We can compute an empirical
estimate of a the risk with respect to a loss function L as

R̂(hθ) =
1

m

m∑
i=1

L(hθ(xi), yi)

Then, when training our model, we have access to a some sample of un-
labeled data points X = {x1, ..., xm} that have some ground truth labels
Y = {y1, ..., ym} that we cannot access. We can define the set of feasible
labelings for this sample as Y ∗, where Y ∗ is constrained by our quantities δ.
In other words, we have that

Y ∗ = {Y ′ ⊂ Y|R̂(`i(X), Y ′) ∈ δi}

Then, we can formulate the goal of our work as a minimax problem, where we
want to learn the parameters θ̂ that minimizes the empirical risk when given
an adversarial labeling of our unlabeled data. This is formally written as

θ̂ = arg min
θ∈Θ

max
Y ∈Y ∗

R̂(hθ(X), Y ) (1)
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We provide the pseudocode for a subgradient method to estimate this quantity.
The pseudocode requires computing the adversarial labeling of our unlabeled
dataset, which can be formulated as

f(θ) = max
Y ′∈Y ∗

R̂(hθ(X), Y ′)

and can be computed via a linear program. We refer readers to (Cousins* et al.,
2021) for technical details and theoretical analyses.

Algorithm 1 AMCL Subgradient Method

Input: Number of iterations T , step size h, H, X, δ = {δ1, ..., δn}
Output: Approximate solution θ̃ of (1)
θ̃(0) = θ(0) ← arbitrary point θ ∈ Θ
for t ∈ 1, . . . , T do
Y ′ ← arg maxY ∈YR(hθ(t−1) , Y )
v ← arbitrary vector from ∂R(hθ, Y

′)
θ(t) ← PΘ(θ(t−1) − hv)
θ̃(t) ← arg min{f(θ̃(t−1)), f(θ(t))}

end for
Return θ̃(T )

In our experiments, we focus on two particular hypothesis classes: one is a
weighted vote of the weak supervision sources and the other is a multinomial
logistic regression model that has access to a modified feature representation
of the underlying domain X . When optimizing our weighted combination of
supervision sources, we use the Brier loss. When training our logistic regression
model, we use the cross entropy loss.

5 Experiments

We provide experimental results of our methods on multiple datasets of image
classification tasks. We provide experiments on binary classification tasks for
PGMV and both binary and multi class classification tasks for AMCL. We
compare our performance-guaranteed approaches with existing crowdsourcing,
semi-supervised learning, and weakly supervised learning approaches.

Our PGMV approach when considering subsets of three weak supervision sources
that minimizing the worst-case error is denoted as PGMV (Performance-
Guaranteed Majority Vote). Our greedy algorithmic extensions are denoted
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by PGMV-P and PGMV-D, where P denotes using pairwise differences and
D denotes using distributions to constrain our linear program. The code for
the experiments of our PGMV approach is available online.1

We refer to our algorithms for AMCL by using the acronyms AMCL-CC
and AMCL-LR. AMCL-CC is an implementation of our method that uses a
weighted combination of the weak supervision sources as the hypothesis class,
and AMCL-LR uses multinomial logistic regression. For every image, we per-
form a feature extraction on the raw pixels by using the output of a pretrained
ResNet-18 (He et al., 2016) as inputs for AMCL-LR. The code for the experi-
ments of our AMCL approach will soon be available online.2

5.1 Baselines and Related Algorithms

We describe the various baselines that we compare against our methods.

Majority Vote (MV): The majority vote predicts the most common label
among the weak supervision sources’ outputs. If there is a tie, we randomly
assign the prediction to one of the majority voted classes. We note that this
method performs well on tasks that have where weak supervision sources have
conditionally independent outputs but potentially fails when there are complex
dependencies between them.

Majority Vote with Flips (MV Flip): This method only works in the bi-
nary classification setting. Since our PGMV methods require that each weak
supervision source has an error ε < 0.5, we flip the votes of any source with
estimated accuracy less than 50%. We consider the resulting majority vote
with flipped weak supervision sources to understand the impact of this flipping
on the resulting accuracies.

Best Weak Supervision Source (Best WSS): We report the accuracy of
the best weak supervision source.

