
What You See Is Not Always What You Get: An

Analysis of Informative Graphs in Formal

Methods Languages

By Lucia Regina Reyes Gonzalez

Computer Science Honors Thesis

Brown University, May 2021

Advisor

Tim Nelson

Brown University Computer Science

Reader

Shriram Krishnamurthi

Brown University Computer Science

Table of Contents

1. Introduction 4

2. Motivation 6

2.1 Motivation for Topic 6

User Studies of Principled Model Finder Output: A study by Danas, Nelson,

Harrison, Krishnamurthi & Dougherty 6

2.2 Motivation for User Studies 8

3. Pedagogic Context 10

4. Implementing Amalgam in Forge 11

4.1 The Original Amalgam 11

4.2 Implementing Provenance Feature 12

Desugaring: Explanation and Example 12

Lifting Bounds and Substituting 13

The Amalgam Descent 14

4.3 Implementing Local Necessity Feature 17

Local Necessity of Original Amalgam versus Forge’s Amalgam 19

4.4 Benefits and Disadvantages of Implementing Amalgam in Forge 22

Benefits of Implementing Amalgam in Forge 22

Disadvantages of Implementing Amalgam in Forge 23

Suggestions to Improve Developer’s Experience with Forge 25

4.5 Changes in Forge inspired by Amalgam 25

Utilizing the equals Function for Testing Amalgam 25

Forge Highlighting 26

Introducing Local Necessity into Sterling 26

Forge Logging 26

5. User Studies 27

5.1 Adaptation of Danas et al. (2017) 27

Structure of Study 27

Results 28

5.2 First Version of Mechanical Turk Studies 29

Structure of Studies 30

Results 43

5.3 Second Version of Mechanical Turk Studies 47

Structure of Studies 47

Results 55

6. Analysis 60

1

7. Conclusion 62

7.1 Limitations 62

8. Future Improvements 63

9. Acknowledgements 64

10. References 65

11. Appendix 67

Control Group Handout 67

Experimental Group Handout 76

2

Abstract

Model-finding tools, such as the Alloy Analyzer and Forge, are used to model and examine

systems through the use of mathematical formulas and expressions. After defining the basic

structure of a system, along with its constraints and expected behavior, the user is able to

either view solution instances that satisfy the constraints or verify desirable properties

about their model. Many researchers have looked into enhancing these model-finding tools

with various new user-interface extensions, one of them being Amalgam [6]. Amalgam is an

extension to Alloy that shows the user, for every output instance, which modifications can

be made without violating the model's constraints; Amalgam calls unchangeable portions of

instances locally necessary. This tool is also capable of producing proof-based explanations,

known as provenance, for these necessities [6].

This thesis analyzes the usefulness of Amalgam’s local necessity to increase a user’s

understanding of their model and aid the debugging process of identifying over-constraints

and under-constraints in their code. In order to test whether local necessity was useful to

users, I ran multiple user studies, including a study in the course CSCI 1710: Logic for

Systems at Brown University and two rounds of studies in Amazon’s Mechanical Turk.

While the results from the study run in CSCI 1710 were not reliable enough to make an

analysis, I found statistically significant results from the Mechanical Turk studies that

suggest that some ways of displaying local necessity might be confusing to non-expert

users. Additionally, I was unable to find a statistically significant advantage of using

Amalgam’s local necessity, potentially contradicting findings in Nelson et al. (2017). This

thesis also describes the process of implementing Amalgam in Forge, a formal methods

language used in CSCI 1710. In addition, I describe the benefits and disadvantages of

implementing such a tool in Forge in order for this paper to act as a guide for future

developers working on the language.

3

Keywords

Invariants, Formal Methods Languages, Model, Alloy, Amalgam, Locally Necessary, Local

Necessity, UNSAT Cores, Provenances, Under-constraints, Over-constraints, Forge, Sterling.

1. Introduction

“My code is correct, but doesn’t work” is a common phrase amongst programmers. Past

research has demonstrated how one of the biggest challenges for programmers is

identifying bugs in their own programs [1]. However, not enough emphasis has been placed

on why programmers believe that their code is correct, even if it does not work. The main

cause for this could be a lack of understanding of the problem at hand; if programmers were

to fully understand a task before starting it, they would be more likely to identify what

required invariants are not holding.

The same happens with students. Previous research has demonstrated that students begin

programming assignments without having a complete understanding of the problem [2, 3,

4]. This raises the question of how can a student’s understanding of a programming task

improve before they start their implementation?

Formal methods tools are used to model and analyze systems through the use of

mathematical formulas and expressions. Alloy [5] is such a tool where, initially, the user

creates a model
1

by defining the basic structure of a system, along with its constraints and

expected behavior. Afterwards, the user is able to either view solution instances that satisfy

the constraints or verify desirable properties about their model (if verification fails, Alloy

produces a counterexample instance). Many researchers have made improvements to Alloy,

one of them being Amalgam [6]. Amalgam is an extension to Alloy that shows the user, for

every output instance, which modifications can be made without violating the model's

constraints; Amalgam calls unchangeable portions of instances locally necessary. This tool

is also capable of producing proof-based explanations, known as provenance, for these

necessities. In summary, Amalgam gives users access to two features: listing the local

necessity of a given instance in the form of tuples, and for each tuple, getting its respective

provenance(s) [6].

While the idea of local necessity makes mathematical sense, nobody has yet answered the

question of whether it really helps to guide users through their models and allow them to

understand their programs better. The field of formal methods languages is feared by many

computer scientists, as they are “intimidated by the mere idea of formal specifications,

which they fear may be too ‘mathematical’ for them to understand and use.” [7] Would there

be a way of diminishing this fear by utilizing Amalgam’s local necessity?

1
This thesis follows the notational standard of the Alloy community. We use ‘instance’ to refer to a

relational structure that satisfies or doesn’t satisfy the model which is a set of constraints over some

relation or signature.

4

Throughout this thesis, I aim to answer the question of whether Amalgam’s local necessity

has the potential to increase a programmer's understanding of the task at hand. I also seek

to determine whether local necessity is useful for programmers to understand their models

in formal methods languages. In order to determine this, this thesis will present multiple

user studies done both at Brown University’s course CSCI:1710 Logic for Systems and

Mechanical Turk, a popular crowdsourcing platform.

Additionally, I will provide an overview of my implementation of Amalgam in Forge, the

main programming language used in CSCI 1710. This overview will also outline the

benefits and drawbacks of implementing this tool in Forge with the purpose of acting as a

guide for future developers working in that same language.

5

2. Motivation

2.1 Motivation for Topic

The main motivation for this thesis came from Nelson et al. (2017). This paper outlined the

implementation of provenances and local necessity in Amalgam, and I was impressed by the

tool’s potential to help users trace over-constraints and detect under-constraints. A model is

under-constrained if it is satisfied by unintended models and over-constrained if it does not

satisfy intended models [8]. However, while reading Nelson et al. (2017) I noticed that they

did not mention any type of user study to sustain the claim of Amalgam’s usefulness. With

this in mind, I tried the tool myself on a simple model and started thinking about possible

ways to test its value through user studies.

Initially, I thought about testing the usefulness of both provenances and local necessity.

However, after doing more research, I found that Danas et al. (2017) had already looked

into the usefulness of Amalgam’s provenances. In their study, Danas et al. (2017) compared

the utility of UNSAT cores versus Amalgam’s provenances in a debugging task for an

upper-level course of computer science at Brown University [9]. However, this study did not

look into the possibility of exposing students to local necessities. Given this area of

opportunity, there was motivation to investigate the usefulness of local necessity to aid

debugging processes as well as increase users’ understanding of their programming task.

User Studies of Principled Model Finder Output: A study by Danas, Nelson, Harrison,

Krishnamurthi & Dougherty

If a given model is unsatisfiable, UNSAT cores are a subset of the model that is in itself

unsatisfiable; having this subset allows users to narrow down the area where the potential

bug could be. Danas et al. (2017) presented students with a feline rendition of the

“Connections of Kevin Bacon” game in a laboratory for the course CSCI 1710. The model,

coded in Alloy, can be seen in figure 1.

6

Figure 1. KittyBacon’s Connections Model with Highlighted UNSAT Core

(Danas et. al (2017))

Line 1 defines the Cat signature and lines 2-4 define the way that friendship between Cats

works. NoFriendlessCats enforces all Cats having at least one friend, NoSelfFriendship

enforces that no Cat can be friends with itself, and SymmetricFriendship enforces that if

CatA is friends with CatB, then CatB must be friends with CatA. Line 6 is the definition of

KittyBacon and lines 7-11 define the bounded transitive closure operator

ConnectionsOf[Cat]. Lines 13-17 show a comparison between bounded and unbounded

notions of transitive closure. Lines 19-20 define the CCC signature and restrict the members

of CCC to be the connections of KittyBacon. Line 23 defines the predicate

KittyBaconIsCool, which checks whether KittyBacon is part of the members of CCC. Line

24 runs this predicate.

Students in the study were asked to write a free-response answer to why the predicate

KittyBaconIsCool failed, meaning that KittyBacon was not a part of the CCC members. In

addition, they were asked to select a fix for the bug out of three provided edits. The

free-response answer was coded into which predicates students “blamed” for the failure of

the predicate; this could be any combination between the predicates NoSelfFriendship,

ConnectionsOf[Cat], and CoolCatClub. The three edits shown to students were (1)

updating the CCC’s members definition to be the union of ConnectionsOf[KittyBacon] and

KittyBacon (correct fix), (2) allowing self-friendship (violating the NoSelfFriendship

predicate), and (3) adding KittyBacon to its own connections (invalidating the definition of

the bounded transitive closure).

7

The 28 students working with UNSAT cores were shown the red and pink constraints

highlighted in figure 1, which are responsible for unsatisfiability. The 35 students working

with Amalgam’s provenances were shown two provenances, both subsets of the UNSAT

core. One of the provenances was the same as the UNSAT core minus the

NoSelfFriendship highlight, and the second provenance was the same as the former minus

ConnectionsOf[Cat].

The results show that one-fifth of students that worked with provenance proposed an edit

that invalidated the model’s constraints. The results for students working with UNSAT

cores and provenances can be seen in figures 2 and 3 (reproduced from Danas et al. (2017)).

Figure 2. Results for Students working with UNSAT cores

Figure 3. Results for Students working with Provenances

2.2 Motivation for User Studies

Since Danas et al. (2017) focused on Amalgam’s provenances, I saw the opportunity to

imitate their study utilizing local necessity instead. This would allow me to make a direct

comparison between the usefulness of local necessity and provenance. Additionally, I was

also inspired by previous research and experiences focused on increasing a student's

understanding of an assignment before approaching it.

In the area of previous research, I was motivated by how Wrenn and Krishnamurthi tested

whether writing input-output examples before starting an assignment could increase a

student's understanding [10]. Drafting these examples has proven successful in the past to

avoid errors in an assignment [11], and they were interested in testing whether students

would continue writing these examples even if they were not required to do so. In order to

do this study, they analyzed the adherence of writing examples in a semester-long

introductory computer science course at Brown University. Wrenn and Krishnamurthi

augmented students’ programming environment to encourage them to develop examples

before starting an assignment and designed a measure to assess whether students

8

continued writing examples throughout the course. Their study showed that students

adhered to writing examples, contrary to previous research on the subject [10].

In the area of previous experiences, I thought back to my time as a student for CSCI 0150:

Introduction to Object-Oriented Programming. In this course, students are asked to develop

graphic programs including popular games such as Tetris and Doodle Jump. However, in

order to guide students through the project and give them an idea of what the final outcome

should look like, students are given access to a demo of the game that they need to develop

before starting their implementation. Furthermore, students are encouraged to look at this

demo to understand possible edge cases and behaviors they need to imitate.

With this in mind, I sought to create a study similar to Danas et al. (2017) but with a

modification inspired by Wrenn and Krishnamurthi’s work and the concept of a “demo” from

CSCI 0150. Therefore, I changed Danas et al. (2017)’s study to include a satisfying instance

of the model that students needed to develop at the beginning of the laboratory. Students in

the experimental group would be exposed to the satisfying instance along with its local

necessity. This satisfying instance was added with the hope of answering the question of

how is looking at a given instance’s local necessity before starting an assignment helpful to

increase students’ understanding of the model that they need to develop. Furthermore, as a

secondary question, how is looking at the students’ own satisfying instances’ local necessity

throughout the assignment, and comparing it to the initially shown instance’s local

necessity, helpful to identify over-constraints in their code.

