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Object design, the process of creating a 3D shape, is one of the most fundamen-
tal parts of scene generation, as well as of the most labor-intensive. Deep genera-
tive models can assist with this process by allowing designers to quickly generate
unique objects. Models to generate object representations such as voxelgrids and
point clouds have been successful in generating widely variable unique objects. In
the domain of mesh generation, however, many models fail to guarantee that gener-
ated mesh objects are physically valid and can exist in the real world.

ShapeAssembly is mesh-generative model that guarantees physical validity by
converting mesh objects to a program representation. Each program "assembles"
the object through operations defined in ShapeAssembly’s language. The authors
of ShapeAssembly then train a variational auto-encoder to generate new chair pro-
grams which can then be converted into physically valid meshes.

However, this model fails to guarantee functional validity of the objects it creates.
An object is functionally valid if it is able to satisfy the function for which it was
designed. In this thesis, I explore ways in which to modify the ShapeAssembly
training paradigm to guarantee functionally valid objects, specifically chairs.

I define specific metrics of functionality on a given chair, then calculate differ-
entiable loss functions over the chair based on these metrics that will increase the
functionality of chairs generated by the ShapeAssembly variational auto-encoder.
For every metric of functionality I consider, I evaluate my approach to increasing
the functionality of the ShapeAssembly variational auto-encoder by comparing the
chairs that it outputs to those of the ShapeAssembly chair dataset.

HTTP://WWW.BROWN.EDU
http://cs.brown.edu
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Chapter 1

Introduction

FIGURE 1.1: A figure of chair objects taken from the ShapeAssembly
chair dataset.

Object design, the process of creating a 3D shape, is a major bottleneck in devel-
oping 3D scenes. For example a designer who wants to create a living room scene
would have to to create chairs, tables, and cabinets from scratch, which can take a
lot of time and effort. Incorporating generative models into the design process can
accelerate this process. For example, tree and general vegetation generation can be
modeled using L-systems, which use probabilistic recursion to recreate the fractal-
like nature of plants [1]. Another popular model for object generation is the shape
grammar. Similar to L-systems, a shape grammar recurses over smaller parts of a
single shape following rules defined by a dataset or the designer, like the following
shape grammar used to generate building façades [2].

Deep neural generative models have become popular for the generation of 3D
objects, with different representations such as voxelgrids, point clouds, and meshes.
Voxelgrid generation has been explored in papers such as 3D ShapeNets [3], which
extends the 2D CNN image generation techniques to 3D objects. Point cloud gener-
ative models have had great improvements with the creation of PointNet [4], a dis-
criminative network for point cloud classification and segmentation. The authors of
the Generative PointNet model [5] incorporate the basic encoding structure of Point-
Net to derive a generative model that can generate point clouds representing objects
such as chairs, bathtubs, tables, etc.

In mesh generation, one of the popular approaches is mesh reconstruction from
a point cloud. The Atlas-Net model [6] takes a paper-mâiche—based approach to
reconstructing a mesh from a point cloud; it generates an atlas 2D mesh parameter-
ization for each input point cloud and then "wraps" the point cloud with the mesh
parameterization to form a 3D object. This process, however, is prone to creating
invalid non-manifold meshes which cannot exist in the real world. The Point2Mesh
paper [7] uses an optimization process to reconstructing a surface mesh from a point
cloud to circumvent non-manifoldness. However, this process can take as much as
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three hours to generate meshes from higher resolution point clouds. Another pop-
ular approach to mesh generation is to compose a mesh out of smaller manifold
meshes, thus guaranteeing manifoldness. The authors of StructureNet [8] follow
this approach with a hierarchical composition procedure. However, StructureNet-
generated objects can suffer from lack of physical feasibility; some of the objects
generated by StructureNet either lack parts or have multiple parts occupying the
same space.

ShapeAssembly [9] uses a hierarchical composition approach akin to that of Struc-
tureNet but avoids the problems with object feasibility by modifying the object rep-
resentation which the model learns to generate. Any composite object can be repre-
sented as the product of a series of operations which create and assemble its parts.
Moreover, it’s possible to determine if an object is physically feasible by determining
if the operations used to assemble it are physically feasible. For example, to assemble
an object containing overlapping parts, one must have placed a new part inside of
an already existing part, which is a physically impossible operation. Following from
this logic, the authors of ShapeAssembly construct a domain specific language only
defining physically feasible assembly operations. The ShapeAssembly deep genera-
tive model is trained to create objects represented as executable programs composed
of these physically feasible operations, and thus the objects it generates are always
feasible.

While these programs are always physically feasible, ShapeAssembly programs
lack guarantees of functionality. For example, a bookshelf that cannot fit any books
is not a functional bookshelf. A desk that is tilted to the left is non-functional as
things that are placed on it will fall off.

Considering the functionality of all kinds of objects is a very difficult task as
different objects function in different ways, so I limit my work to the domain of
chairs and their functionality, such as those in Figure 1.1. I specifically address two
aspects of chair functionality: person-independent functionality and person-specific
functionality. Some chairs generated by the ShapeAssembly generative model are
not able to stand on their own and are not functional independent regardless of
their ability to be used by people. This occurs because either the chairs’ parts are
disconnected or because the chair itself is physically unstable. As well, some chairs
generated by the ShapeAssembly model are not functional as an object in which
to sit, as it would be impossible or extremely uncomfortable to sit in them. This
happens when their geometry is such that even in the most comfortable pose, a
person’s body would not be supported by the chair.

