
From Natural Language to Long-Range Path Plans in

Outdoor Environments

Matthew Oliver Berg

Department of Computer Science

Brown University

Advisor

Stefanie Tellex, Ph.D.

Reader

George Konidaris, Ph.D.

In partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science

April 7, 2021

Acknowledgements

My research and thesis advisor, Professor Stefanie Tellex, has provided

invaluable guidance since I arrived at Brown. Stefanie, you have shaped

my growth as a student, researcher, and roboticist. I am deeply grateful for

your support.

My research advisor and thesis reader, Professor George Konidaris, has

been generous with his time and wisdom. George, you have pushed my

ideas in exciting directions and modeled how to write with elegance and

precision.

Stefanie and George, it has been a privilege to be your student.

Part of this thesis is collaborative work with Deniz Bayazit, Rebecca

Mathew, Ariel Rotter-Aboyoun, and co-advised by Professor Ellie Pavlick.

A project with Peter Huson inspired my work on long-range planning. To

all my collaborators and advisors: it has been a joy to work together.

My friends and mentors at Brown and home are always supportive of my

aspirations. Thank you for everything you have shared with me.

Last, to my family: Mom, Dad, and Henry, your love and support make

this life special. Thank you for being the source of so many wonderful

blessings.

i

Abstract

As robots begin to operate in outdoor, large-scale environments, their

control interfaces may need to understand more complex human inputs.

This work presents language grounding and long-range planning systems

for a simulated aerial robot operating in large outdoor environments. The

language system generalizes to new environments without training and

the planning system leverages environmental abstractions and filtering to

compute plans in tractable time. Instructions such as “go to Boston and

go through the state forest on the way” are translated into structured logical

formulae and resolved to locations in the environment. Long-range goals

like “go to Boston” are processed alongside finer-grained constraints like “go

through the state forest on the way” by using a hierarchical representation of

the environment and semantic utterances in users’ language. Operation at

multiple levels of abstraction is central to the planning system’s tractable

performance in city and state-scale environments. The language system

demonstrates functional accuracy in an unseen environment and a user

study rates the system as high performance and low workload. The

planning system is evaluated on logical formulae specifying distances up

to 80 kilometers and demonstrates tractable performance while obeying

complex temporal goals and constraints. Both systems are tested on a

simulated aerial robot to validate their functionality.

ii

Contents

1 Introduction 1

2 Background and Related Work 3

2.1 Linear Temporal Logic . 3

2.2 Planning Components . 4

2.2.1 Deterministic Büchi Automaton 4

2.2.2 Markov Decision Process . 4

2.2.3 Labeled Markov Decision Process 4

2.2.4 Abstract Labeled Markov Decision Process 5

2.3 Related Work . 5

3 Grounding Language to Landmarks in Arbitrary Outdoor Environments 7

3.1 Introduction . 7

3.2 Overview of the Approach . 8

3.3 CopyNet . 9

3.4 Landmark Resolution Model . 11

3.4.1 Mapping Database . 11

3.4.2 Landmark Resolution Model . 11

3.5 Voronoi Maps and Planning . 13

3.6 Evaluation . 14

3.6.1 User Evaluation . 14

3.6.2 Component Evaluation . 15

3.6.2.1 CopyNet Evaluation . 15

3.6.2.2 Landmark Resolution Evaluation 16

3.6.3 Corpus-Based Evaluation . 17

iii

CONTENTS

4 Using Language to Generate State Abstractions for Long-Range Planning in

Outdoor Environments 19

4.1 Introduction . 19

4.2 Overview of the Approach . 21

4.3 Modeling an Outdoor Environment . 21

4.4 Map Generation . 23

4.5 Planning . 24

4.6 Semantic Filtering . 27

4.7 Language Resolution . 29

4.8 Evaluation . 30

4.8.1 Environment . 30

4.8.2 Long-Range Planning . 30

4.8.3 Planning with multiple semantic matches 36

4.8.4 Language Grounding . 37

4.8.5 Aerial robot in simulation . 37

5 Conclusions 38

References 39

Readers note: Chapters 1, 2, 4, and 5 were advised by Stefanie Tellex and George

Konidaris. Chapters 2 and 4 are currently under peer review and have been updated

since submission. Chapter 3 is joint work with Deniz Bayazit, Rebecca Mathew, and

Ariel Rotter-Aboyoun, was advised by Stefanie Tellex and Ellie Pavlick, and Sections

3.2-3.6 have appeared in conference proceedings (Berg et al., 2020).

iv

Chapter 1

Introduction

Outdoor environments are an important frontier for robotics. Autonomous robots

will drive on roads, deliver packages to doorsteps, survey construction sites, care for

farmland, and more. Continuing advancements in autonomous systems are making

these robots a reality, for example, farm robots, fixed-wing aerial robots, and quad-

copters are currently used in commercial operations (Padwick, 2020, Ackerman and

Koziol, 2019, Skydio, 2020).