In addition, because the users of Amalgam are not only supposed to be students, I was

interested in running studies in the crowdsourcing platform Mechanical Turk. I wanted

these studies to focus on Amalgam’s ability to help users understand the constraints of a

given model to gain a greater insight of the usability of the tool.

The main idea that influenced the design of my Mechanical Turk studies was a statement

made in Nelson et al. (2017) on the benefits of Amalgam. Nelson et al. (2017) mentioned

that when users observe a model’s instances, it is really hard for them to retain and

synthesize information from them to determine if the model has an over-constraint;

however, they mention that Amalgam is able to point out under-constraints or

over-constraints in the first instance seen [6]. With this in mind, I decided to design my

Mechanical Turk studies in a way that would compare participant’s ability to classify a

model’s constraints by seeing either multiple instances, or a smaller subset of instances

with their local necessity.

9

3. Pedagogic Context

The course CSCI 1710: Logic for Systems at Brown University is an upper-level computer

science course with a student enrollment of 66. The course focuses on proving properties

about systems and programs through the use of formal methods tools. In order to register

for this course, undergraduate students must have completed one of the three computer

science introductory courses track, which includes a course on Algorithms and Data

Structures. Graduate students can register under different conditions. With this in mind,

most students that pursue CSCI 1710 have prior computing experience. Throughout the

course of a semester, students need to complete eleven coding assignments, three coding

projects, and eight labs (out of which one is optional). All of the enrolled students are

grouped into weekly laboratory groups where they are then asked to complete the course’s

laboratories within a two-hour period. If students do not finish the laboratory in time, they

have a week to complete it. During the laboratories, students can ask for help with the two

teaching assistants present in the section. The course utilizes multiple formal method tools

for the various assignments, some of these tools include Forge, Electrum[12], and Dafny

[13].

Mechanical Turk is a crowdsourcing site where participants perform a given task for pay;

given that the platform is virtual, it has the benefit of reaching people from around the

world, including many technically savvy survey workers [14].

10

4. Implementing Amalgam in Forge

As mentioned previously, the course CSCI 1710 teaches and utilizes many programming

languages, with the main one being Forge, a programming language developed by Prof.

Nelson. Considering that Amalgam was originally implemented in Java as an extension of

Alloy, I needed to re-implement Amalgam in Forge so I could recreate Danas et al. (2017)’s

study in the course.

In order to re-implement Amalgam, I utilized Nelson et al. (2017) as a reference. This paper

outlined the way that the tool worked along with its algorithm. In addition, Prof. Nelson

gave me access to the Github repository containing the original implementation of

Amalgam in Java.

The process of re-implementing Amalgam was divided into two main areas: (1) developing

the tool to list out a tuple’s provenance and (2) developing the tool to list the local necessity

of a given instance. The former was implemented August-December 2020 and the latter was

implemented January-February 2020 with the guidance of Prof. Nelson and the support of

undergraduate student Abigail Siegel.

4.1 The Original Amalgam

The original implementation of Amalgam in Java is outlined in Nelson et al. (2017). For a

detailed description of the algorithm and definitions please see [6]. In general, if a given

literal L is locally necessary for a theory T in an instance
2 M, a set of provenances for L in M

can be obtained by recursively evaluating the formulas in T in M and ML (an alternate

version of M with ¬L) and recording the subformulas that led to T’s failure in ML. A

provenance for a literal L in M with respect to T is a set of sentences α1,..., αn where each

alpha is true both in M and ML, such that T ∪ α1,..., αn ⊨U L [6]. Note that entailment is

subscripted; that is because Amalgam works with bounded satisfiability and so it is always

with respect to a finite universe that all instances being considered must be bounded by.

In order to recursively evaluate the formulas in T in M and ML, it is useful to have a

desugaring function that instantiates and flattens formulas [6]. This is necessary because

programming languages, like Alloy, have lots of syntactic sugar that can be ultimately

reduced to AND, OR, and NOT operators. For example, the formula A implies B gets

“desugared” into (not A) or B. In addition to removing syntactic sugar, every element

constituting a formula has bounds, which allow for even more simplification.

Nelson et al. (2017) approached the recursive descent for every formula in one recursive

tree that would first instantiate and flatten a given formula, get the bounds for that

2
The source work refers to M as a model. To avoid inconsistency, we adopt the language used widely

by the Alloy Community and call M an instance.

11

formula, and substitute values if needed. After the processing was complete, the algorithm

converted provenance trees to provenances.

4.2 Implementing Provenance Feature

When I started drafting my approach to re-implement Amalgam, I reconsidered the design

choice made by the authors of Amalgam to intertwine the desugaring and Amalgam descent

processes [6]. While I knew that there were some benefits to that approach, I felt that

segmenting these processes in different recursive trees would allow me to test each section

independently.

With this in mind, my re-implementation of Amalgam required three recursive functions

that operated on Forge’s abstract syntax tree: Desugaring, Substitutor, and Lift-Bounds.

Each of these recursive functions will be described in the following sections.

Given that I did not know how to work with Forge (or other parenthetical programming

languages) before starting my implementation of Amalgam, I first implemented a prefix

calculator that would work recursively to get exposed to the idea of recursion in Forge.

Desugaring: Explanation and Example

In order to desugar formulas and expressions, I created a recursive descent over Forge’s

abstract syntax tree that would take a formula or expression and match it to the possible

values that it could have. After matching the given formula or expression, I was able to

desugar it as needed.

There are cases where there is a need to get the formula’s bounds or substitute values for

variables in addition to removing syntactic sugar. For once, consider the formula some

Node, where Node is a relation containing an upper bound of {Node0, Node1}. In order to

desugar this formula, we would want some var_x: union(upper-bound(Node)) | var_x

in Node to turn into a Forge constraint, where upper-bound is a helper function that gets

the bounds of the atom. This is equivalent to,

some var_x: {Node0, Node1} | var_x in Node.

12

But, how did this work?

The main purpose is to re-write some Node as the quantified formula some
fresh_variable : union(upper-bound(Node)) | fresh_variable in Node

In order to do this, we can follow the next steps.

1. Get the arity of the expression Node. The Node relation is arity 1.

2. In order to create a quantified formula, the algorithm needs to get the declaration

variables. In order to get these, utilizing the arity, the algorithm accesses the

column of the expression Node that it wants to look at.

a. For the given column, the algorithm wants to get the column’s upper

bounds. Getting the first column expression would result in Node and

getting the upper bound of the Node relation would return {Node0, Node1}.

b. The algorithm then gets the union of the upper bounds, resulting in

{Node0, Node1}.

c. The algorithm then creates a pair containing a fresh variable (var_x) and

the union of the upper bounds got in step b: (var_x, {Node0, Node1}).

3. Now, the algorithm can make the formula var_x in Node.

4. This results in the quantified formula: some var_x: {Node0, Node1} | var_x
in Node.

In this previous example, the algorithm had to access the upper bounds of the Node relation

to be able to iterate through its values properly. In the case of desugaring set

comprehension, for example, there is a need to substitute specific values into variables.

Lifting Bounds and Substituting

In order to access the bounds of a given expression, like we did in the previous example, I

had to write another recursive descent that would take in a given expression and match it

to its type (relation name, Int constant, quantified variable, etc.). After matching the

expression to its type, the algorithm was able to get the bounds of the expression as

required. For expressions such as set union, set minus, set intersection, within others, the

algorithm could get their bounds by getting the bounds of the expressions’ arguments.

Similarly, for the substitutor, I wrote a recursive descent for both formulas and expressions.

This recursive descent would take either a formula or an expression and match on its type

to substitute the given target variable with the desired value. Both lift-bounds.rkt and

substitutor.rkt were tested thoroughly; having all of the recursive descents in their

individual files was very useful to segment different functionalities and test them in detail.

Additionally, each of these recursive descents had a respective helpers file which was also

tested thoroughly.

13

The Amalgam Descent

While desugaring worked by calling the lift-bounds and substitutor functions, the code in

charge of creating the actual provenances and doing the Amalgam descent lived in

amalgam.rkt. The function in charge of building the set of provenances,

build-provenances, has three main objectives. Taking in a tuple and a run statement as

arguments, the function’s first purpose is to create a formula F from the conjunction of

predicates from the run statement. Afterwards, the second objective is to create an

alternate instance with the same properties as the original run statement, except with the

target tuple being flipped (i.e. making it False if it was originally True, and vice-versa).

Finally, the last objective is to call the amalgam-descent function on F passing as

arguments the original run statement, the alternate run statement, the original tuple, and

a boolean representing the current sign of the formula.

Original Implementation of Amalgam Descent

The implementation for the Amalgam descent (Y) for the original Amalgam [6] can be seen

in figure 4.

Figure 4. Algorithm for Amalgam Descent for Original Amalgam Paper

(Nelson et al. (2017))

This algorithm works as follows, where L is the target tuple:

- If the input formula is a literal and equal to the target tuple, then the algorithm

returns a provenance set containing the empty provenance.

- If the input formula is a negation, amalgam-descent is called with the sign of the

formula flipped.

- If the formula is a conjunction, then “the failure of any conjunct causes the overall

formula to fail in ML. The resulting provenance-set is, therefore, the union of all

explanations for each conjunct’s failure” [6].

- If the formula is a disjunction, then every disjunct must evaluate to false in ML and

at least one disjunct should hold in M. This could also be represented as an

implication where the left-hand side is made up of the negated disjuncts that are

false in M and the right-hand side contains the formulas that were true in M and false

14

in ML (labeled γi). The algorithm then calls the amalgam-descent on each of these γi

to get the provenance for each one. These provenances are then combined with the

cross-product and unioned with the conjunction of the negated ρi. A picture

describing this step can be found on figure 5.

- If none of the previous steps hold, then there is a desugaring step and the algorithm

calls the amalgam-descent on the desugared formula.

Figure 5. Explanation of ‘OR’ Step in Amalgam Descent

My Implementation of the Amalgam Descent

My implementation of the Amalgam descent was similar to that of the original Amalgam

paper. However, the biggest difference between both algorithms is that my implementation

utilizes a lazy stream to enumerate provenances. Given that the number of provenances for

a literal L in a formula F can escalate exponentially through the cross product of the

provenances of each γi, my algorithm provides users with one provenance at a time instead

of computing all of the provenances at once, as the original Amalgam does.

For the example seen in figure 5, Forge’s Amalgam would get the provenance stream for x4,

x5, and x6, take one provenance from each xi, and create a provenance set by doing the union

with alpha. The original implementation of Amalgam would get the provenance stream for

x4, x5, and x6, and store all of the possible provenances sets generated from the cross

product. While the time complexity of my algorithm is the same as the original, my

algorithm has an improved space complexity. When users ask for the “next” provenance, the

15

previous provenance is garbage collected. This is not the case for the original Amalgam,

which requires space for all of the provenances computed.

For my Amalgam descent, I wanted to create a provenance tree made up of provenance

nodes that I could access whenever needed. In order to create a tree of provenance nodes, I

defined a provenanceNode struct in Forge and then created children of this struct called

contraLeaf, alphaLeaf, desugarStep, ANDProof, and ORProof. Pseudocode for the

amalgam descent function can be seen in figure 6.

Figure 6. Pseudocode for Amalgam Descent Function in Forge’s Amalgam

amalgam-descent(fmla, orig-run, alt-run, L, currSign) {
if fmla is (x1 AND x2 AND ... AND xn):

if currSign is positive: (handleAND x1,x2,...,xn)
else: (handleOR x1,x2,...,xn)

if fmla is (x1 OR x2 OR ... OR xn):
if currSign is positive: (handleOR x1,x2,...,xn)
else: (handleAND x1,x2,...,xn)

if fmla is a literal IN:
if currSign is positive: contraLeaf(fmla)
else: contraLeaf(not(fmla))

if fmla is not (subf):
(amalgam-descent subf orig-run alt-run L (not currSign))

else:
d_fmla = (desugar_formula fmla)
prov_node = (amalgam_descent d_fmla orig-run alt-run L currSign)
desugarStep(prov_node)

}

The handleAND and handleOR helpers work as follows:

1. handleAND: In this helper, every argument of the conjunction must have satisfied the

original instance but not every argument must fail the alternate instance. For the

arguments that do fail, the algorithm calls amalgam-descent and builds a

provenance tree containing the nodes returned from each call. This helper returns

the provenanceNode ANDProof with the provenance tree generated.