In this thesis, I define specific metrics of person-independent and person-specific
functionality. I then derive differentiable loss functions over the chair based on these
metrics that will increase the functionality of chairs generated by the ShapeAssem-
bly variational auto-encoder. In each section, I detail the results of training the Sha-
peAssembly variational auto-encoder with each loss metric I’ve defined and com-
pare the functionality of the chairs it produces to that of the ShapeAssembly dataset.
I show that these aspects of functionality can be quantified with numerical metrics,
and I find that the loss metrics I create increase the functionality of these chairs.
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Chapter 2

Background

As described in the introduction, ShapeAssembly is a domain specific language that
defines executable programs that assemble a given object. As well as defining the
ShapeAssembly domain specific language, the ShapeAssembly paper also details
the model used to generate ShapeAssembly programs and its architecture. Here I
will outline the information about the domain specific language and the generative
model that is relevant to this thesis. For any other information not covered in this
outline, one should consult the ShapeAssembly paper [9].

2.1 The ShapeAssembly Operation Structure

A object can be described as one or more programs in ShapeAssembly. These pro-
grams will have a hierarchical structure. Each ShapeAssembly program contains 4
different blocks of instructions: BBlock, CBlock, ABlock, and SBlock. BBlocks define
the invisible bounding box over the entire object to which cuboids can be attached,
CBlocks define cuboid parts that form the chair, ABlocks yield attachment protocols
between cuboids/bounding boxes, and SBlocks yield symmetries within each ob-
ject. In order to allow for hierarchy within each program, the cuboid parts defined
in a CBlock need not be single cuboids; they can themselves be sub-programs.

ShapeAssembly defines specific functions within these blocks. Each program
can be defined with the following operations: Cuboid, attach, squeeze, reflect, and
translate. "Cuboid" is called within a BBlock or a CBlock and defines a new cuboid.
Its arguments are its dimensions and a flag determining if it is aligned with its par-
ent bounding box. "attach" is called within an ABlock and attaches its first cuboid
argument to its second cuboid argument at the point on each cuboid given in the
arguments. "squeeze" is also called within an ABlock and attaches the first cuboid
argument between the second and third cuboid arguments at a face coordinate po-
sition specified in the arguments. The "translate" call is used within an SBlock and
creates a translational symmetry group starting at the first argument and produc-
ing n more cuboids along the a axis that ends d distance away where n, a, and d
are arguments to the function. The "reflect" call reflects the argument cuboid over
the axis of the bounding volume defined in the arguments. Figure 2.1 displays a
ShapeAssembly Program and its output.

2.2 The ShapeAssembly Generative Model

The ShapeAssembly paper also outlines a generative model for ShapeAssembly chair
programs, a variational auto-encoder. Given a ShapeAssembly chair program, the
auto-encoder can encode it into a vector in a latent space and then decode it back
into the original chair program. From this, it is possible to generate a random vector
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FIGURE 2.1: A figure of a ShapeAssembly program and its chair rep-
resentation taken from the ShapeAssembly paper [9]. One can see
that the subprograms "Base" and "Back" act as cuboids within the
"Chair" program.

in the latent space and decode it into a new unseen chair, as can be seen in Figure
2.2.

FIGURE 2.2: An example of a vector generated from a unit normal
distribution and its decoded chair form.

The encoder first encodes an input program into a vector in the unit normal latent
space using a Gated Recurrent Unit (GRU) and a random sampler. This vector is then
decoded back into the program using the decoder. The decoder also uses a GRU
network and decodes the vector into multiple 63-dimensional vectors where each
vector contains the information to construct a command in the decoded program.
Different slices of this vector are related to different commands; for example, the first
7 entries of the vector represent the probabilities that this command will be a given
command type. The architecture of the ShapeAssembly variational auto-encoder
can be seen in Figure 2.3.

It is important to note that the loss metrics used to train the auto-encoder in the
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FIGURE 2.3: A figure of the ShapeAssembly variational auto-encoder
taken from the ShapeAssembly paper [9].

ShapeAssembly paper are only supervised losses. These losses consist of the com-
mand loss, the cube parameter loss, the xyz parameter loss, the uv parameter loss,
the symmetry parameter loss, the cuboid loss, the symmetry cuboid loss, the squeeze
cuboid loss, the leaf loss, the bounding box loss, the axis loss, the face loss, the align-
ment loss, and the KL loss. The command loss trains the model to predict the correct
command. The cuboid, symmetry cuboid, and squeeze cuboid, cube parameter, xyz
parameter, uv parameter, symmetry parameter, axis, face, and alignment losses train
the model to input the correct parameters in the various commands. The leaf and
bounding box losses train the model to predict if a cuboid is a leaf or a bounding
box. The KL loss is the Kullback–Leibler divergence metric and shapes the latent
space of the encoder to be a unit normal distribution. It is also important to note that
when the ShapeAssembly decoder decodes a latent space vector into a program, it
will only decode semantically valid programs. During program generation time, if
the program being built from the decoding becomes invalid, the decoder will stop
building that program and begin a new program from a different random latent
space vector.
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Chapter 3

Enforcing Part Connectivity

3.1 Motivation

Concretely, connectivity within a chair can be described with graph terminology. If
one considers the parts of a chair as nodes and the physical connections between
parts as edges, a disconnected chair is a chair such that it would not be possible
to traverse from each node to every other node in the graph. It is evident that a
disconnected chair would be impossible to sit in as it could be easily separated into
multiple pieces which have no connections holding them together. Such a chair is
not functional independent of its purpose as a chair, as it cannot exist as a composite
object. It would simply fall apart.

As described before, ShapeAssembly program representations allow for sub-
programs to act as cuboids within their parent programs. When a sub-program is
defined within a program, its bounding box acts as a cuboid within the parent pro-
gram. Thus the bounding box of the sub-program satisfies ShapeAssembly’s attach-
ment requirements. The actual cuboids within the sub-program, however, are not
required to attach to the points at which the bounding box is attached. This results
in cuboids within a sub-program that might not be attached to any cuboids within
the parent program. Only cuboids act as physical pieces of the chair, as the bounding
boxes only exist to define a space in which cuboids can exist. Thus, if cuboids within
a sub-program are not attached to cuboids within the parent program, the chair is
disconnected.