Dawid Skene Estimator (DS): The Dawid Skene estimator (Dawid and
Skene, 1979) is a standard crowdsourcing method to learn a weighting for each
of the weak supervision sources. However, this approach makes the indepen-
dence assumption, so the weighting may not be accurate in dependent cases.
This is also the default aggregation method in the Snorkel system (Ratner
et al., 2017). We use a semi-supervised version of the algorithm, so the labeled

1https://github.com/BatsResearch/mazzetto-aistats21-code
2https://github.com/BatsResearch/cousins-icml21-code - to be released soon!
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training data available is also used for learning and solves the optimization
problem using stochastic gradient descent.

Adversarial Label Learning (ALL): Adversarial Label Learning (Arachie
and Huang, 2019a,b) is a weakly supervised learning approach that trains a
model in an adversarial fashion. This process is similar to our work since it
uses bounds on the accuracies of weak supervision sources to constrain the
solution space of the adversary. In our experiments, ALL trains a logistic
regression model on the outputs of the weak supervision sources in our PGMV
experiments and on the feature transformation of the input space for our AMCL
experiments. This is a much more complex hypothesis class than the class
considered by PGMV.

5.2 Datasets

Our experiments consist of several binary classification tasks from the Animals
with Attributes 2 dataset (Xian et al., 2018) and multi class classification tasks
from the DomainNet dataset (Peng et al., 2019).

Animals with Attributes 2 is a common benchmark for zero-shot learning
and transfer learning tasks, which we will refer to as AwA2. It consists of
37,322 natural images of 50 animals classes. Each animal class is annotated
with a feature representation consisting of 85 attributes, which we leverage to
create our weak supervision sources. Animals with Attributes 2 is divided into
40 “seen” classes and 10 “unseen” classes, where the seen classes can be used to
train attribute classifiers without leaking information about the unseen classes.

We perform binary classification on every pair of the 10 unseen classes to create
45 tasks. For all of our 45 image classification experiments, we split our unseen
class data into train and test data with an even 50-50 split. We then use the
train data to evaluate the accuracies of our weak supervision sources, and use
their outputs on the test data to select our model and to perform evaluation.
We report our experimental results by grouping the 45 different tasks based on
the quality of the weak supervision sources, which we measure by committee
potential Φ (Berend and Kontorovich, 2015), which is defined as

Φ =
n∑
i=1

(pi −
1

2
) log

pi
1− pi

where pi is the probability that a weak supervision source is correct.
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We note that high committee potentials correspond to more potential improve-
ment from aggregation if the independence assumption is true, and heuristically
captures the difficulty of the problem by looking at a vector of accuracies as
a group of weak supervision sources. Low committee potentials correspond to
harder tasks, where the majority vote of all of the weak supervision sources
will not perform as well. We sort the tasks by increasing committee potential
and create five equally sized groups of 9 tasks to report our results. These five
groups have tasks that contain ranges of committee potential scores of [1, 5.5],
[6.5, 12], [12, 16.5], [18, 24.5], and [25, 61] respectively.

DomainNet is another common benchmark for transfer learning tasks. The
dataset contains 345 different classes of images such as airplane, ball, cup, foot,
etc. The dataset has images in 6 different domains, or different modalities of the
images, which are Clipart, Infograph, Painting, Quickdraw, Real, and Sketch.
To reduce the complexity of the classification task, we randomly sample 5
classes among the 25 classes of DomainNet with the largest number of data
from that class. We perform our experiments on two disjoint samples of test
classes. In our experiments, the first sample contains classes sea turtle, vase,
whale, bird, and violin. The second sample contains classes tornado, trombone,
submarine, feather, and zebra.

5.3 Weak Supervision Sources

To create weak supervision sources for our various classification tasks on AwA2,
the seen classes are used to train attribute detectors. These classifiers are learnt
to detect attributes like stripes, flippers, quadruped, etc. Each detector is a pre-
trained ResNet-18 (He et al., 2016) with two fine-tuned linear layers. These
attribute detectors must transfer high-level concepts of attributes from seen
classes to unseen classes, giving noisy labels as our sources of weak supervi-
sion. For example, one particular source attempts to transfer the knowledge
of humpback whales and other seen classes having flippers to different classes
such as seals and other classes not seen at training time having flippers.