2. handleOR: In this helper, at least one argument of the disjunction must satisfy the

original instance but all of the arguments must have failed the alternate instance.

For the arguments that are true in the original instance, the algorithm builds a

provenance tree from calling amalgam-descent on each argument. For the

arguments that do not hold in the original instance (alphas), the algorithm creates

an alphaLeaf provenanceNode. Afterwards, the helper returns an ORProof

provenanceNode with the corresponding alphas and provenance tree.

16

In order to work with the provenance trees that I got from the amalgam-descent, I created

a function build-alphaset-stream that takes in a provenanceNode. Pseudocode for this

function can be seen in figure 7.

Figure 7. Pseudocode for Lazy Stream Provenance Function in Forge’s Amalgam

(define (build-alpha-stream provNode)
(if (provNode is contraLeaf(formula))

// we found a contradiction but we have no alpha formulas yet;
therefore, return stream containing the empty provenance
(stream (list->set '())))

(if (provNode is desugarStep(subtree))
(build-alphaset-stream subtree))

(if (provNode is ANDProof(subtrees))
//each argument of the ANDProof is its own source of alpha-sets
(apply stream-append (map build-alphaset-stream trees)))

(if (provNode is ORProof(alphas, subtrees))
// build lazy streams for each subtree

substreams = (map build-alpha-stream subtrees)

// build lazy stream of lists of provenances, where each list

contains one provenance for each subtree

stream = (stream-cross-product substreams)

// Get the next n-element list of provenances and union with

alphas

(stream-map (λ (lst) (apply set-union (append alphas lst))),

stream))

)

4.3 Implementing Local Necessity Feature

Before implementing Forge’s Amalgam local necessity, I made an informal study with the

CSCI 1710 Teaching Assistant staff utilizing the original Amalgam’s local necessity feature

to find areas of possible improvement.

For this informal study, the teaching assistants were given a simple colored undirected tree

formal model in Alloy extracted from Nelson et al. (2017). The complete model can be seen

in figure 8; note that the anti-reflexivity property is commented-out. Having this missing

property meant the model had the under-constraint of allowing self-loops, but also, through

the presence of the treeAcyclic predicate, had the over-constraint of prohibiting self-loops

on models larger than one Node. Without being told about this bug, the teaching assistants

were asked to take note of their thoughts about the tool, along with things that they found

confusing or helpful.

17

http://cs.brown.edu/research/plt/dl/fse2017/EXAMPLES/coloredtreesbug.als
http://cs.brown.edu/research/plt/dl/fse2017/EXAMPLES/coloredtreesbug.als

Figure 8. Model for a Colored Undirected Tree with Missing Anti-Reflexivity

Constraint

abstract sig Color {}
one sig Red extends Color {}
one sig Blue extends Color {}

sig Node {
neighbors: set Node,
color: one Color

}

fact undirected {
neighbors = ~neighbors -- symmetric
-- INJECTED BUG
--no iden & neighbors -- anti reflexive

}

fact graphIsConnected {
all n1: Node | all n2: Node-n1 |
n1 in n2.^neighbors }

fact treeAcyclic {
all n1, n2: Node | n1 in n2.neighbors implies
n1 not in n2.^(neighbors-(n2->n1)) }

run {} for 3 Node

(Nelson et al. (2017))

My informal study demonstrated three major findings. These can be seen below:

- Two out of three participants reported that they found local necessity useful for

identifying common types of bugs in Forge models.

- In Forge, you can choose a bound for the objects that your code models. For example,

if you create a model for directed acyclic graphs, you can give a bound for the

number of Nodes that you want in your instance. This bound is included along with

the run statement for the model. If a model of directed acyclic graphs runs for a

bound of 3 Nodes, but the instance only displays 2 Nodes (Node0 and Node1),

Node2 can be called “unused”. The original Amalgam would display local necessities

for these “unused” Nodes as unused<Node2>. However, because the instance itself did

not include Node2, two out of three participants reported that they found this

“unused’ display to be confusing. These participants thought that displaying this

information distracted them from focusing on what was actually in the instance.

- One participant reported that they found the result of local necessity hard to read

given that there was no visual connection between claims and the visualized

instance, and the result is not sorted or grouped by signatures or relations.

18

With this information in mind, I moved into implementing the improved local necessity

feature in Forge. Pseudocode for the algorithm can be seen in figure 9.

Figure 9. Pseudocode for Local Necessity in Forge’s Amalgam

(define (get-locally-necessary-list orig-run instance-index)
used_universe = all atoms used in instance
relations = all relations from instance
// get un-partitioned list of locally necessary tuples
(define un-partitioned-list

(apply append (for/list ([r relations])
(define name (Relation-name r))
valid_pairs = []
if r is not a sig or ints:

upper_bounds = (upper_bounds r)
for tuple in upper_bounds:

if (LN tuple) and (tuple in used_universe):
append pair (tuple r) to valid_pairs)

valid_pairs)
//partition list into LN+ and LN- by evaluating in current instance
(define-values (yes no) (partition (λ (pair)

(define formula (tup in r))
(evaluate orig-run 'unused formula)) valid_pairs))

(cons yes no)
)

This feature returns two lists: LN+ and LN-. LN+ contains the tuples that need to be true in

the original instance for the instance to be valid, and LN- contains the tuples that need to

be false in the original instance for the instance to be valid. Per the feedback collected from

the informal study, this implementation of local necessity is different from the original in

that it does not display local necessity for “unused” nodes; in addition, Tristan Dyer helped

me by integrating local necessity into the table and graph view of Sterling, the visualizer

used for Forge, which he also developed [15, 16]. By doing this, I was able to show local

necessity by signatures or relations.

Local Necessity of Original Amalgam versus Forge’s Amalgam

Please see figures 10-16 for a comparison between the visualization for local necessity of the

original Amalgam and Forge’s Amalgam for the same satisfying instance of the model seen

in figure 8.

19

Figure 10. Satisfying Instance

Forge’s Visualizer Alloy’s Visualizer

Figure 11. Original Amalgam’s Positive Local Necessity

20

Figure 12. Original Amalgam’s Negative Local Necessity

Figure 13. Forge’s Amalgam Positive Local Necessity in Table View

Figure 14. Forge’s Amalgam Negative Local Necessity in Table View

21

Figure 15. Forge’s Amalgam Positive Local Necessity in Graph View

Figure 16. Forge’s Amalgam Negative Local Necessity in Graph View

4.4 Benefits and Disadvantages of Implementing Amalgam in Forge

Over the course of my implementation of Amalgam, I found some benefits and

disadvantages of developing such a tool in Forge. This section will go over these, as they are

relevant for future developers that seek to incorporate and implement new tools into the

language. It is important to note that throughout my implementation of Amalgam, I was

working on the development branch of Forge which was not available to students and users

of the language.

Benefits of Implementing Amalgam in Forge

As mentioned previously, the recursive descents needed to implement Amalgam were done

over Forge’s abstract syntax tree. Forge’s abstract syntax tree is based on Ocelot’s [17]

abstract syntax tree which is made up of expressions that evaluate to relations and

formulas that evaluate to booleans. In Forge, each formula or expression is represented

with a node and followed by a specific hierarchy depending on it being a formula or an

expression. Because Forge’s abstract syntax tree allowed me to work with all formulas and

22

expressions freely, I was able to implement my recursive descents utilizing Racket’s match

function, which matches a given input formula or expression with its respective type. In

addition, having the structure of Forge’s abstract syntax tree allowed me to create new

formulas and expressions very quickly and efficiently throughout the desugaring process.

Another big benefit of Forge is that it has the ability to define contracts for the inputs of a

given function. This is extremely useful in debugging a program, especially a recursive

descent where values can be altered erroneously in subsequent runs. Having contracts also

facilitates the readability of the code for developers that might not be acquainted with the

code for the tool.

Furthermore, because Forge is a language in the development phase, there is a lot of

freedom to make changes to the current structure of the language to fit the functionality

required for the tool. The implementation of Amalgam brought upon multiple changes in

Forge, which will be described in detail in Section 4.5. Overall, having the ability to mold

the language as a developer can be extremely helpful in implementing a new tool.

Disadvantages of Implementing Amalgam in Forge

While there is a lot of liberty and flexibility when implementing a tool in a developing

language, there are also some limitations that come with it. Having the liberty as a

developer to change the way that Forge does something in particular means that other

developers have this same liberty, and some changes done by other developers can affect the

work that someone else is doing. While implementing Amalgam, there were some cases

where I had to change my approach because of a recent change in the code base, or where I

would get errors in my code that were unrelated to my tool but were connected to a recent

change done by another developer. Initially, differentiating between which errors were

related to my tool or someone else’s change was challenging, but with experience, this

distinction became easier. In addition, being able to make changes to Forge or adding some

type of functionality might also mean that other developers’ changes need to be made before

yours is possible. This can extend the timeline for the implementation of a given tool.

Through my implementation of Amalgam, I felt that one of Forge’s biggest weaknesses was

the lack of documentation available for developers. Forge is a language focused mostly on

students, and therefore, its documentation is mostly concentrated on the surface language

which is exposed to the user
3
. For once, most of Forge’s scriptable features were, and largely

still are, undocumented and uncommented. As a consequence, there is a lot of confusion for

developers about what is and isn’t already available for use. Throughout my

implementation, there were multiple times where I had to inquire about existing helpers or

the way some helpers worked with someone that was more experienced with the language

3
T. Nelson (personal communication, February 28, 2021) claimed that most of Forge’s documentation

is focused on the surface language which is exposed to the user.

23

than me. While there was always someone that I could contact about these questions, this

generated a lot of dependency between the developer and the people who were more

knowledgeable of the language. There also was a lack of documentation regarding testing in

Forge. In order to write tests for Amalgam, I visited other files that had done testing and

wrote my tests similarly.

Another limitation is that it is really hard to debug recursive descents if printlines are not

enough for a specific program. While printlines can be helpful with small recursive

descents, having a large recursive descent (which also goes into other recursive descents, as

in my case) can make printlines confusing. There is a helper function for Racket called

debug-repl that was extremely useful at the beginning of my implementation of Amalgam;

however, an unknown change in Forge made debug-repl not work any longer, which made

it hard to debug specific cases in the final testing process of Amalgam.

Another, smaller, complication with Forge is that there is some confusion regarding

formulas and symbols. First, it is not the same thing in Forge to compare the formula true

with ‘true. The former is a node/formula/constant value, while ‘true is just a symbol.

While this might seem straightforward to follow, there were cases in Forge when things

worked the other way around. For instance, in order to define a node/expr/atom, users

need to define it utilizing ‘ instead of just writing the name of the atom; therefore, users

would do (atom ‘atomName) instead of (atom atomName). Similarly, there is some

confusion regarding the functions that Forge allows and the functions that you need to

import from Racket. For example, Forge does not allow the use of the greater-than and

less-than operators; instead, you need to import these operators from Racket by adding the

line (require (prefix-in @ racket)) at the very top of the code file and utilize @< and

@> whenever needed. This prefix requirement, or the functions that do not work well when

developing in Forge, are not straightforward and can lead to unexpected problems.

Finally, the last limitation that I ran into with Forge was the ability to run alternate

instances easily for building provenances and local necessities. Currently, the way that I am

seeing if a given tuple is or isn’t locally necessary is by building an alternate instance with

the value of the tuple flipped. This alternate instance is then run by invoking Forge’s solver

directly, and seeing if the solver returns “satisfiable” or “unsatisfiable” (for more detail,

refer to figure 9). However, invoking the solver every time that I want to run an alternate

model makes the tool extremely slow (~30 seconds to a minute to run for a simple model

running 5 Nodes), and there is currently no other way to evaluate this alternate instance

faster.

24

Suggestions to Improve Developer’s Experience with Forge

Considering the previous sections, I came up with a list of suggestions to improve

developers’ experiences when implementing a new tool in Forge.

(1) Develop a point of reference to contact the Forge team for developer support. This

point of reference can be a list-serv with the current members of the Forge developer

team. This way, if a developer has a question regarding a specific change or helper

function, anyone who knows the answer can reach out and answer questions. This

would relieve the developer asking questions from reaching out to the same person

every time and also might allow the entire team to be aware of the work that other

developers are doing.

(2) Publish a weekly blog with the main changes that were done to Forge. This can be

extremely helpful for developers that are implementing a tool in Forge and whose

work might be affected by any recent changes. Publishing this blog entry with the

changes, and even with some “expected” errors that might arise, can be very helpful.