While all of the chairs in the ShapeAssembly dataset are connected, this does
not guarantee that the chairs produced by the ShapeAssembly generative model
are also connected. Figure 3.1 displays disconnected chairs that are generated by a
ShapeAssembly-trained generative model. The goal of this section is to determine
if it is possible to use a unsupervised loss to increase the connectivity of the chairs
outputted by the generative model.

FIGURE 3.1: Chairs generated by the model that have disconnected
parts
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3.2 The Metric of Connectivity

The first challenge in increasing the connectivity of the generative model is to de-
termine how to gauge connectivity. Computers cannot directly "look" at an object
to spot gaps the way humans can. Two cuboids in a ShapeAssembly object are con-
nected if they overlap at one or more points. While there exist algorithms to deter-
mine the intersections between convex polyhedra, I chose to implement a random
point-sampling method to determine connectivity as it is very efficient.

3.2.1 The Sampling Algorithm

For each chair, I sample a fixed number of points, S. I determined empirically that
sampling the cuboids evenly rather than by volume achieved the best results. So for
each cuboid, I sample Ni =

S
N points where N is the number of cuboids in the chair.

I chose S = 20000, a number of samples that allows for accurate connectivity calcu-
lations without being too computationally expensive. I also determined empirically
that sampling the surface of each cuboid achieved better results than sampling the
volume of each cuboid. As each cuboid has 6 faces, and each rectangle face is com-
posed of two triangles, each cuboid is defined by 12 triangles. I divide the samples
for one cuboid to be roughly even amongst all 12 triangles.

3.2.2 Two-Cuboid Connectivity

Given cuboid A and cuboid B, the connectivity between A and B is defined as fol-
lows. Let Sa and Sb denote the sets of point samples from cuboid A and cuboid B
respectively, and let dH(X, Y) be the Hausdorff distance metric between subsets X
and Y of some metric space:

conn(A, B) = dH(Sa, Sb) ≤ αconn (3.1)

Because this sampling procedure is random, I must define a minimum distance
below which two cuboids are defined as connected, αconn. I assign αconn to be 0.02
as determined by examining training data. For each chair in the training data, I
determined what the maximum value for the connectivity threshold could be that
would still define this chair as connected. The point sampling is random and the
training data is not perfect, so picking the value for the threshold that classifies all
chairs in the dataset as connected would not allow for a strong metric of connectivity.
As can be seen in Figure 3.2, I chose a threshold such that most of the data would be
classified as connected but increasing it would not yield much higher connectivity.

3.2.3 Chair Connectivity

To determine the connectivity of a chair, I first calculate the connectivity graph be-
tween cuboids in the chair. I then use a depth first search protocol to calculate the
connected components of cuboids within each chair. If there is a single connected
component, the chair is connected. Otherwise, the chair is disconnected.

3.3 The Loss Function

With the connectivity metric defined, it is now possible to design a differentiable
loss metric to improve connectivity. If a chair is connected, then it has a single com-
ponent and its loss is zero. If a chair is not connected, then it must have multiple
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FIGURE 3.2: The graph of how many chairs in the dataset are consid-
ered connected based on the connectivity threshold

components. Whichever component contains the most cuboids is designated as the
main component cm. The loss for each other component cj is calculated as follows.
Let L represent the standard method of computing the length of a vector between
two points in Euclidean space. For each sample sj in component cj,

distcm(sj) = minsm∈cm L(sj, sm) (3.2)

This is simply the minimum distance between point sj and all point samples in
the main component cm. Once the distance from sj and cm is calculated for every sj
in cj, the distances are then sorted. The loss for cj is then calculated as follows.

loss(cj) = ∑
j<αlimit∗Nj

(distcm(sj)− αconn) (3.3)

Nj is the number of point samples in the component cj, and αlimit is a hyperpa-
rameter for the number of point samples in cj to penalize, which is defined to be
0.02. It was empirically determined that penalizing all the points in the component
would cause a "clumping" behavior in which cuboids would converge to a point so
that each point on the cuboid would be minimally close to the main component. The
total connectivity loss over the chair is calculated as

lossconn = ∑
cj 6=cm

loss(cj) (3.4)

3.4 The Results

To test this loss metric, I begin with the ShapeAssembly variational auto-encoder
pre-trained with only supervised losses on the entire dataset for 120 epochs. I trained
this model for 200 epochs with the connectivity loss and generated 100 chairs every
25 epochs. As can be seen in Figure 3.3, the pre-trained model achieves a connec-
tivity of approximately 72%, and through training with the connectivity loss metric,
the connectivity increases to around 95%, superseding the connectivity of the train-
ing set of 92%. Table 3.1 shows how the chairs produced by the generative model
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have qualitatively changed over the course of training, displaying the decoding of
the same vector before and after training.

FIGURE 3.3: The results of training with the connectivity loss metric

Before Connectivity Loss Training After Connectivity Loss Training

TABLE 3.1: A random latent vector decoded into a chair with the
pre-trained model and with the connectivity loss trained model af-
ter 125 epochs. The chair from the pre-trained model is disconnected,
whereas the chair from the connectivity loss trained model is not. The
left column is the chair decoded by the pre-trained model from two
different views, and the right column is the chair decoded by the con-
nectivity loss trained model from the same two views.
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Chapter 4

Enforcing Chair Stability

4.1 Motivation

When limiting one’s consideration to stationary chairs that do not move in any man-
ner, unlike a rocking chair or a wheelchair, it is possible to define a specific notion of
stability. A chair is stable if it can maintain one fixed position on the ground when
placed on its base. It follows that the part of the chair that determines its stability is
its base, which can be generally defined as the parts of the chair that touch the floor
(or should touch the floor) when a chair is placed.