For DomainNet, we train a multi class classifier for the 5 test classes in a
particular domain. Again, our weak supervision sources consist of fine-tuning
pretrained ResNet-18s with two linear layers. We use 60% of the labeled data
for that domain to train our weak supervision source, and the other 40% is used
for evaluating the learnt AMCL model at test time. This results in 6 different
classifiers that we will use as weak supervision sources when evaluating on other
domains. For example, to evaluate the performance on the Clipart domain, we
consider the classifiers trained in 5 other domains other than Clipart as weak
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supervision sources. We remark that these weak supervision sources never
have access to samples from the Clipart domain and thus provide noisy forms
of supervision.

5.4 Figures

We now provide figures of our experimental results of our various approaches
on AwA2 and DomainNet tasks.

5.4.1 PGMV

First, we present the results of PGMV when using all of the available labeled
data to estimate weak supervision source accuracies in Table 1.

Dataset MV MV Flip DS ALL PGMV PGMV-P PGMV-D

AwA2 (1) 55.9± 2.7 79.1± 1.1 80.0± 1.8 84.2± 0.9 82.0± 1.1 85.5± 0.9 84.3± 1.3
AwA2 (2) 81.4± 1.7 90.0± 0.7 94.7± 0.4 93.5± 0.5 93.7± 0.4 93.7± 0.5 94.1± 0.4
AwA2 (3) 88.6± 1.1 92.3± 1.0 96.7± 0.3 95.5± 0.5 95.4± 0.3 95.9± 0.3 96.3± 0.2
AwA2 (4) 93.7± 0.9 94.2± 0.6 96.8± 0.2 93.8± 0.8 96.8± 0.2 97.0± 0.3 96.8± 0.2
AwA2 (5) 97.3± 0.9 97.6± 0.6 99.0± 0.2 96.3± 0.7 97.5± 0.3 98.3± 0.3 98.8± 0.2

Table 1: Comparison of our methods and benchmarks on various image classifi-
cation tasks. Numbers are accuracy percentages reported as mean ± standard
error, computed over 5 random seeds. The number after AwA2 represents the
which fifth of the AwA2 binary classification tasks when sorted by committee
potential (least to greatest).

We can see that our best method is on average 1 percentage point more ac-
curate than a state-of-the-art weakly-supervised approach (ALL) and 5 per-
centage points more accurate than the classical Dawid Skene model on tasks
that have more inaccurate weak supervision sources (lowest cp). Therefore,
on these hardest tasks, we significantly outperform the classical baseline that
assumes independence and are very close to the alternative approach that does
not provide performance guarantees.

PGMV and its variants also are roughly 1 percentage point higher than the
state-of-the-art alternative’s accuracy and achieve within almost 1 percentage
point of the Dawid Skene’s accuracy when weak supervision source accuracies
are high (high cp). On these easier tasks, our methods start to outperform the
state-of-the-art alternative and are close to the methods that assume indepen-
dence.
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5.4.2 PGMV with Varying Amounts of Labeled Data

We also perform experiments where we vary the amount of labeled data used
to estimate weak supervision source accuracies to analyze the sensitivity of
PGMV to amounts of labeled data. When labeled data is very limited, there
is a greater chance of having inaccurate error estimates of weak supervision
sources. We note that for our method, when weak our error estimates are very
bad, the constraints on the linear program are sometimes not satisfied for dif-
ferent subsets of weak supervision sources. In these cases, the worst case bound
cannot be computed for a subset of weak supervision sources, so our algorithm
ignores these subsets.

In Figures 1 - 3, we compute accuracies by averaging over 3 splits of labeled
and unlabeled data, and the error bars represent the standard error. Again,
we report our results as groups of AwA2 pairs by committee potential as in
Table 1 above. We omit the MV and MV Flip results on our figures as their
performance remains relatively constant with more labeled data and are almost
uniformly beaten by our methods, DS, and ALL. The rightmost point on each
figure is the value in Table 1 and is averaged over 5 seeds. We leave the re-
maining two figures of the second and third groups in Section 7.
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Figure 1: Results are averaged over the first fifth of AwA2 tasks when sorted
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by committee potential (least to greatest)

0.88

0.9

0.92

0.94

0.96

0.98

1

0 100 200 300 400 500 600

A
cc

u
ra

cy

# of Labeled Data

Dawid Skene

ALL

PGMV

PGMV - P

PGMV - D

Figure 3: Results are averaged over the final fifth of AwA2 tasks when sorted
by committee potential (least to greatest)

15



In Figure 1, which contains the tasks with the most inaccurate weak supervision
sources, our methods outperform the semi-supervised Dawid Skene baseline,
achieving 20 percentage points higher on average for small amounts of labeled
data and roughly 4 percentage points higher when there is large amounts of
labeled data. Our methods seem to have similar performance to ALL, where
PGMV-P slightly seems to outperform the baseline.