(3) Develop a Forge debugger to allow developers to add breakpoints throughout their

code.

(4) Develop detailed documentation for Forge’s helpers, including a diagram explaining

Forge’s workflow for developers that are new to the language.

(a) This documentation file should include guidance on available helpers and

testing.

(b) Along the same lines, this documentation can also include a list of common

errors that developers might get in their code and the common causes for

those errors.

4.5 Changes in Forge inspired by Amalgam

As mentioned previously, Amalgam inspired multiple changes in Forge. These changes were

either new features needed to run the tool properly or bugs from Forge found along the way

of my implementation.

Utilizing the equals Function for Testing Amalgam

In order to write tests for my desugaring function, I had to check for equivalence of

formulas. In order to do so, I defined an input formula (node/formula) or expression

(node/expr) and an expected output desugared formula (node/formula) or expression

(node/expr). The output desugared formula/expression was compared to the output of

calling my desugaring function with my input formula/expression. In order to check for

equality between the expected and actual output, I used Racket’s equals function. Initially,

using the equals function in this way required first converting both elements to strings

since the Forge language AST contained added information that interfered with direct

comparison. With this in mind, as a temporary fix, I converted both formulas/expressions to

25

strings for comparison; however, Forge developers were able to modify the equals function

to ignore the fields that interfered with direct comparison. Throughout this time, all of

these changes to the equals function were made in the development branch of Forge;

therefore, Forge users were not affected by them.

Forge Highlighting

The original Amalgam paper describes how the provenance feature highlights the top-level

constraint that leads to the local necessity of a given tuple as well as subformulas that lead

to the top-level constraints’ failure [6]. Because highlighting was not available in Forge

before implementing Amalgam, it became one of the biggest projects that developers

worked on for Forge. Highlighting in Forge depended on the node-info field mentioned

previously, and its addition to Forge was extremely helpful in finalizing Amalgam.

Introducing Local Necessity into Sterling

One of the biggest changes related to Forge and Amalgam was introducing information

generated by Amalgam to Forge’s visualizer, Sterling. By sharing the information that

Amalgam generated with Sterling, students were able to see an instance’s local necessity

both on the graph and table view. This was a considerable improvement to the presentation

of local necessity from the original Amalgam, as can be seen in figures 10-16.

When the first user study was run in CSCI 1710, local necessity was only shown as a part of

the table view; however, for the round of studies in Mechanical Turk, I was able to test local

necessity in the graph view of Sterling as well thanks to the support of Tristan Dyer.

Forge Logging

One of the biggest developments for Forge was the introduction of logging. Logging allows

Forge developers to receive anonymous logs of student’s runs, code snapshots, time-stamps,

etc. Forge logging was extremely important to measure Amalgam’s performance and

usability during the user studies run in CSCI 1710. By having logging, I would be able to

have access to both quantitative and qualitative metrics regarding the benefits of using

local necessity versus not using it.

26

5. User Studies

5.1 Adaptation of Danas et al. (2017)

Structure of Study

The first laboratory for the course CSCI 1710 was adapted to run a study similar to the one

in Danas et al. (2017). The course has four different sections for the laboratory, so two

sections were the control group while the remaining two sections were the experimental

group. The handouts for each of the sections can be found in the appendix. The model for

the Connections of KittyBacon lab was slightly modified to the one presented in Danas et

al. (2017). The complete model can be seen in figure 17.

Figure 17. Complete Model for KittyBacon Laboratory without KittyBacon in

FancyFelineFoundation

In this model, the CoolCatClub was renamed as the FancyFelineFoundation, and the

predicate KittyBaconIsCool was renamed to KittyBaconIsAFancyFeline. In addition,

27

this model has the predicate seeAllCats, which was meant to encourage students to see a

finalized version of their model.

The main differences between Danas et al. (2017) and my study are that my study makes

the FancyFelineFoundation section of the laboratory mandatory and exposes students to a

satisfying instance of the model before starting the assignment. In order to understand the

satisfying instance at the beginning, both groups are given an overview of the laboratory

and the relevant signatures and relations for context. The control group is shown the

satisfying instance in the graph and table views of Sterling, and the experimental group is

shown the instance in the graph view and positive and negative local necessities in the

table view of Sterling. In addition, the experimental group was given a brief description of

positive and negative local necessity. Both groups had been exposed to the concept of local

necessity before the laboratories given that Prof. Nelson briefly explained it to all students

in the lecture held previous to these labs.

In order to record the fix that students did to add KittyBacon to the

FancyFelineFoundation, students were also asked to write a comment outlining their

change.

Results

For this study, I wanted to collect multiple qualitative and quantitative measurements

through Forge logging. I sought to collect: the total time that students took to complete the

lab assignment, the time taken between the first run of KittyBaconIsAFancyFeline and

the last run of the seeAllCats predicates, the time taken in between the first and last run

of the seeAllCats predicate, the number of times that students ran their code since they

ran the KittyBaconIsAFancyFeline predicate, the number of times that students ran their

code since their first run of the seeAllCats predicate, the number of times that students

ran predicates in the FancyFelineFoundation section, the number of changes that students

made to their code after they first ran the KittyBaconIsAFancyFeline predicate, the

number of times that students changed their code after they first ran the predicate

seeAllCats, and the final snapshot of students’ code. For students working with local

necessity, I also wanted to collect data regarding the runs in which they utilized local

necessity and the corresponding snapshot of their code at that time.

For this study, I attended all lab sections to answer any questions regarding local necessity

or the lab overall. I also personally checked-off most of the students that attended the labs.

In order to analyze the results, I created a Python script that would go through all of the

Forge logs and for a given student’s anonymous email, return a report of all of the metrics

that I wanted to collect. While I was analyzing the results, however, I noticed that a lot of

student’s logs were missing. Given that I had personally attended the lab and checked-off

28

multiple students, I knew that only a couple of students had not completed the lab during

their section times and were going to complete it afterwards. However, of the logs that I had

access to from the lab’s experiment sections, there were only 8 valid logs out of 28. The

remaining 20 logs were invalid, showing that students did not finish the lab even if they

did. During the actual sections, I personally checked off a total of 18 students in the

experimental group who had successfully completed the laboratory. According to the

check-off sheet for the course CSCI 1710, 28 students from the experimental group were

successfully checked-off, meaning that they finished the lab completely. Something similar,

but to a smaller extent, happened with the control group, where I was not able to access the

complete logs of 2 students even though every student in the control group was successfully

checked-off.

Unfortunately, this means that many of the results for the lab study were lost because

Forge logging was not working properly. Given the failure of logging, I made the decision to

not consider the results collected from the laboratory, as they would be unreliable. I do not

believe that the quantitative information from these logs can be trusted to make claims of

the usefulness of local necessity.

The qualitative results from the lab are also not reliable given that I was missing multiple

students’ code snapshots that would allow me to see if their fix was correct or not. However,

out of the 62 students that completed the lab, I personally checked-off 43 and they had all

done the correct fix of modifying the definition of the membersOf the

FancyFelineFoundation to be defined as the union of KittyBacon and KittyBacon’s

connectionsOf. From the logs that I collected, 29 out of 29 valid logs from the control group

show the correct fix to add KittyBacon to the membersOf the FancyFelineFoundation;

furthermore, out of the 8 valid logs from the experimental group, all students did the right

fix.

5.2 First Version of Mechanical Turk Studies

Given that the user study meant to test the usefulness of Amalgam’s local necessity did not

generate the results needed to create an analysis, I dedicated myself to developing user

studies in the crowdsourcing platform Mechanical Turk. For these studies, I was interested

in how Nelson et al. (2017) discussed that one of the benefits of Amalgam comes from

helping users identify problems in their code in the first instance shown rather than

requiring them to analyze and remember the constraints from multiple instances. Having

this information in mind, I developed a study that would compare participant’s ability to

correctly classify the rules governing a given model without them seeing the model’s code.

In this study, the control group was shown multiple output instances’ graphs from the

normal Forge visualizer, while the experimental group was shown half the number of

graphs as the control group, but each one came along with its positive and negative local

necessity versions.

29

Structure of Studies

As mentioned previously, this experiment was set out to determine whether Amalgam’s

local necessity was actually helpful in aiding users to understand their model and its

constraints better than seeing multiple instances from the visualizer. For this study, I

created a formal model in Forge modeling a social network called weHang. The full model

can be seen in figure 18.

Figure 18. Complete Model for Mechanical Turk Studies Modeling WeHang Social

Network

Line 3 adds the option to utilize local necessity for this model, Lines 4-8 define the

properties of NetworkUsers. Each NetworkUser has the follows set consisting of the

NetworkUsers that the NetworkUser follows. In addition, each NetworkUser has a boolean

isVerified property representing whether it is verified or not. Along the same lines, each

NetworkUser has a boolean hasProfilePic property representing whether it has or

doesn’t have a profile picture. Lines 10-12 represent the different values for Bool: Yes and

No. Line 13 defines the Owner signature, which extends the properties of a NetworkUser.

Line 15 defines the predicate noSelfFollower, stating that NetworkUsers can not follow

themselves. Lines 16-18 define the verifiedNetworkUser predicate which states that for

30

all NetworkUsers except for the Owner, if the NetworkUser has more than 2 followers and

has a profile picture, then the NetworkUser is verified. Lines 19-23 define the properties

followed by the Owner; these include having no followers, always being verified, and always

having a profile picture. Lines 24-26 contain the predicate NetworkOwnerFollowsAll, which

specifies that the Owner should follow all NetworkUsers except itself. Finally, Lines 27-32

contain the weHangSimulation predicate. This predicate ensures that all previous

predicates hold. Line 34 runs this predicate.

As mentioned previously, in order to understand which format was better for users to

understand the constraints of a given model, I decided that I did not want to show the code

to users, but rather only show them a subset of the satisfying instances of the model. At the

beginning of both surveys, there was an initial questionnaire where participants were

asked simple questions to test whether they were answering the survey randomly or not.

This initial survey was added so that I could filter-out unthoughtful responses for my

analysis. After the initial survey, participants were prompted to see multiple satisfying

instances and asked to write in their own words what they thought were the rules

governing the social network. Afterwards, participants were asked to classify a list of rules

governing the social network between the ones that were true and the ones that were false;

these rules were a translation made from the constraints of the model in figure 18 into

English.

Before running my study with a large set of people, I ran five iterations of it with smaller

groups (2-10 people). These iterations allowed me to find common points of confusion or

areas of improvement for the survey. Some of the changes that I made between iterations

were:

(1) Initially, participants were shown a list of the governing rules of the social network

and asked to select the rules that were true out of the list. I noticed that when

participants were given access to the entire list, they would only select one or two

rules, especially the rules in the middle of the screen. Therefore, I decided to make

the change of separating each rule into an individual question.

(2) I noticed that if a page had multiple questions, participants would start answering

really accurately and continue to answer the last questions almost randomly,

sometimes even contradicting previous responses. Therefore, I made each question

be in its own individual page so participants could focus more on the question at

hand.

(3) In my survey, participants are shown multiple graphs and then asked to answer a

set of questions. I noticed by running my survey with my housemates that

remembering the contents of the graph for the final questions was really hard, and

they started guessing instead of going back to see the graph in question. Therefore, I

added the picture of the same graph to every question.

31

(4) In an open-ended question in the survey, some participants reported being confused

about the graphs being shown and their components. Therefore, I added a

description of the graphs and their components before starting the survey.

(5) The social network has an Owner. At the beginning, I had named the Owner

NetworkOwner; however, I noticed that participants were getting confused between

NetworkOwner0 and NetworkUser0. Therefore, I changed the name of the Owner to

just Owner.

(6) I decided to add a question at the end of the survey asking participants if they took

any notes throughout the study, and in case they did, which notes they wrote down. I

added this question because I was curious about comparing whether participants

from the control group wrote down more notes than participants from the

experimental group or vice-versa.

After all of these iterations and improvements, I ran the final version of my study with 25

participants for the control group and 27 participants for the experimental group. Initially, I

had the purpose of having the same sample size for both the control and experimental

group; however, for the experimental group, I ran into the issue of not getting responses

from Mechanical Turkers even though the survey had been published for over a week. In

order to get the results that I was missing to reach 25 responses, I had to publish the

survey once again for only two respondents. At the time that I started my data analysis,

however, I received the two missing responses from the original publication, and therefore

worked with 27 responses instead of 25.