There are physical requirements on the base of a chair in order for it to be stable.
The whole base must be able to touch the ground at one time, which means the base
should be entirely co-planar. Moreover, the chair must be such that when placed on
its base, its center of mass lies above the base. Without this restraint, the chair would
topple over when placed on the ground. A chair that does not satisfy these con-
straints cannot stand stationary and does not function as a stationary object, which
is a general expectation of chairs.

The ShapeAssembly generative model does not impose these requirements on
the chairs it generates, which leads to some of the produced chairs being unstable.
Figure 4.1 displays two chairs produced by the model that would not be stable if
placed on the ground. The goal of this section is to determine if it is possible to use an
unsupervised loss to increase the stability of the chairs outputted by the generative
model.

FIGURE 4.1: Chairs generated by the model that are unstable. The
chair on the right is also disconnected as well.

4.2 The Metric of Stability

As previously stated, the base of a chair is a determining factor of its stability. Sha-
peAssembly chair programs, however, have no indication of which cuboids in a
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chair constitute its base. Thus in order to determine if the chair’s base allows it to be
stable, it must first be determined which parts of the chair constitute its base.

4.2.1 Determining the Base

The method of discerning the base used here was calculated heuristically. Consider
the convex hull of a stable chair. In a perfect chair, the surface defined by the base
should exactly line up with some co-planar faces of the convex hull. Here I assume
that even in an unstable chair with base that is not co-planar, it’s possible to assume
that some of the points on the convex hull of the chair are part of the base and would
make a stable base if co-planar. Therefore, I can restrict the search for the faces that
make up the base to those of the convex hull of the chair. Figure 4.2 shows a chair,
its convex hull, and its base.

FIGURE 4.2: The figure on the right is the convex hull of the chair in
the left figure. The base of the chair is highlighted in a darker red.

At this point, I want to filter out some faces of the convex hull that I believe
are unlikely to be a part of the base. The faces of the base of each the chairs in the
ShapeAssembly chair program dataset should be on the ground and should face
the ground. It was empirically determined that most chairs generated by the model
trained on this dataset are approximately the same: their bases have faces that are
generally toward the bottom of the chair and face the ground. From this I can filter
out faces that I believe would not be in the base. Let min and max be the minimum
and maximum y-coordinate points on the chair, respectively. Consider the face f in
the convex hull of the chair and let v be its points and ny be the y-component of its
outward-facing normal.

criterion1( f ) =
⋂
v∈ f

(vy −min < k · (max−min))

criterion2( f ) = ny < θ

is_candidate( f ) = criterion1( f ) ∩ criterion2( f )

(4.1)

The boolean flags criterion1 and criterion2 are true for a face if it satisfies the crite-
ria described before. In this equation k and θ are hyperparameters which allows for
more rigid or more lenient filtering of candidate faces of the base. It was empirically
determined that k = 0.5 and θ =

√
2

2 allow for the best candidate faces.
From the remaining candidate faces, it was empirically determined that the best

way to discern which faces are a part of the base is to measure the angle between
each face and the largest remaining face. Let nL be the largest face’s normal, let 〈x, y〉
denote the Euclidian inner product of x and y, and let f be an arbitrary candidate
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face.
is_base( f ) =

〈
n f , nL

〉
< φ (4.2)

In this equation, φ is a hyperparameter which allows for more rigid or more
lenient filtering of faces in the base. It was empirically determined that φ = .9 allows
for the best base-faces. It follows that from the faces of the base, it is possible to
determine which points of the chair constitute the base. Figure 4.3 displays the result
of this process with each red area representing the base of the chair above it.

FIGURE 4.3: Chairs and their bases as determined by the heuristic

4.2.2 Flat Base Stability

I now know which points are in the base, but do not know how the base will lie
on the ground. In order to know this, I need to know how to rotate the chair such
that the plane that the base lies in is parallel with the negative y-direction. As the
points determined to be in the base might not be co-planar, however, I first must find
the plane that best fits these points. I use least squares regression to determine the
equation for the plane that best fits the points in the base. I then construct a rotation
matrix that will rotate this plane to the negative y-plane. Doing this will essentially
rotate all the points in the chair such that the base plane is parallel to the negative
y-plane.

Once the base has been rotated, it is possible to determine if the base is appropri-
ately flat. Realistically, it’s impossible to require that all points on the base be exactly
co-planar as the points are able to span the entire field of real numbers, so a base is
considered co-planar if it is approximately flat. Let V be the vertices of the base.

is_flat =
⋂

v∈V

(vy −miny(V) < αbase) (4.3)

αbase is the amount of deviation allowed from the base. Because this process is heuris-
tically based, and because the chairs in the dataset are not perfect, picking a base
deviation threshold of zero would classify almost all of the chairs in the training
dataset as unstable, which should not be the case. As can be seen in Figure 4.4, I
chose a base deviation threshold such that most of the data would be classified as
having a co-planar base but increasing it would not yield much a higher proportion.
The value of αbase used is 0.03.

4.2.3 Topple Stability

The second component of stability is discerning if the chair will topple when placed
on its base. When the chair has been placed on the ground, it will topple if its center
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FIGURE 4.4: The graph of how many chairs in the dataset are consid-
ered to have co-planar bases based on the base deviation threshold

of mass does not lie over the 2-dimensional convex hull of its base. Using the pre-
viously calculated rotation matrix, it’s possible to rotate the entire chair in the same
way that the base was rotated.

As stated before, the center of mass must lie above the convex hull of the base.
How far above the convex hull the center of mass lies is not important, so it is
not necessary to consider the y-component of the convex hull of the base or the
y-component of the center of mass. Thus, I project the convex hull of the base and
the center of mass of the chair onto the xz-plane and treat the convex hull as a two-
dimensional convex hull. Let s be the signed distance of the projected center of mass
projected from the projected convex hull of the base. The chair is topple stable and
the boolean flag is_topple_stable is true if and only if s < 0.

The chair is stable if is_flat is true and is_topple_stable is true.