As we decrease the difficulty of tasks, we see that the classical Dawid Skene
model approaches our performance, and finally slightly outperforms our work in
Figure 3 by only 1 percentage point. However, we also note that our methods
start to outperform ALL, especially in Figure 2 and 3, achieving roughly 3
accuracy points higher when there is sufficient labeled data.

5.4.3 AMCL

Next, we present the results of our AMCL methods on both binary classifica-
tion tasks on AwA2 and multi class classification tasks on DomainNet.

We report our methods’ results against the binary classification task baselines
on the four hardest AwA2 tasks when measured by MV accuracy. We present
two of the tasks in Figures 4 - 5 and report the remaining two figures in Section
7. These are individual tasks, contrasting to averaging over nine tasks as in
the earlier experiments.
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Figure 4: Results on the AwA2 binary classification tasks of bat vs. rat
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Figure 5: Results on the AwA2 binary classification tasks of horse vs. giraffe

In the binary setting, AMCL-LR matches or outperforms PGMV and the state-
of-the-art method ALL over all amounts of labeled data. We note that even
though AMCL-LR and ALL use the same inputs and train the same prediction
model (multinomial logistic regression), our method achieves overall higher ac-
curacies in addition to providing theoretical guarantees on the learning of the
prediction model. Also, on the bat vs. rat classification task, the AMCL-CC
model achieves better performance than ALL.

In Figures 6 - 7, we report AMCL-CC’s results on multi class classification
tasks. On each domain, the models are selected using 500 unlabeled data.
Since these are many more classes, it is difficult to learn a multinomial logistic
regression model with a large number of parameters with our amount of unla-
beled data, so we only report AMCL-CC. Since ALL is restricted to the binary
setting, we compare against DS, MV, and Best WSS baselines. We present our
results on Clipart and Infograph and report the remaining figures in Section 7.

In the multi class setting, our methods again match or outperform the base-
lines over all amounts of labeled data on the Clipart and Infograph domains.
We note that in the second sample of classes in the Infograph domain, the
weak supervision sources are overall very inaccurate (with Best WSS at 28%
accuracy), and it is difficult to recover useful information from them. However,
differently from the baselines DS and MV, AMCL-CC can still recover similar
performance from the best weak supervision source.
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Figure 6: Results on the DomainNet 5 class classification tasks on the Clipart
domain (sample 1 - left, sample 2 - right)
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Figure 7: Results on the DomainNet 5 class classification tasks on the Infograph
domain (sample 1 - left, sample 2 - right)

6 Discussion

In this thesis, we provide two methods to learn from weak supervision sources
without making any assumptions on their distributions. While existing base-
lines either make strong assumptions or do not have theoretical guarantees, our
methods provide an analytical bound on a classifier’s performance. We extend
past our original binary classification approach (PGMV) to a multi class ap-
proach using adversarial training (AMCL). We compare our methods to many
state-of-the-art baselines and classical methods that make strong independence
assumptions on two large image classification datasets. Our two methods have
performance that matches or sometimes outperforms other existing state-of-
the-art methods and also have guarantees on their performance, regardless of
the distribution of weak supervision sources.

A future problem of interest is considering alternative methods to use weak
supervision sources. While our PGMV approach focuses on learning a model
on the outputs of the weak supervision sources, our AMCL method can train
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a complex classifier on the data domain or some transformation of the domain.
Another potential approach is to use these models that aggregate weak super-
vision source outputs (like Dawid Skene or PGMV), which we refer to as a
labelmodel, to pseudolabel more unlabeled data points and train a second
discriminative model, which we refer to as an endmodel. This is the standard
approach in Snorkel, and we observe a considerable increase in performance
in the endmodel. However, there are no any formal statements that provide
guarantees for this phenomena.

One recent related work (Wei et al., 2021) proves the ability of neural networks
to de-noise complex pseudolabelers, under the conditions of an expansion as-
sumption and using input consistency training during the optimization process.
This provides a potential explanation in the importance of a particular type
of regularization to improve upon a noisy pseudolabeler. Another recent work
(Xie et al., 2021) focuses on the setting for the least-squares model in regression
tasks, showing that using pseudolabeling from learning auxiliary tasks can im-
prove the generalization performance of the OLS model on out-of-distribution
data. These works seem to provide results in related settings, and similar con-
cepts may be able to transfer over to the training of an endmodel.