Both the experiment and control group were exposed to an initial instance of the social

network model along with a description of the instance’s components. The instance, along

with the description included in both surveys, can be seen in figure 19.

32

Figure 19. Introduction to Social Network Graphs for Both Studies

In the following social network graph, Yes0 stands for "Yes" and No0 stands for "No".

"hasProfilePic" is an attribute describing whether a NetworkUser or Owner has a profile

picture, and "isVerified" is an attribute describing whether a NetworkUser or Owner is

verified. The "follows" arrows represent following a given NetworkUser in the social

network. The outgoing arrow from NetworkUser0 to NetworkUser2 means that

NetworkUser0 follows NetworkUser2. The followers of NetworkUser2 are NetworkUser0,

NetworkUser1, and Owner0.

Afterwards, participants moved on to the initial questionnaire and were asked six questions

to test their understanding of the instance itself: (1) How many boxes are there for

NetworkUsers?, (2) How many boxes are there for Owner?, (3) Who does NetworkUser1

follow?, (4) Who does Owner0 follow?, (5) Who has a profile picture (meaning that their

“hasProfilePic” attribute is set to Yes0)?, (6) Who is verified (meaning that their

“isVerified” attribute is set to Yes0)?. Each question was multiple-choice, and answers to

these questions were used to filter out unthoughtful responses.

Additionally, the experimental group had a second questionnaire to test their

understanding of positive and negative local necessities. Given the same graph as above,

they were given its respective positive and negative local necessity graphs along with a

description of the graphs’ components. The graphs, along with their descriptions, can be

seen in figures 20-22.

33

Figure 20. Introduction to Local Necessity Graphs for Experimental Group

Consider the graph seen in the previous section. Let's call it graphA.

34

Figure 21. Introduction to Positive Local Necessity Graphs for Experimental

Group

Here we see graphA with some green lines. The green lines mean that if you tried to

remove that line, graphA would become invalid. As an example, if we were to remove the

green “follows” line from Owner0 to NetworkUser2, the graph would become invalid.

Removing the green lines makes graphA invalid because there are other things in graphA

that depend on that green line being there. For example, imagine that Owner0 always

needs to follow NetworkUser2; this would mean that removing the "follows" line would

make the graph invalid). For the attributes of NetworkUsers and Owners (isVerified

and hasProfilePic), there are no lines, but the annotation “LN+” represents the same

idea as a green line. For example, Owner0’s “hasProfilePic” field is "Yes0 (LN+)". This

means that you can not change the "hasProfilePic" field to “No0” without making

graphA invalid because there are other things in graphA that depend on Owner0's

"hasProfilePic" field to be "Yes0". A gray line can be removed without making the graph

invalid because there is nothing else in the graph that requires that line to be there. This

means that we could remove the “follows” arrow from NetworkUser1 to NetworkUser0

without making the graph invalid.

35

Figure 22. Introduction to Negative Local Necessity Graphs for Experimental

Group

Here we see graphA with some red-dotted lines. The red-dotted lines mean that if you

tried to add any red-dotted line, graphA would become invalid. As an example, if we were

to add the red-dotted “follows” line from NetworkUser1 to Owner0, graphA would become

invalid. Adding the red-dotted lines makes graphA invalid because there are other things

in graphA that depend on that red-dotted line not being there. For the attributes of

NetworkUsers and Owners (isVerified and hasProfilePic), there are no lines, but the

annotation “LN-“ represents the same thing as the red-dotted line. For example, Owner0’s

“hasProfilePic” field is “No0 (LN-).” This means that making Owner0’s

“hasProfilePic” field “No0” makes the graph invalid because there are other things in

graphA that depend on Owner0’s “hasProfilePic” field to not be “No0”. A gray line

represent existing facts in graphA.

Afterwards, the experimental group was asked four questions to test participant’s

understanding of the local necessity graphs. These questions were (1) “What would happen

if we added the red-dotted "follows" line from NetworkUser1 to NetworkUser1?”, (2) “What

would happen if we removed the green "follows" line from NetworkUser1 to

NetworkUser2?”, (3) “What would happen if we changed the "isVerified" property of

NetworkUser2 from Yes0 to No0?”, and (4) “What would happen if we removed the gray

"follows" line from NetworkUser2 to NetworkUser1?”. For each of these questions,

36

participants had to choose between two response options: “the graph would be invalid”, and

the “graph would be valid”.

After going through these questions, both the control and experimental groups continued to

see instances of the model. The control group saw eight graphs of the model, and the

experimental group saw a subset of four graphs seen by the control group along with the

graph’s positive and negative local necessity. The graphs seen by each group can be seen in

figure 23 and 24.

Figure 23. Control Group Graphs

37

38

Figure 24. Experimental Group Graphs

Graph 1

39

Graph 2

40

Graph 3

41

Graph 4

42

After seeing these graphs, both groups were asked to write down, in their own words, the

rules of the social network that generated them. After doing that, both groups were shown

rules that might hold for the social network model, and asked to select “True” if they

thought the rule held or “False” otherwise. The list of rules shown to participants can be

seen below.

1. NetworkUsers do not need to follow other NetworkUsers

2. If NetworkUserA follows NetworkUserB, then NetworkUserB must follow

NetworkUserA

3. The Owner needs to follow all NetworkUsers

4. NetworkUsers can't follow themselves

5. NetworkUsers users can have no followers

6. NetworkUsers need two things for the "isVerified" attribute to equal "Yes0". The

first is to have a profile picture ("hasProfilePic" field set to "Yes0"). The second is

to be followed by the Owner and 2 or more other NetworkUsers.

7. NetworkUsers need only one thing for the "isVerified" attribute to equal "Yes0".

That is, they need to be followed by the Owner and 2 or more other NetworkUsers.

The "hasProfilePic" field does NOT matter (it can be set to Yes0 or No0).

8. The Owner always has a profile picture

Finally, participants from both groups were asked if they took any hand-written notes

during the exercise and what sort of information they wrote down.

Results

In order to analyze the results of this study, I filtered out the responses that had more than

one incorrect answer for the initial questionnaire of the control and experimental groups.

This resulted in 19 valid responses for the control group and 25 valid responses for the

experimental group. The distributions for correctly classifying each rule for both the control

and experimental groups can be seen in figures 25-26.

43

Figure 25. Results for Control Group and Experimental Group for Rules # 1-4

Figure 26. Results for Control Group and Experimental Group for Rules # 5-8

After seeing the previous table graphs, it is noticeable that the results favor the control

group in 4 rules and the experimental group in 4 rules. In order to measure whether these

results were statistically significant, I performed a Chi-Squared analysis for each question.

Additionally, I calculated Hedge’s G to get the effect size of the strength of the relationship

between participants’ performance and the type of graph participants observed.

44

The Chi-Squared analysis was done by comparing whether participants correctly classified

a given rule and the type of graph seen. For example, for the first rule, I have the

distribution in figure 27.

Figure 27. Example Chi-Squared Distribution for Rule #1

Correctly

Classified the

Rule?

Type of Graph Seen

Regular Graphs Local Necessity

Graphs

Total

Yes 13 14 27

No 6 11 17

Total 19 25 44

After calculating the Chi-Squared distribution for each rule with a significance level of 0.05,

I got the following results:

Figure 28. Chi-Squared Analysis Results

Rule

Number

Chi-Squared

Result

Calculated

P-value

Conclusion

1 0.702506593 0.401942722 Results are not statistically significant

2 0.592842105 0.441322194 Results are not statistically significant

3 2.446829268 0.117762531 Results are not statistically significant

4 1.561735919 0.211411229 Results are not statistically significant

5 0.245201238 0.620474488 Results are not statistically significant

6 0.019793072 0.88811654 Results are not statistically significant

7 1.07545465 0.299716612 Results are not statistically significant

8 15.60533333 7.80342E-05 Results are statistically

significant

As seen in the previous table, the only result that was statistically significant was the one

related to rule number 8. Rule number 8 states that “The Owner always has a profile

picture”. For this rule, all of the participants in the control group with valid responses

45

correctly classified this rule; however, of the valid responses of the experiment rule, only 11

out of 25 participants correctly classified it. This finding was very interesting given that all

of the graphs of the experimental group stated that it was locally necessary for the Owner’s

hasProfilePic to be Yes0. I questioned why the results were split almost 50-50 for this

question if the local necessity for this field remained the same throughout the four graphs. I

hypothesized that the culprit was the visualization of local necessity itself. There is a

possibility that participants were confused by the use of Yes0 and No0 for the Owner’s

hasProfilePic field in the positive and negative local necessity graphs, respectively. This

would explain why the results for the experimental group are almost split 50-50; half of the

group focused on the Yes0 of the positive local necessity graph while the other half of the

group focused on the No0 of the negative local necessity graph. The use of Yes0 and No0 for

Owner’s hasProfilePic field can be seen in figure 29.

Figure 29. Comparison of Negative and Positive Local Necessity’s Owner Boxes

Positive Local Necessity

Graph Owner Box

Negative Local Necessity

Graph Owner Box

Keeping this in mind, I wondered whether there was another way of modifying the graphs

with local necessity to be clearer to participants. After talking to a member of the Forge

development team that works on Sterling, I was told that no other modification could be

made at the time being without requiring significant effort. Therefore, I made my own

version of positive and negative local necessity graphs utilizing Microsoft Powerpoint to

represent the graphs that I would suggest for the representation of local necessity in

Sterling. This led to a secondary Mechanical Turk study that I will go over in section 5.3.

Going back to the data analysis, for the effect size I originally considered using Cohen’s D.

However, because I ended up having samples of different sizes for my control and

experimental groups, I decided that utilizing Hedges’ G to measure effect size would be

better since Hedges’ G provides a measure of the effect size weighted to the relative size of

the sample. Since Hedges’ G requires the average and standard deviation for both the

control and experimental group, I had to find a way to get the average of all of the questions

without the average just being the percentage of correct classifications. Therefore, I

calculated a score for each participant of my user studies, where each correct classification

of the model’s rules gave one point. Therefore, a score of 0-8 was assigned for each

participant. Utilizing these scores, I was able to then get the average score for the group

and the standard deviation of these scores.

46

Figure 30. Average Scores and Standard Deviations for Control and Experimental

Groups

Control Group Experimental Group

Average Score: 6.263157895

Standard Deviation: 1.240165995

Average Score: 5.76

Standard Deviation: 1.42243922

Hedges’ G: 0.373443.

Small Effect Size

5.3 Second Version of Mechanical Turk Studies

For this study, I wanted to modify the positive and negative local necessity graphs to help

participants understand local necessity better. In addition to thinking about what I would

change, I also wanted to consider the opinion of people who were exposed to these graphs

without having any previous context. With this in mind, I sent the original survey to some

friends and asked them what confused them about the graphs. One of my friends reported

that the green background of the Owner’s block made her feel as if the Owner’s fields were

always valid, independent of the positive or negative local necessity graphs. The green

background for the Owner’s block became even more confusing to her when positive local

necessity was introduced with green arrows. Another friend reported that the annotations

“LN+”and “LN-” in the attribute fields were very confusing, and their meaning wasn’t clear

enough. With these points in mind, I modified both the original version of the graphs and

the positive and negative local necessity graphs.

Structure of Studies

This secondary study remained relatively the same as the previous version of the

experimental group; the only thing that changed was the format of the graphs and the

wording of the explanation of the positive and negative local necessity graphs. This study

was run for 25 participants. The graph shown to users before the initial survey changed to

the graph seen in figure 31.

47

Figure 31. Initial Graph Shown to Participants of Updated Survey

The new graphs for negative and positive local necessity, along with their descriptions, can

be seen in figures 32-34.

Figure 32. Updated Local Necessity Description for Experimental Group

Consider the graph seen in the previous section. Let's call it graphA.

48

Figure 33. Updated Positive Local Necessity Description for Experimental Group

Here we see graphA with some green lines. The green lines mean that if you tried to

remove that line, graphA would become invalid. As an example, if we were to remove the

green “follows” line from Owner0 to NetworkUser2, the graph would become invalid.

Removing the green lines makes graphA invalid because there are other things in graphA
that depend on that green line being there. For the attributes of NetworkUsers and

Owners (isVerified and hasProfilePic), if the attribute is highlighted in green it means

that changing that value will make the graph invalid. For example, Owner0’s

“hasProfilePic” field is "Yes0" highlighted in green. This means that changing the

"hasProfilePic" field to “No0” makes graphA invalid because there are other things in

graphA that depend on Owner0's "hasProfilePic" field to be "Yes0". A gray line can be

removed without making the graph invalid because there is nothing else in the graph

that requires that line to be there. This means that we could remove the “follows” arrow

from NetworkUser1 to NetworkUser0 without making the graph invalid.