4.3 The Loss Function

With the metric of stability determined, it is now possible to construct a differen-
tiable loss function to improve stability. If a chair has a flat base, then its flat-base
loss is zero. If a chair does not have a flat base, the loss is as follows. Let V be the
vertices of the base.

lossflat = ∑
v∈V

max(vy −miny(V)− αbase, 0) (4.4)

If the chair will not topple when placed, then its topple loss is zero. If it will
topple when placed, then the loss is as follows. losstopple is s as defined in Section
4.23, which is the signed distance of the projected center of mass from the projected
convex hull of the base.

The total stability loss of the chair is calculated as

lossstab = lossflat + losstopple (4.5)
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4.4 The Results

To test this loss metric, I begin with the ShapeAssembly variational auto-encoder
pre-trained with only supervised losses on the entire dataset for 120 epochs. I trained
this model for 200 epochs with the stability loss and the connectivity loss and gen-
erated 100 chairs every 25 epochs. When testing this model with the stability loss
but without the connectivity loss, the model would sometimes learn to produce se-
mantically invalid chairs which cannot be decoded. I believe this behavior might
have been due to the "base flatness" component of the loss, as the loss tends to "pull"
the legs that induce non-planarity away from the chair and must be balanced by the
connectivity loss which pulls them toward the chair.

As can be seen in Figure 4.5 below the pre-trained model achieves a stability of
approximately 72%. The model output hovers around this value until epoch 125, at
which it starts to increase. I believe this is because around epoch 125, the connec-
tivity is very high, and thus the connectivity loss will be lower. This could allow
the stability loss to more effectively train the model as the two losses might work
against each other when chair legs both float and are non-planar within the base.
Through training with the stability loss metric, the stability increases to around 90%,
roughly equal to the the stability of the training set. Table 4.1 shows how the chairs
produced by the generative model have qualitatively changed over the course of
training, displaying the decoding of the same vector before and after training.

FIGURE 4.5: The results of training with the stability loss metric
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Before Stability Loss Training After Stability Loss Training

TABLE 4.1: A random latent vector decoded into a chair with the
pre-trained model and with the stability loss trained model after 125
epochs. The chair from the pre-trained model is unstable as one of
the legs is in a bad position, whereas the chair from the stability loss
trained model has the leg in a more stable position. The left column is
the chair decoded by the pre-trained model from two different views,
and the right column is the chair decoded by the stability loss trained
model from the same two views.
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Chapter 5

Increasing Chair Comfort

5.1 Motivation

Beyond creating chairs that can function independent of human interaction, the gen-
erative model should be able to create chairs that function in regards to human-
related definitions of functionality. This leads to the next aspect of functionality:
comfort. As chair programs from the ShapeAssembly dataset are modeled after ex-
isting chairs, they should be generally comfortable. It is completely possible, how-
ever, for the chairs produced by the generative model to be uncomfortable. The
geometry of the chairs produced by the generative model need not fit a human body
or support comfortable poses. The motivation of this section is to discern if it is
possible to determine how comfortable a chair would be when sat in and create an
unsupervised loss function to increase the comfort of the chair.

5.2 The Metric of Comfort

It is not immediately obvious how to calculate the metric of comfort. Comfort is
subjective and depends on body proportions and preference. A person who likes
to lay down might find a reclining chair more comfortable than a person who likes
to sit up. A chair designed for people of average height might not support some-
one whose height drastically differs from the average. Moreover, one could sit in a
chair in infinitely many different poses, and some of these poses will inherently be
uncomfortable.

I propose that there is a general way to gauge a person’s basic comfort in a chair.
A comfortable chair should support certain areas of the body: the back and the
glutes. While it’s not possible to conclude that increasing the amount of contact
between the back/glutes and the chair will make someone more comfortable, if a
person sits in a chair and makes little-to-no contact to the chair with their back or
glutes then they will not be very comfortable. Thus the amount of contact between
the back/glutes and the chair can be used as a basic measurement of comfort. This
poses the question, how does one compute how much back/glutes-to-chair contact
a person might make with a chair? The answer is to use the pose that maximizes
this contact, denoted as the optimal pose. From this, it’s possible to define the next
objective: a method of determining this optimal pose given a human body.

5.2.1 The Human Body Model

Before defining the optimal pose algorithm, it’s necessary to first understand the
human body model used in this process. The model used in this project is the SMPL
model [10], a realistic 3D model of the human body that is based on skinning and
blend shapes learned from thousands of 3D body scans. Figure 5.1 displays many
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different SMPL models with different poses, shapes, and sexes. A SMPL model takes
as input a biological sex, body shape parameters, and pose parameters and outputs
a mesh with positions of various joints in the body. Ideally, I would derive a comfort
loss metric to work over all biological sexes and body shape parameters. But, as an
initial investigation, I started by fixing the sex and the body parameters.

FIGURE 5.1: A figure containing SMPL body models with various
sexes, poses, and body parameters taken directly from the SMPL pa-
per [10].

The SMPL model contains 25x3 pose parameters, one for global orientation, one
for body global translation, and 23 angle-axis vectors defining the rotation of the
body’s joints from a base pose. A real life human body has a restricted range of
rotation for all joints, but the SMPL model does not restrict rotation in any way.
Therefore, it is possible for a SMPL body model to take on a pose that is humanly
impossible. Thus the optimal pose algorithm must take into account invalid poses.

5.2.2 The Optimal Pose Algorithm

The approach used here is based on that of the paper "Resolving 3d human pose am-
biguities with 3d scene constraints" [11]. The authors use an optimization procedure
to settle a body model into a location in a scene based on an initial estimate derived
from an image. This algorithm follows a similar approach, however, it does not have
any sort of image or initial estimate of where the body will be. To compensate for
this lack of prior knowledge on where to place the body, I use a physics-based loss
component.

The goal of this algorithm is to initialize a body in a neutral sitting position over
a chair and then use an optimization process over different loss components to lower
the body into the chair into a physically valid and comfortable pose. The loss over
which the body’s pose is optimized consists of three components: the physics com-
ponent, the human body component, and the comfort component.