We believe that some form of regularization, such as L2-regularization, along
with an informative enough data representation (or data augmentation scheme)
would allow a endmodel to outperform a labelmodel given enough pseudola-
beled examples. While this is similar to the ideas in (Wei et al., 2021) and
benefits of such regularization are described in (Liu et al., 2020), we also be-
lieve that this would hold in scenarios where the labelmodel is learned on simple
hand-designed heuristic functions like those provided in the Snorkel framework
rather than a complex, noisy pseudolabeler.

We provide a very high-level description of our thought process in the regres-
sion setting, under the mean squared error risk. Let X be our data domain,
where X = X1 × X2 = Rd1+d2 . Consider a regression task, where our distribu-
tion D is over X ×Y , where Y ⊂ R. Then X1 represents the smaller subset on
which our labelmodel is learned, or the smaller set of features analyzed by the
hand-designed heuristics. Let g represent our labelmodel, where g(x) = g(x1, ·)
as it only looks at the first d1 dimensions. Then, our goal is to train an end-
model h, which we learns a mapping h : X → Y , and is trained on datapoints
{xi, g(xi)}ni=1 for some n training samples.

First, we will denote the risk of our labelmodel as R(g) taken with respect to
mean squared error. Assuming that our labelmodel is some unbiased estimator
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g, we have that the risk is given by

R(g) = E[(g(x)− y)2]

= E[(g(x)− g(x))2] + 2E[(g(x)− g(x))(g(x)− y)] + E[(g(x)− y)2]

= V ar(g) + E[(g(x)− y)2]

where g(x) is the main prediction (or where g(x) = ES∼D[g(xS)]) as presented
in (Domingos, 2000). Next, we can analyze the risk of our endmodel as R(h),
which has that

R(h) = E[(h(x)− y)2]

= E[(h(x)− h(x) + h(x)− y)2]

= V ar(h) + 2E[(h(x)− h(x))(h(x)− y)] + E[(h(x)− y)2]

Since we train h on the outputs of g, we don’t have the same decomposition
into only bias and variance as E[h(x)] 6= y. In addition, since we are training a
regularized model (such as ridge regression), we also have that E[h(x)] 6= g(x).
We can consider the rightmost term by adding and subtracting the outputs of
our labelmodel g:

E[(h(x)− y)2] = E[(h(x)− g(x) + g(x)− y)2]

= E[(h(x)− g(x))2] + 2E[(h(x)− g(x))(g(x)− y)] +R(g)

Then, we get that the complete risk of our classifier has that

R(h) = V ar(h)+2E[(h(x)− h(x))(h(x)− y)] + E[(h(x)− g(x))2]+

2E[(h(x)− g(x))(g(x)− y)] +R(g)

With sufficient regularization (large enough value for λ in ridge regression),
V ar(h) is small and h(x) ≈ h(x), implying that we need that

R(h) = R(g) + E[(h(x)− g(x))2] + 2E[(h(x)− g(x))(g(x)− y)] (2)

With enough regularization and an informative enough representation of X2,
our classifier h can recover more of the true labels, which would making the
result of Equation 2 less than R(g).

This serves a high-level description of our thoughts and the beginning of a
potential explanation of this phenomena. Future work looks to provide more
rigorous mathematical derivations for this method and to find what particular
notion of a good data representation or data augmentation strategies will allow
for the boosted performance of an endmodel.
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7 Additional Figures

We provide the remaining figures for our experimental results for both PGMV
and AMCL on AwA2 and DomainNet.
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Figure 8: Results are averaged over the second fifth (top) and third fifth (bot-
tom) of AwA2 tasks when sorted by committee potential (least to greatest)

25



AMCL Binary Classification
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Figure 9: Results on the AwA2 binary classification tasks of dolphin vs. blue
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Figure 10: Results on the AwA2 binary classification tasks of seal vs. walrus

26



AMCL Multi Class Classification
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Figure 11: Results on the DomainNet on the Painting domain
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Figure 12: Results on the DomainNet on the Quickdraw domain
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Figure 13: Results on the DomainNet on the Real domain
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Figure 14: Results on the DomainNet on the Sketch domain
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