49

Figure 34. Updated Negative Local Necessity Description for Experimental Group

Here we see graphA with some red-dotted lines. The red-dotted lines mean that if you

tried to add any red-dotted line, graphA would become invalid. As an example, if we were

to add the red-dotted “follows” line from NetworkUser1 to Owner0, graphA would become

invalid. Adding the red-dotted lines makes graphA invalid because there are other things

in graphA that depend on that red-dotted line NOT being there. For the attributes of

NetworkUsers and Owners (isVerified and hasProfilePic), if the attribute is

highlighted in read, it means that assigning that value to the attribute will make the

graph invalid. For example, Owner0’s “hasProfilePic” field is “No0" highlighted in red.

This means that making Owner0’s “hasProfilePic” field “No0” makes the graph invalid

because there are other things in graphA that depend on Owner0’s “hasProfilePic” field

to not be “No0”. A gray line represents existing facts in graphA.

The four graphs shown to the participants of the updated experimental group can be seen in

figure 35.

50

Figure 35. Updated Graphs for the Experimental Group

Graph 1

51

Graph 2

52

Graph 3

53

Graph 4

54

Results

As in the first version of studies for Mechanical Turk, in order to analyze my results I

filtered out the responses that had more than one incorrect answer for the initial

questionnaire. This resulted in 22 valid responses for the updated experimental group. The

distributions for correctly classifying each rule for the control, original experiment, and

updated experimental groups can be seen in figures 36-37.

Figure 36. Results for Control, Experimental, and Updated Experimental Group

Rules 1-4.

55

Figure 37. Results for Control, Experimental, and Updated Experimental Group

Rules 4-8.

From the previous images, it can be noted that the updated experimental group did better

than the original experimental group in the classification of only two rules: rule number one

and rule number eight. Of these two rules, the updated experimental group did better than

the control group in the classification of rule 1. In order to measure the impact of changing

the way that the graphs looked, I performed the same Chi-squared test as the one in section

5.2 but between the original experimental group and the updated experimental group, and

between the control group and the updated experimental group. I also calculated Hedges’ G

for these same group combinations.

The results for calculating the Chi-Squared distribution for each rule for the original

experimental group and the updated experimental group with a significance level of 0.05

can be seen in figure 38.

56

Figure 38. Chi-Squared Analysis Results

Rule

Number

Chi-Squared

Result

Calculated

P-value

Conclusion

1 2.358442082 0.124606575 Results are not statistically significant

2 0.028137472 0.866786033 Results are not statistically significant

3 0.953420746 0.328850102 Results are not statistically significant

4 0.017885835 0.893609807 Results are not statistically significant

5 1.566022213 0.210785626 Results are not statistically significant

6 0.994380165 0.318674175 Results are not statistically significant

7 1.574323308 0.209580274 Results are not statistically significant

8 2.768508159 0.096135722 Results are not statistically significant

Given that no rule was statistically significant, I could not conclude that there was a

relationship between the type of local necessity graph that participants observed and their

performance in correctly classifying the rules of the model.

I then continued to calculate Hedges’ G for both experimental groups. I once again

calculated a score for each participant as done in section 5.2.

Figure 39. Average Scores and Standard Deviations for Original and Updated

Experimental Groups

Original Experimental Group Updated Experimental Group

Average Score: 5.76

Standard Deviation: 1.42243922

Average Score: 5.590909091

Standard Deviation: 1.708775415

Hedges’ G: 0.108211

Small Effect Size

57

For the analysis made between the control group and updated experimental groups, my

Chi-Squared distribution for each rule with a significance level of 0.05 can be seen below.

Figure 40. Chi-Squared Analysis Results

Rule

Number

Chi-Squared

Result

Calculated

P-value

Conclusion

1 0.406908801 0.52354266 Results are not statistically significant

2 0.811861503 0.367570469 Results are not statistically significant

3 4.917929293 0.026579356 Results are statistically

significant

4 1.167691957 0.279875989 Results are not statistically significant

5 0.475340449 0.490540517 Results are not statistically significant

6 0.63148781 0.4268101 Results are not statistically significant

7 0.028258145 0.866503357 Results are not statistically significant

8 7.290106952 0.006933535 Results are statistically

significant

For these results, it is interesting to note that the classification of the rules 3 and 8 were

statistically significant favoring the control group. While the significance in the

classification of rule 8 also occurred with the original experimental group, the significance

for the classification of rule 3 is new. Rule 3 is “The Owner needs to follow all

NetworkUsers”. It is interesting that statistical significance for these studies have come

from the 2 properties related to the Owner instead of the other NetworkUsers. These results

might signal towards the fact that there is still room for improvement for the display of

local necessity in Sterling, as participants might be getting confused by the meanings of the

positive and negative local necessity graphs. I also think the aforementioned because the

updated experimental group only did better than the original experiment group in 2

questions: 1 and 8; therefore, even though there was no statistical significance for question

1, there might be some confusion still on how local necessity works.

I then continued to calculate Hedges’ G for the control and updated experimental groups. I

once again calculated a score for each participant as done in section 5.2. Results can be seen

in figure 41.

58

Figure 41. Average Scores and Standard Deviations for Control Group and

Updated Experimental Group

Control Group Updated Experimental Group

Average Score: 6.263157895

Standard Deviation: 1.240165995

Average Score: 5.590909091

Standard Deviation: 1.708775415

Hedges’ G: 0.445001

Small Effect Size

59

6. Analysis

While the results from the study ran in CSCI 1710 do not allow me to define any findings

regarding the usefulness of local necessity, they do allow me to make a comparison between

my results and those of Danas et al. (2017). In my study, I exposed students to having local

necessity and not having local necessity, while Danas et al. (2017) exposed students to

Amalgam’s provenances. In my study, from the logs that I found, 8/8 students exposed to

local necessity and 29/29 students exposed to nothing chose the correct fix to add

KittyBacon to the FancyFelineFoundation. These results are more favorable than the

results found in Danas et al. (2017) where one fifth of the students that were exposed to

provenances made a fix to add KittyBaconto the CoolCatClub that went against other

constraints in the model, therefore making the model invalid. This sheds some light on the

usability of provenances itself. Are provenances useful? Or are they hurting participant’s

understanding of their model and over-constraints instead of helping them?

Students performance in my studies might have also been impacted by the presence of the

satisfying instance at the beginning of the assignment. Therefore, the differences in the

results between my studies and Danas et. al (2017) could be attributed to either

provenances being confusing or the initial satisfying instance being very helpful for users to

debug their models. With this in mind, there is an opportunity to pursue a future study that

compares these three options directly in more controlled environments. In the case that the

culprit was the image from a satisfying instance of the model, that could be a significant

finding and could shape the way that assignments are approached for the course and other

formal methods language assignments.

In regards to the results from the first Mechanical Turk study, there was only one

significant case that favored the control group. This points towards the fact that it might be

more useful for users to observe multiple instances in Sterling to identify constraints rather

than fewer instances with their local necessity. This potentially contradicts the statement

made in Nelson et al. (2017) saying that Amalgam is able to point out under-constraints

and over-constraints in a clearer way than observing multiple instances and trying to figure

out the rules that govern the model that generated them. This is a significant finding that

gives me insight on the question of whether or not Amalgam’s local necessity is useful in

helping users understand their model better. Additionally, as mentioned in section 5.2, the

statistical result for this study suggested that some ways of displaying local necessity might

be confusing to non-expert users, especifically differentiating between positive and local

necessity. This led to the second round of Mechanical Turk studies focused on testing

alternative visualizations of local necessity.

The results from the second Mechanical Turk study point towards the fact that there wasn’t

a significant difference between the original display of local necessity and the modified

display of local necessity. However, I believe that this still shows the need to iterate on

60

better visualizations for local necessity, as local necessity might still be a confusing subject

to grasp for new users. Additionally, when comparing the results of the updated

experimental group with the control group, there were 2 statistically significant results

favoring the control group. This once again clarifies that there is no significant benefit in

utilizing local necessity versus exposing users to multiple instances of a given model;

however, it emphasizes that even the updated visualization of local necessity can still be

harmful to non-expert participants.

Additionally, the analysis made of the benefits and disadvantages of implementing

Amalgam in Forge is meant to act as a guide for future developers seeking to introduce a

tool to this language. Hopefully, the benefits and limitations listed will allow developers to

determine whether Forge is the language that would best fit their tool, and will also give

Forge developers the opportunity to understand the strengths and weaknesses of the

language for future improvement.

61

7. Conclusion

In conclusion, my honors project approached the question of whether or not local necessity

was useful in aiding a user's debugging process and understanding of their models.

Through multiple user studies, both to test the direct usability of the tool and the

usefulness of local necessity graphs versus regular graphs, I was able to determine that

there is no significant benefit in exposing users to a models’ instances with local necessity

than exposing users to multiple instances to increase their understanding of a model’s

constraints. I was also able to determine that there are some cases where the visualization

of local necessity can be harmful to non-expert users. In addition, the results shed some

light on the usefulness of provenances in Danas et al. (2017) or the presence of the

satisfying instance at the beginning of an assignment, and encourages future research on

the matter.

Finally, this paper made an analysis of implementing Amalgam in the programming

language, Forge. In this thesis, I outlined multiple benefits and disadvantages of

implementing such a tool in this language, which is meant to act as a guide for future

developers. Additionally, I outlined a set of suggestions to improve developers’ experiences

when working in Forge, which can also be used by Forge developers to improve the

language.

7.1 Limitations

When it comes to my first run of user studies, the main limitation was that I was not able

to determine the usability of local necessity given the failure of logging. Because of this, I

was not able to answer whether or not local necessity is useful for users during their

debugging processes.

For the studies run in Mechanical Turk, there exists the limitation that the studies are

vulnerable to the specific visualizations, domain, and wording chosen for the questions. For

once, the translations made from the constraints in the model in figure 18 into English

might have been unclear to some users. Additionally, as noted in the analysis section, there

might still exist some confusion on local necessity graphs. While this research paper looked

into an alternative visualization, results pointed towards there being a greater opportunity

for improvement in that area. Finally, another limitation is that the user studies that I ran

on Mechanical Turk were only run for a medium number of people (25-27), which is not a

sample size big enough to develop strong statistical analysis.

62

8. Future Improvements

(1) User Study for Usability: Given that I was not able to make a direct analysis of

the usability of the tool, there is room for running the same study once again next

year in CSCI 1710 and logging student’s actions.

(2) Improve Performance of Amalgam in Forge: In order to make Amalgam faster

and therefore more useful for users, Forge developers might need to work on another

way of evaluating an instance without invoking the solver directly. Invoking the

solver takes up a lot of time, and therefore slows down the tool a lot.

(3) Test Usability of Provenances: Given that the results from the Mechanical Turk

studies shed some light on whether or not provenances were helpful to students in

Danas et al. (2017), a study focused on comparing provenances, local necessity, and

being exposed to simple Forge can be extremely useful.

(4) Test Usability of Initial Satisfying Instance: Since the positive results for the

laboratory might also be attributed to the presence of the initial satisfying instance

of the model that students needed to complete, there is an opportunity to develop a

study focused on this directly and determine the benefits of having the initial

instance.

(5) Improving Visualization of Local Necessity: The study results show that there

is still a lot of room for improvement for the display of local necessity in Sterling. A

more detailed analysis could be done where multiple Mechanical Turk studies are

run exposing participants to different graph formats. This would also increase the

usability of the tool.

(6) Running Talk-Aloud Studies: Another way of getting some insight into the

usability of local necessity and provenances could be by running talk-aloud studies.

In these studies, participants could be exposed to multiple models in which they are

given the opportunity of using Amalgam in some but not in others. Having access to

participant’s thoughts while using the tool can be very beneficial in improving it and

understanding its usability better.

63

9. Acknowledgements

I would like to thank Professor Tim Nelson for his unconditional support, and Professor

Shriram Krishnamurthi for all of his support and guidance throughout this process. I would

also like to thank Abigail Siegel for all of her support and help implementing Amalgam.

Thank you to my friends and family for their words of encouragement.