The Physics Component

The physics component is used to optimize the body model’s pose focuses on ap-
proximating a physical simulation. The first part of this component is the gravity
loss. As the body is instantiated over the chair, the gravity-based loss is used to
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lower it into the chair. However, it is not immediately obvious how to define this
loss. As the gradient of the gravitational loss should represent the force on the body,
the gravitational loss itself should represent the gravitational potential energy of the
body. However, penalizing just the center of mass of the body by its gravitational
potential energy will not encourage any change in body’s pose. On the other hand,
treating each vertex in the body as a small mass will cause bending in the body’s
bones. The solution is to penalize the joints of the body, as those are points around
which bones rotate. However, the joints are not evenly distributed throughout the
body, so areas with more joints will experience higher gravitational pull than areas
with less. To fix this, I weight each joint using a Voronoi diagram-based approach.
Let J be the joints of the body, let ji be an arbitrary joint, and let vol(ji) measure the
volume of the section of the body whose closest joint is ji.

w(ji) =
vol(ji)

∑j∈J vol(j)
(5.1)

With the joint weights, it is now possible to define the gravity loss. Let ymin be the
lowest y-coordinate of the chair.

lossgravity = ∑
j∈J

(jy − ymin) · w(j) (5.2)

The second part of the physics component is the penetration component, which
deals with the body penetrating the chair. This loss directly penalizes any vertex of
the body mesh for penetrating the chair as it is physically impossible to occupy the
same space as another object. In order to determine if a vertex is penetrating the
chair, it is only necessary to calculate the signed distance of the vertex over the chair.
It follows that the signed distance of a vertex over the chair is the minimum signed
distance of the vertex over all of the cuboids of the chair. Now it is possible to define
the penetration loss. Let V be the vertices of the body mesh, let sdC(v) denote the
signed distance of vertex v over chair C, and let |x| denote the absolute value of x.

losspen = ∑
v∈V
|min(sdC(v), 0)| (5.3)

The last part of the physics component is the self-penetration component. As the
body is a non-convex deformable mesh, it is possible for the body to intersect itself,
which is physically impossible. Thus there must be a loss component to prevent this
from occurring. The authors of "Resolving 3d human pose ambiguities with 3d scene
constraints" [11] also use a self-penetration loss function derived from the papers
"Maximizing Parallelism in the Construction of BVHs, Octrees, and K-d Trees" [12]
and "Capturing Hands in Action using Discriminative Salient Points and Physics
Simulation" [13], using a bounding volume hierarchy to efficiently calculate a loss
metric for body mesh self-intersection. I use this loss function as the self-penetration
loss, lossself-pen.

The physical loss component is calculated as a weighted sum over these three
loss parts.

lossphysical = αgravitylossgravity + αpenlosspen + αself-penlossself-pen (5.4)

The constants αgravity, αpen, αself-pen were determined empirically as αgravity = 20, αpen =
2.5, αself-pen = 10.



5.2. The Metric of Comfort 19

The Human Body Component

The human body component of the optimization loss is used to restrict the body
model’s poses to a smaller set of poses. As stated beforehand, the SMPL model does
not take into account human body constraints. Thus, the optimization procedure
must contain a loss component restricting the pose of the body model to only hu-
manly possible poses. Therefore, the first part of the human body component is the
invalid pose loss, which penalizes the body for being in humanly impossible poses.
This loss calculation is derived from the pose validity classification algorithm de-
tailed in "Pose-Conditioned Joint Angle Limits for 3D Human Pose Reconstruction"
[14]. Their formulation uses pose priors determined from a large dataset of human
body poses to determine if a given pose is humanly possible. Their algorithm is im-
plemented in MATLAB and takes as input the joints of the body and classifies a pose
as valid or invalid. The original algorithm takes as input the vectors representing the
major bones in the body. These bones can be seen in Figure 5.2.

FIGURE 5.2: A figure of the different bone vectors used to compute
pose validity. This image is taken directly from the paper "Pose-
Conditioned Joint Angle Limits for 3D Human Pose Reconstruction"
[14].

Each bone vector is then rotated from the global coordinate space to its local co-
ordinate space, which is the direction it points in relative to the direction in which
its parent bone vector points. Bone vectors that do not have parent bone vectors
are left in global coordinate space. Then, each bone vector is re-parameterized from
Cartesian coordinates (x, y, z) to 3D polar coordinates (φ, θ, r). The authors of this
algorithm, through extensive motion capture, were able to model the extent of hu-
man poses as binary functions of these polar coordinates. For each bone, its φ and
θ angles and the φ and θ angles of its parent bone (if it has a parent bone) are used
to determine if it is in a valid pose. The authors created a discrete grid of values for
each value of (φ, θ) coordinate where the value at each coordinate is zero if the pose
is invalid and one if the pose is valid. From this discrete binary classification grid, I
derived a discrete grid of values representing the signed distance from the boundary
between zero and one in the initial grid, where negative values represent having a
valid pose. An example of one bone’s binary classification grid and resulting signed
distance grid can be seen in Figure 5.3.
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FIGURE 5.3: The binary classification grid for a bone as derived by the
authors of "Pose-Conditioned Joint Angle Limits for 3D Human Pose
Reconstruction" [14], and the grid representing the signed distance
function of each coordinate from the boundary between values on
the binary classification grid. On the left figure blue represents zero
and red represents one. On the right figure, yellow represents higher
values whereas dark blue represents lower values.