64

10. References

[1] Lahtinen, E., Ala-Mutka, K., & Järvinen, H. (2005). A study of the difficulties of novice

programmers. Proceedings of the 10th Annual SIGCSE Conference on Innovation and

Technology in Computer Science Education - ITiCSE '05. doi:10.1145/1067445.1067453

[2] Loksa, D., & Ko, A. J. (2016). The role of self-regulation in programming problem solving

process and success. Proceedings of the 2016 ACM Conference on International Computing

Education Research. doi:10.1145/2960310.2960334

[3] Prather, J., Pettit, R., McMurry, K., Peters, A., Homer, J., & Cohen, M. (2018).

Metacognitive difficulties faced by novice programmers in automated assessment tools.

Proceedings of the 2018 ACM Conference on International Computing Education Research.

doi:10.1145/3230977.3230981

[4] Garner, S., Haden, P., & Robins, A. (2005). My Program is Correct But it Doesn’t Run: A

Preliminary Investigation of Novice Programmers’ Problems. In Proc. Seventh Australasian

Computing Education Conference (ACE2005).

[5] Jackson, D. (2016). Software abstractions: Logic, language, and analysis. Cambridge,

MA: The MIT Press.

[6] Nelson, T., Danas, N., Dougherty, D. J., & Krishnamurthi, S. (2017). The power of "why"

and "why not": Enriching scenario exploration with provenance. Proceedings of the 2017

11th Joint Meeting on Foundations of Software Engineering. doi:10.1145/3106237.3106272

[7] Larch languages and tools for formal specification [Preface]. (1993). In 1251893671

927138261 J. V. Guttag & 1251893672 927138261 J. J. Horning (Authors), Larch languages

and tools for formal specification (pp. 4-5). New York: Springer.

[8] Porncharoenwase, S., Nelson, T., & Krishnamurthi, S. (2018). Composat:

Specification-guided coverage for model finding. Formal Methods, 568-587.

doi:10.1007/978-3-319-95582-7_34

[9] Danas, N., Nelson, T., Harrison, L., Krishnamurthi, S., & Dougherty, D. J. (2017). User

studies of Principled Model Finder Output. Software Engineering and Formal Methods,

168-184. doi:10.1007/978-3-319-66197-1_11

[10] Wrenn, J., & Krishnamurthi, S. (2020). Will students write tests early without

coercion? Koli Calling '20: Proceedings of the 20th Koli Calling International Conference on

Computing Education Research. doi:10.1145/3428029.3428060

65

[11] Denny, P., Prather, J., Becker, B. A., Albrecht, Z., Loksa, D., & Pettit, R. (2019). A closer

look at metacognitive scaffolding. Proceedings of the 19th Koli Calling International

Conference on Computing Education Research. doi:10.1145/3364510.3366170

[12] Leino, K. Rustan M. (2010). Dafny: An automatic Program verifier for functional

correctness. Logic for Programming, Artificial Intelligence, and Reasoning, 348-370.

doi:10.1007/978-3-642-17511-4_20

[13] Leino, K. Rustan M. (2010). Dafny: An automatic Program verifier for functional

correctness. Logic for Programming, Artificial Intelligence, and Reasoning, 348-370.

doi:10.1007/978-3-642-17511-4_20

[14] Mason, W., Suri, S.: Conducting behavioral research on Amazon’s Mechanical Turk.

Behavior research methods 44(1), 1–23 (2012)

[15] Dyer, A. T. (2020). Lightweight formal methods in scientific computing (Unpublished

master's thesis). North Carolina State University.

[16] Dyer, T. (2020). Sterling. Retrieved March 23, 2021, from https://sterling-js.github.io/

[17] Bornholt, J., & Torlak, E. (2017). Synthesizing memory models from framework

sketches and litmus tests. ACM SIGPLAN Notices, 52(6), 467-481.

doi:10.1145/3140587.3062353

66

https://sterling-js.github.io/

11. Appendix

Control Group Handout

Forge Lab 1: Graphs
Monday, February 1, and Tuesday, February 2

You should only be completing this lab if you are in the Monday 4-6 pm and Tuesday
8-10 pm sections. If you are not a part of these sections, please return to the course’s

website and pick the correct handout.

Overview
Overview of Lab: Throughout this lab, we will be modeling a set of Cats, where each Cat has a
set of friends. Among other properties, friendship is symmetric, meaning that if CatA is
friends with CatB, CatB is also friends with CatA. We will create a specific Cat named
KittyBacon, whose connections are all of the other Cats (a relation named “connectionsOf”).
KittyBacon will create a foundation named “FancyFelineFoundation” (FFF) where the
membersOfFoundation are KittyBacon’s connections (all of the other Cats).

To give you an idea of what your solution should look like, below is an output instance from a
correct implementation of this lab (the TA’s solution). Take some time to understand how
the various relations work in the model and feel free to use this instance as reference
throughout the lab. The following instance contains 3 Cats (Cat0, Cat1, KittyBacon0).
FFF0 represents the FancyFelineFoundation.

Graph View:

67

Table View:

Setup
Start by opening a new file in DrRacket. At the very top of the file, make sure to include the
following line, where <email> is your Gradescope email. If there is already a #lang line, you
should replace it with this one.

#lang forge "lab1" "<email>"

For example, one of our TA’s lab looks as follows:

#lang forge "lab1" "x0f00iexvy4yoidl@gmail.com"

68

mailto:x0f00iexvy4yoidl@gmail.com

You might see a message at the bottom of your Forge screen saying “uncaught exn: "Email
verification failed." or “call-with-output-file: forbidden (write delete) access to …”. Feel free to
ignore these.

Afterwards, run your code. You might be prompted to write your email address and the name
of the assignment once again. If you are, write the same email as above (without quotations)
and in the assignment name write lab1 (without quotations as well).

Note on Running Your Code
Whenever you run your code, a window like the one below will appear in your Internet browser.
This program is called Sterling.

After waiting a few seconds, a graph will show up in that window if the spec is satisfiable. In the
case that the spec is unsatisfiable, a box saying UNSAT0 will show up.

Satisfiable Spec Unsatisfiable Spec

We Are All Set!
Begin with the following Forge signature describing Cats, each of which has a set of friends:

sig Cat {

friends : set Cat

69

}

run {}

As crucial as the friendship of kittens is, we're using it here as a playful framing of very real
problems in computer science.

Averting Catastrophe
Run this Forge model and view several instances in the visualizer by clicking Next. This model
has a few unpleasant characteristics that we would like to constrain.

No Lonely Kitten

Make sure that all Cats have at least one friend. Using the predicate below as a template,
replace ... with your implementation:

pred NoLonelyKittens {

…

}

Cats are Friends with Other Kittens

Some of the cats are claiming themselves as friends! Introduce a fact ensuring that the friends
of a cat do not include itself. Using the predicate below as a template, replace ... with your
implementation:

pred OutsideFriends {

…

}

70

Friendship Isn’t A One-Way Street

Well, Friendship might be a one-way street in Providence, but these cats aren't from around
here. Visualize an instance of your model so far, and note that the arrows connecting instances
of Cat may be one-directional. Introduce a predicate TwoWayStreet ensuring that if one cat
considers another cat as a friend, the other cat reciprocates the friendship:

pred TwoWayStreet {

…

}

You can combine these all together into one predicate:

pred friendship {

NoLonelyKittens

OutsideFriends

TwoWayStreet

}

Try running this predicate with run friendship to see all the cats! It is normal for the first
instance to be empty, try clicking “Next” to see other instances!

Kitty Bacon

71

There's one special Cat in our universe, an actor by the name of Kitty Bacon! Add this
signature to your model:

one sig KittyBacon extends Cat { connectionsOf : set Cat }

If you view an instance of this model, you should see exactly one Cat with the name
KittyBacon.

Degrees of Kitty Bacon

Kitty Bacon is very connected. All kitties are in his connections. Add the following predicate:

pred ConnectedKittyBacon {

--connectionsOfKittyBacon will be defined soon!

connectionsOfKittyBacon

Cat - KittyBacon = KittyBacon.connectionsOf

}

ConnectedKittyBacon depends on the relation KittyBacon.connectionsOf, which should
consist of the union of KittyBacon’s friends of friends (not including KittyBacon themself)
and KittyBacon’s friends.

It turns out that doing KittyBacon.friends.friends gets you KittyBacon’s friends of
friends! Play around with this in the evaluator to see why that is. With that in mind, complete
the definition below. Make sure to write this predicate above ConnectedKittyBacon:

pred connectionsOfKittyBacon {

friendship

KittyBacon.connectionsOf = …

}

run {ConnectedKittyBacon and connectionsOfKittyBacon}

Look at the visualization of your instance. Are all cats connected to KittyBacon via their
network of friends? If you got UNSAT, double-check that your definition of
KittyBacon.connectionsOf isn't including too many cats.

A common pattern in Forge is to test a suspicion by phrasing it differently in a second
predicate, and checking if both predicates are equivalent. An alternative way to express
connected-via-friends is the transitive closure operator, ^.

KittyBacon.^friends includes friends, friends of friends, friends of friends of
friends, and so on. Include the following predicate in your spec:

72

pred SuperConnected {

connectionsOfKittyBacon

Cat - KittyBacon in KittyBacon.^friends

}

Two predicates are equivalent (up to bound only) if and only if (iff) one implies the other. Fill
in the predicate below:

pred ConnectedKittyBacon_equals_SuperConnected {

…

}

Finally, check the predicate:

check ConnectedKittyBacon_equals_SuperConnected for exactly 3 Cat

If you run this check and a graph pops-up in the visualizer, it means that you got a
counter-example. If the visualizer shows an UNSAT0 box, then your check passed. Were any
counter-examples found?

What happens if you increase the scope of the model to include an additional Cat?

check ConnectedKittyBacon_equals_SuperConnected for exactly 4 Cat

Modify KittyBacon.connectionsOf to include their friends of friends of friends and check
for counterexamples again. If none are found, increase the scope of the check to exactly 5

Cat. Is it possible to modify KittyBacon.connectionsOf using only the + operator so that for
any number of degrees of separation, and for any number of cats, no counterexample to this
predicate can be found? If not, why? Write your response in a comment.

The Fancy Feline Foundation
Because KittyBacon is so fancy, he would like to create a foundation with all of his
connections. Add the following signature to your model:

one sig FFF { membersOfFoundation: set Cat }

All of KittyBacon’s connections are part of the FancyFelineFoundation:

pred FancyFelineFoundation {

ConnectedKittyBacon

73

FFF.membersOfFoundation = KittyBacon.connectionsOf

}

Since KittyBacon is such a fancy feline (he started the FancyFelineFoundation, after all),
we can check whether KittyBacon is part of the FancyFelineFoundation:

pred KittyBaconIsAFancyFeline {

FancyFelineFoundation implies KittyBacon in FFF.membersOfFoundation

}

Now, add the following check:

check KittyBaconIsAFancyFeline for exactly 3 Cat

What do you see when you run your check? Do you get any counterexamples? Is KittyBacon

ever a part of the FancyFelineFoundation?

If KittyBacon is never a part of the FancyFelineFoundation, make sure to modify your code
to include him (after all, he started it!).

After your fix, run your check once again and see if there are any counterexamples. If there
are none (meaning that no graphs show up), please write what your fix was in a comment
and your reasoning behind it.

Now, we are going to add a final predicate to see a graph representing our entire model
(including KittyBacon in the FancyFelineFoundation). Please add the following predicate:

pred seeAllCats {

FancyFelineFoundation

KittyBacon in FFF.membersOfFoundation

}

You might be wondering why we are adding this. Well, the fix that we added might have solved
the problem of KittyBacon not being a part of the FancyFelineFoundation, but did our fix
lead to any unintended consequences? This is very common in programming! While
normally we would also write a few example tests, in the scope of this lab we are just going to
run the predicate and see a couple of instances to make sure that we did not break any
properties that should hold.

Include the following run statement in your spec:

run seeAllCats for exactly 3 Cat

74

Make sure to keep the visualizer window open from your run since you will need to
show it to the TAs before check-off.

Check-Off
Call a TA over to talk about your responses.

75

Experimental Group Handout

Forge Lab 1: Graphs
Monday, February 1, and Tuesday, February 2

You should only be completing this lab if you are in the Monday 8-10 am and Tuesday
4-6 pm sections. If you are not a part of these sections, please return to the course’s

website and pick the correct handout.

Overview
Overview of Lab: Throughout this lab, we will be modeling a set of Cats, where each Cat has a
set of friends. Among other properties, friendship is symmetric, meaning that if CatA is
friends with CatB, CatB is also friends with CatA. We will create a specific Cat named
KittyBacon, whose connections are all of the other Cats (a relation named “connectionsOf”).
KittyBacon will create a foundation named “FancyFelineFoundation” (FFF) where the
membersOfFoundation are KittyBacon’s connections (all of the other Cats).

To give you an idea of what your solution should look like, you will be given an output instance
from a correct implementation of this lab (the TA’s solution). In addition, you will be able to
see what is and isn’t locally necessary for that specific instance, a concept that Tim went over
in Friday’s lecture. For an overview of Local Necessity, check out the following section.

What is Local Necessity?

Local Necessity tells you about what facts need to hold in order for an instance to satisfy the
spec, in the context of the rest of the instance. There are two types of local necessity:
positive and negative.

(1) Positive local necessity (LN+) are those facts that are true in the instance, and
cannot be flipped to false without violating the spec or making other changes to the
instance.

(2) Negative local necessity (LN-) are those facts that are false in the instance, and
cannot be flipped to true without violating the spec or making other changes to the
instance.

As a brief example, consider a spec that models registering courses at Brown that does not
allow taking courses simultaneously and requires students to register for all components of a
given course.

- Positive example: Imagine that CSCI 1710 requires a mandatory section. If an
instance of your model were to show 1710 as a registered course, it is locally
necessary for the section to also be registered (given that 1710 is registered, the
section must also be registered or the spec is violated).

- Negative example: Imagine that you are shopping CSCI 1710 and APMA 1160 (both
MWF 10-10:50 am.) If your instance shows CSCI 1710 as a registered course, it is

76

locally necessary for APMA 1160 to not be in your list of registered courses (given
that you are registered for 1710, you cannot also register for APMA 1160 without
violating the spec).

If you have any questions about local necessity, please call a TA over.

An output instance of the TA’s solution (in graph and table view) and its local necessity can be
seen below. Take some time to understand how the various relations work in the model and
feel free to use this instance as a reference throughout the lab. You are also encouraged to
analyze your own instances’ local necessity. The following instance contains 3 Cats (Cat0,
Cat1, KittyBacon0). FFF0 represents the FancyFelineFoundation.

Graph View:

Table View:

77

Local Necessity:
Positive Local Necessity:

This is telling us the following information:

- friends relation
- The edges (Cat0, Cat1), (Cat1, Cat0), (Cat1, KittyBacon0), and

(KittyBacon0, Cat1) are true in the instance and can’t be removed without
violating the spec or making other changes to the instance.

- connectionsOf relation
- The edges (KittyBacon0, Cat0) and (KittyBacon0, Cat1) are true in the

instance and can’t be removed without violating the spec or making other
changes to the instance.

- membersOfFoundation relation
- The edges (FFF0, Cat0), (FFF0, Cat1), and (FFF0, KittyBacon0) are

true in the instance and can’t be removed without violating the spec or making
other changes to the instance.

Negative Local Necessity:

This is telling us the following information:

- friends relation
- The edges (KittyBacon0, KittyBacon0), (Cat0, KittyBacon0),

(KittyBacon0, Cat0), (Cat1, Cat1), and (Cat0, Cat0) are false in the
instance and can’t be added without violating the spec or making other changes
to the instance.

78

- Note that negative local necessity is found by checking if a given tuple
breaks the spec one at a time (therefore, even if there seems to be an
edge from (Cat0, KittyBacon0) and (KittyBacon0, Cat0) in the
friends relation, the tool is actually just testing adding the edge (Cat0,

KittyBacon0) (which breaks the spec because the edge
(KittyBacon0, Cat0) is not already present in the instance)).

- connectionsOf relation
- The edges (KittyBacon0, KittyBacon0), (Cat1, Cat0), (Cat1,

KittyBacon0), (Cat0, KittyBacon0), (Cat0, Cat1), (Cat1, Cat1),

and (Cat0, Cat0) are false in the instance and can’t be added without
violating the spec or making other changes to the instance.

How to get Local Necessity On Your Own Instances?
You can see the local necessity of an instance both in the “Graph” and “Table” view of the
visualizer. However, for the context of this lab, we recommend utilizing the Table View to see
local necessity.

Steps to get Local Necessity in Table View
(1) Run your code!
(2) In Sterling, switch from Graph View to Table View by pressing the “Table” button on the

top toolbar.

(3) Click on the first button in the left-hand-side toolbar . You will see the following
window pop-up:

(4) On the Local Necessity section, press on the Highlight LN+ or Highlight LN- buttons
to see the LN+ or LN- of your instance.

(a) LN+ will highlight the table entries in green while LN- will highlight the table
entries in red.

Setup
Start by opening a new file in DrRacket. At the very top of the file, make sure to include the
following line, where <email> is your Gradescope email. If there is already a #lang line, you
should replace it with this one.

79

#lang forge "lab1" "<email>"

For example, one of our TA’s lab looks as follows:

#lang forge "lab1" "x0f00iexvy4yoidl@gmail.com"

Underneath the line that you just added, include the following line of code:

option local_necessity on

You might see a message at the bottom of your Forge screen saying “uncaught exn: "Email
verification failed." or “call-with-output-file: forbidden (write delete) access to …”. Feel free to
ignore these.

Afterwards, run your code. You might be prompted to write your email address and the name
of the assignment once again. If you are, write the same email as above (without quotations)
and in the assignment name write lab1 (without quotations as well).

Note on Running Your Code
Whenever you run your code, a window like the one below will appear in your Internet browser.
This program is called Sterling.

After waiting a few seconds (~15), a graph will show up in that window if the spec is
satisfiable. In the case that the spec is unsatisfiable, a box saying UNSAT0 will show up.

Satisfiable Spec Unsatisfiable Spec

80

mailto:x0f00iexvy4yoidl@gmail.com

We Are All Set!
Begin with the following Forge signature describing Cats, each of which has a set of friends:

sig Cat {

friends : set Cat

}

run {}

As crucial as the friendship of kittens is, we're using it here as a playful framing of very real
problems in computer science.

Averting Catastrophe
Run this Forge model. You will see that the visualizer will pop-up a window like the one below.
In order for the instances to show up, please wait a few seconds (~15). It is normal for Forge
to take a while to show you instances. In general, throughout the lab, if the terminal in
Forge is printing some output, the instance will not show up in the visualizer until the
printing is done.

The window will update itself to show you an instance if the spec is valid or will show an UNSAT0

box if the spec is unsatisfiable. Note that you will not be able to see the local necessity for
the instances shown in this initial run.

81

View several instances in the visualizer by clicking Next. Again, the new instances will show up
after a few seconds (~15). This model has a few unpleasant characteristics that we would like to
constrain.

No Lonely Kitten

Make sure that all Cats have at least one friend. Using the predicate below as a template,
replace ... with your implementation:

pred NoLonelyKittens {

…

}

Cats are Friends With Other Kittens

Some of the cats are claiming themselves as friends! Introduce a fact ensuring that the friends
of a cat do not include itself. Using the predicate below as a template, replace ... with your
implementation:

pred OutsideFriends {

…

}

Friendship Isn’t A One-Way Street

82

Well, Friendship might be a one-way street in Providence, but these cats aren't from around
here. Visualize an instance of your model so far, and note that the arrows connecting instances
of Cat may be one-directional. Introduce a predicate TwoWayStreet ensuring that if one cat
considers another cat as a friend, the other cat reciprocates the friendship:

pred TwoWayStreet {

…

}

You can combine these all together into one predicate:

pred friendship {

NoLonelyKittens

OutsideFriends

TwoWayStreet

}

Try running this predicate with run friendship to see all the cats! It is normal for the first
instance to be empty, try clicking “Next” to see other instances!

Kitty Bacon

83

There's one special Cat in our universe, an actor by the name of Kitty Bacon! Add this
signature to your model:

one sig KittyBacon extends Cat { connectionsOf : set Cat }

If you view an instance of this model, you should see exactly one Cat with the name
KittyBacon.

Degrees of Kitty Bacon

Kitty Bacon is very connected. All kitties are in his connections. Add the following predicate:

pred ConnectedKittyBacon {

--connectionsOfKittyBacon will be defined soon!

connectionsOfKittyBacon

Cat - KittyBacon = KittyBacon.connectionsOf

}

ConnectedKittyBacon depends on the relation KittyBacon.connectionsOf, which should
consist of the union of KittyBacon’s friends of friends (not including KittyBacon themself)
and KittyBacon’s friends.

It turns out that doing KittyBacon.friends.friends gets you KittyBacon’s friends of
friends! Play around with this in the evaluator to see why that is. With that in mind, complete
the definition below. Make sure to write this predicate above ConnectedKittyBacon:

pred connectionsOfKittyBacon {

friendship

KittyBacon.connectionsOf = …

}

run {ConnectedKittyBacon and connectionsOfKittyBacon}

Look at the visualization of your instance. Are all cats connected to KittyBacon via their
network of friends? If you got UNSAT, double-check that your definition of
KittyBacon.connectionsOf isn't including too many cats.

A common pattern in Forge is to test a suspicion by phrasing it differently in a second
predicate, and checking if both predicates are equivalent. An alternative way to express
connected-via-friends is the transitive closure operator, ^.

KittyBacon.^friends includes friends, friends of friends, friends of friends of
friends, and so on. Include the following predicate in your spec:

84

pred SuperConnected {

connectionsOfKittyBacon

Cat - KittyBacon in KittyBacon.^friends

}

Two predicates are equivalent (up to bound only) if and only if (iff) one implies the other. Fill
in the predicate below:

pred ConnectedKittyBacon_equals_SuperConnected {

…

}

Finally, check the predicate:

check ConnectedKittyBacon_equals_SuperConnected for exactly 3 Cat

If you run this check and a graph pops-up in the visualizer, it means that you got a
counter-example. If the visualizer shows an UNSAT0 box, then your check passed. Were any
counter-examples found?

What happens if you increase the scope of the model to include an additional Cats?

check ConnectedKittyBacon_equals_SuperConnected for exactly 4 Cat

Modify KittyBacon.connectionsOf to include their friends of friends of friends and check
for counterexamples again. If none are found, increase the scope of the check to exactly 5

Cat. Is it possible to modify KittyBacon.connectionsOf using only the + operator so that for
any number of degrees of separation, and for any number of cats, no counterexample to this
predicate can be found? If not, why? Write your response in a comment.

The Fancy Feline Foundation
Because KittyBacon is so fancy, he would like to create a foundation with all of his
connections. Add the following signature to your model:

one sig FFF { membersOfFoundation: set Cat }

All of KittyBacon’s connections are part of the FancyFelineFoundation:

pred FancyFelineFoundation {

85

ConnectedKittyBacon

FFF.membersOfFoundation = KittyBacon.connectionsOf

}

Since KittyBacon is such a fancy feline (he started the FancyFelineFoundation, after all),
we can check whether KittyBacon is part of the FancyFelineFoundation:

pred KittyBaconIsAFancyFeline {

FancyFelineFoundation implies KittyBacon in FFF.membersOfFoundation

}

Now, add the following check:

check KittyBaconIsAFancyFeline for exactly 3 Cat

What do you see when you run your check? Do you get any counterexamples? Is KittyBacon

ever a part of the FancyFelineFoundation?

Tip: You can always look at local necessity and see whether it is necessary for KittyBacon to
be (or not to be) in the FancyFelineFoundation. If you can’t remember how to see the Local

Necessity for an instance, go back to page 4 to 5.

If KittyBacon is never a part of the FancyFelineFoundation, make sure to modify your code
to include him (after all, he started it!).

After your fix, run your check once again and see if there are any counterexamples. If there
are none (meaning that no graphs show up), please write what your fix was in a comment
and your reasoning behind it.

Now, we are going to add a final predicate to see a graph representing our entire model
(including KittyBacon in the FancyFelineFoundation). Please add the following predicate:

pred seeAllCats {

FancyFelineFoundation

KittyBacon in FFF.membersOfFoundation

}

You might be wondering why we are adding this. Well, the fix that we added might have solved
the problem of KittyBacon not being a part of the FancyFelineFoundation, but did our fix
lead to any unintended consequences? This is very common in programming! While
normally we would also write a few example tests, in the scope of this lab we are just going to
run the predicate and see a couple of instances to make sure that we did not break any
properties that should hold.

86

Include the following run statement in your spec:

run seeAllCats for exactly 3 Cat

Make sure to keep the visualizer window open from your run since you will need to
show it to the TAs before check-off.

Check-Off
Call a TA over to talk about your responses.

87