For any angle pair (φ, θ) the value of that pair in grid G is defined as the bilinear
interpolation of that point on G. The angle pair is differentiable with respect to the
pose and the bilinear interpolation is differentiable with respect to the angle, so any
value computed is differentiable with respect to the pose. If a bone is invalid, then
bilinear interpolation using its angle pair (φ, θ) will yield a positive value. Opti-
mizing over this value will push the angle pair to have a lower value and eventually
have a negative value and thus a valid pose. Thus I define the loss over a single bone
to be the value of the bilinear interpolation function of the bone’s angle coordinates
over this grid if the value is positive, otherwise the loss is zero. The total invalid
pose loss lossinvalid is the sum of the loss of each bone vector.

The second part of the human body component is the symmetry loss. People
generally sit in chairs such that their bodies are laterally symmetrical. In order to
minimize the gravitational loss component, however, the optimization procedure
will cause the body model to bend and rotate such that it is not laterally symmetrical.
As described earlier, the SMPL model’s pose parameters contain 23x3 angle-axis
vectors defining the rotation of the body’s joints from a base pose. Each of these
joints can be split into one of two groups: the group of pair joints, and the group
of solo joints. For two pair joints to be laterally symmetric, their angle-axis vectors
must have the same x-values and opposite y and z-values. For a solo joint to be
laterally symmetric, its angle-axis vector must have 0 for y and z. For the other
two remaining pose parameters, the global orientation and the translation, lateral
symmetry means that the orientation should have no rotation along the y and z-
axes and the translation should have no component along the x-axis. From this, it is
possible to define the symmetry loss. Let A denote all angle-axis vectors, pa, pb be
the angle-axis vectors of two pair joints, let p be the angle-axis vector of a solo joint,
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and let v denote the vector (1, −1, −1).

losspair = ∑
pa,pa

∑
i∈x,y,z

|pa,i − pb,i · vi|

losssolo = ∑
p
(|py|+ |pz|)

losssym = losspair + losssolo + |ptransl,x|+ |porient,y|+ |porient,z|

(5.5)

The last part of the human body component is the neck and back loss. With
the imposition of a symmetry loss, the optimization procedure will compress the
neck and back of the human body model downwards by rotating the joints over
the x-axis in order to minimize gravitational loss. While these poses are humanly
possible, they are not particularly comfortable and will yield a non-optimal pose.
The solution to this is to penalize the deviation of the x-axis component of each neck
and back joint’s angle-axis vector. However, rather than penalize the deviation from
zero, I penalize the deviation from the initial value, as in this case it is not zero for
some of the back joints. Thus the back and neck loss, lossback+neck, is equal to the sum
of the absolute difference between the initial x-rotation of the neck and back joints,
and the current x-rotation of the neck and back joints.

losshuman = αinvalidlossinvalid + αsymlosssym + αback+necklossback+neck (5.6)

The constants αinvalid, αsym, αback+neck were determined empirically as αinvalid =
1, αsym = 2.5, αback+neck = 10.

The Comfort Component

The final component of the optimal pose algorithm is the comfort component. As
the primary objective of the optimization procedure is to find a pose that optimizes
back and glutes contact with the chair, this component, lossobjective is simply the a
function of the distance of vertices on the back and neck from the chair. Let V denote
all vertices on the back and glutes, and let sdC(v) denote the distance of a vertex v
from chair C.

lossobjective =
1
|V| ∑

v∈V
max(sdC(v)− αchair−thresh, 0) (5.7)

αchair−thresh is a hyperparameter denoting the distance at which a vertex is close
enough to the chair to be in contact and is set as αchair−thresh = 0.001

5.2.3 Initial Parameters and Hyperparameters

The initial parameters and hyperparameters used in this algorithm were determined
empirically. The initial global orientation for the SMPL model used is (−.75, 0, 0).
The optimal initial translation is a function of the maximum and minimum dimen-
sions of the chair, set as (0, maxy + 0.2, 0.5minz + 0.5maxz). The initial pose as well
as the sex and body shape parameters were determined by finding motion capture
data from a man in a sitting pose from the AMASS dataset [15], and can be seen in
Figure 5.4. The learning rate used here is 0.001, and the number of iterations used is
300.



22 Chapter 5. Increasing Chair Comfort

FIGURE 5.4: The body model in its initial pose.

5.2.4 The Results

In order to determine if the comfort loss would act as a valid metric over the chairs, I
first sought to determine the distribution of comfort loss values over the chairs in the
ShapeAssembly dataset. The following figure represents this distribution, where the
height of each bar represents the percentage of chairs in the dataset that lie within
that bar’s lower and higher limits.

FIGURE 5.5: The normalized distribution of comfort loss values of the
chairs in the dataset

The comfort loss follows a normal distribution, as can be shown in Figure 5.5.
I qualitatively determined whether the simulation process properly sat the body
model into the chair such that the back and glutes touched the chair if possible. In
most chairs in which a person could sit "normally", the body model’s final position
is a normal sitting position. However, the body model does occasionally finish in
a non-optimal position. Table 5.1 displays the body model in its optimal pose for
multiple chairs, and Table 5.2 displays the optimized body model in the same chair
with different loss components removed from the optimization process.
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Low Loss Optimal
Pose

High Loss Optimal
Pose

Failed Optimal Pose

TABLE 5.1: Some results of the optimal pose algorithm over different
chairs. On the left is a chair in which the body settles into an opti-
mal pose with a low loss. In the middle is a chair in which the body
settles into an optimal pose with a high loss. On the right is a chair
in which the body does not settle into an optimal pose, as the glutes
could touch the chair, but do not.

Full Optimization No Symmetry Loss No Human Body
Component

TABLE 5.2: Resulting poses of the optimal pose algorithm over the
same chair with certain loss components removed. On the left is the
optimization with all loss components. In the middle is the optimiza-
tion without the symmetry loss. On the right is the optimization with-
out the human body component.

5.3 The Loss Function

Once the optimal sitting position has been determined, the comfort loss is simply
equal to the comfort component loss. However, the derivation of the optimal sitting
position is computationally expensive and takes upwards of a minute for each chair.
Training a full neural network with such a loss function would take an extremely
long time, so for this reason I replace this loss with a loss proxy.

5.3.1 The Loss Proxy

The loss proxy is itself a neural network that takes as input a chair and outputs the
comfort loss value of that chair. As a neural network is just a function, the proxy
will be differentiable. As it is a differentiable function, it can then be used to provide
gradients to descend the comfort loss when training the generative model. What is
not immediately obvious, however, is how to turn a ShapeAssembly chair program
into a differentiable input for a loss proxy.

I determined that I could take a 3D grid of samples over the signed distance
function of the chair to use as the input, which I could operate on with a 3D convo-
lutional neural network. The signed distance function of the chair is sampled over
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its bounding box at intervals to provide a N × N × N grid, where N is the resolu-
tion of the sampling. The optimal value for N was empirically determined to be 64.
Figure 5.6 displays a chair and a version of its sampled grid modified to allow one
to see the sdf over the chair.

FIGURE 5.6: The figure on the left is the chair in a mesh representa-
tion, and the figure on the right is the chair in its grid representation.
Each point in the grid representation is a point at which the signed
distance function of the chair is sampled. Note that grid on the right
is not the full grid used as input, it only contains samples that are
inside the chair in order to help visualize the sdf within the chair.

The label for each chair is the comfort loss value determined through the optimal
pose algorithm.

In order to train the proxy model it was necessary to derive a loss value for the
loss proxy. I initially considered setting the loss to be the direct difference between
the value the loss proxy predicts and the actual comfort loss value of the chair. How-
ever, this did not work as the model’s outputs would collapse to the mean value of
the training set.

I instead used a contrastive training paradigm. Contrastive training does not
focus on the absolute accuracy of the model’s predictions, but rather the comparative
accuracy of the model’s predictions. Given two chairs, the model should be able
to differentiate which chair has a higher comfort loss value. Let l0 and l1 be the
model’s predictions for chair 1 and chair 2, respectively. Note that l0 and l1 can be
any real value, they need not be probabilities that sum to one. Also let c0 and c1 be
the true comfort loss values for chair 1 and chair 2, respectively. Let σ be the sigmoid
function.

Algorithm 1 Loss function

if c0 > c1 then
loss = − log(σ(l0))− log(1− σ(l1))

else
loss = − log(1− σ(l0))− log(σ(l1))

end if

A model that achieves perfect contrastive accuracy would be able to differentiate
between a chair that produces a higher loss and a chair that produces a lower loss,
and would therefore be able to provide a gradient over a chair’s parameters to lower
its comfort loss.



5.4. The Results 25

5.4 The Results

To test the efficacy of the comfort loss proxy, I first trained the generative model,
starting with the pre-trained model trained for 120 epochs. I sampled chairs from the
pre-trained model and compared them with chairs generated by the model trained
with the comfort loss proxy, and plotted their comfort loss distributions following
the same procedure. In Figure 5.7 is possible to see that the comfort loss significantly
shifts the distribution of comfort loss in the chairs generated by the model. Table 5.3
shows how the chairs produced by the generative model have qualitatively changed
over the course of training, displaying the decoding of the same vector before and
after training.

FIGURE 5.7: The normalized distribution of comfort loss values of the
chairs generated by the pre-trained and comfort loss trained models.
The x-axis is the comfort loss, and the y-axis is the proportion of chairs
within each bin.

Before Comfort Loss Training After Comfort Loss Training

TABLE 5.3: A random latent vector decoded into a chair with the
pre-trained model and with the comfort loss trained model after 125
epochs. The chair from the pre-trained model has a comfort loss
above 500, whereas the chair from the comfort loss trained model has
a comfort loss below 500. The left figure is the chair decoded by the
pre-trained model, and the right figure is the chair decoded by the
comfort loss trained model.



26

Chapter 6

Conclusion

This paper investigated methods to improve the functionality of chairs generated
by the ShapeAssembly generative model. The specific facets of functionality which
I attempted to improve centered around person-independent and person-specific
notions of functionality. As the metrics of functionality defined in this paper were
unsupervised, the model was evaluated by comparing its performance on these met-
rics compared to that of the ShapeAssembly dataset.

6.1 Limitations

The connectivity metric and the comfort metric rely on the ability to calculate the
signed distance of points from a given chair. This works particularly well with Sha-
peAssembly chairs, as the chair is assembled of cuboids which are convex and only
have six faces each. However the signed distance function might not be as useful for
a mesh that has many faces or is not easily separated into convex parts. One might
consider using a some other distance metric such as the Chamfer distance for such a
mesh.

The person-specific metric of functionality used in this paper does not extend
beyond chairs. Moreover, there currently does not exist any objective metric of the
functionality of an arbitrary object, as most objects are designed to function best un-
der specific conditions and on specific tasks. However, training a model to generate
a different class of object with person-specific functionality would only require one
to use a metric of functionality specific to that class of object.

6.2 Future Work

Much of the further work to be considered focuses on the generalizability of the
comfort metric and any person-specific metric of functionality over chairs. The cur-
rent loss proxy model is trained with fixed body shape parameters and gender, so it
is yet to be determined if the model could train such that it properly approximates
the comfort loss when taking these parameters as an additional input.

As well, it has yet to be determined how well the loss proxy extends to other loss
metrics. One such loss metric which might be useful to explore in the future would
be a pose-based loss metric, i.e. a metric that determines how well a chair fits a pose
based on the chair’s optimal pose. This loss proxy could then be used to train the
generative model to create chairs that fit a certain input pose.

Another possible extension of this research would be to modify the optimal pose
algorithm to work on any kind of chair mesh. It would likely be necessary as well to
modify the comfort loss model to operate on point clouds instead of grid samplings
of the signed distance function of the chair, as some chair meshes might have high
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resolution features which cannot be captured well with finite grid samplings. If the
loss proxy network is capable of training with these modifications, one could then
consider using the proxy model to train any kind of chair mesh generative model.
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