Robots are developed to operate within a focused set of tasks. In turn, their input

interfaces are limited to application-specific functions and levels of control granularity.

However, as robots enter more challenging domains and perform increasingly sophis-

ticated tasks, humans may prefer richer input interfaces. Potential solutions that build

on existing interfaces, such as adding new functions or developing finer-grained con-

trol inputs coupled with training programs, could offer effective albeit shorter-term

remedies; over time, the capabilities of some robots’ autonomous systems will out-

pace the expressive power of existing interfaces.

Natural language is a highly expressive interface. From the user’s standpoint,

language interfaces can unlock new opportunities to collaborate with robots. The

challenge for the robot is parsing an unrestricted and ambiguous input into struc-

tured signals for its autonomous systems. For example, in the command “go to Boston

and go through the state forest on the way,” the robot must resolve “Boston” and the

1

“state forest” to locations in the environment. The robot must distill a temporal order-

ing—visit a “state forest”, then visit “Boston”—and compute a plan in tractable time.

These processes are technically feasible but computationally expensive. Expanding

to outdoor environments further increases computational cost because the robot must

understand a growing number of referring expressions and task constraints. As the

environment grows large, natural language control interfaces can become computa-

tionally intractable.

This work presents language grounding and long-range planning systems for use

in large outdoor environments. The language system translates natural language in-

structions into structured logical formulae and resolves unrestricted location referring

expressions to real-world landmarks. This system understands instructions in new

environments without further training. The planning system uses structured logical

formulae and resolved referring expressions to generate a temporally correct plan.

Planning performance is significantly accelerated by leveraging spatial abstractions in

mapping data and semantic utterances in users’ language. Both systems are tested on

a simulated aerial robot to validate their functionality. The language system is addi-

tionally tested on a quadcopter operating in a real outdoor environment. Aerial robots

are a compelling choice for initial work because they contend with fewer obstacles and

(in simulated environments) experience no hard constraints on navigable areas.

The following chapters are organized as follows: Chapter 2 discusses background

material and related work, Chapter 3 presents the language system, and Chapter 4

presents the environment representation and the planning system.

2

Chapter 2

Background and Related Work

This chapter introduces building blocks of the language and planning systems,

then discusses related work on route instructions, language grounding, and planning.

2.1 Linear Temporal Logic

Linear Temporal Logical (LTL) encodes goals and constraints in the language

command. LTL is a domain-independent formalism that supports temporal condi-

tions with an infinite time horizon. By extension, LTL is capable of capturing non-

Markovian goals and constraints. This work follows the syntax:

φ ::= α | ¬φ | φ ∧ ψ | φ ∨ ψ | Fφ | Gφ | φUψ

where α ∈ A is an atomic proposition, ¬,∧,∨ are logical negation, conjunction, and

disjunction, φ and ψ are LTL formulae, F denotes finally, G denotes globally, and U

denotes until. See Manna and Pnueli (1992) for semantic interpretations of LTL.

3

2.2 Planning Components

2.2 Planning Components

2.2.1 Deterministic Büchi Automaton

Every LTL formula has a corresponding deterministic Büchi automaton (DBA)

(Büchi, 1990). DBAs handle infinite sequences of states, such as those encoded by

LTL. In effect, DBAs provide a deterministic structure to non-Markovian goals and

constraints, allowing the planner to process a stream of state-action pairs and compute

whether or not the LTL formula has been satisfied. A DBA is defined by the tuple

B = (Q,Σ, δ, q0, F), where Q is the set of states, Σ is the alphabet, δ : Q × Σ → Q is

the transition function, q0 is the initial state, and F is the acceptance condition. In this

work, the DBA is treated as a DFA. The planner considers only finite trajectories that

satisfy the accepting condition.

2.2.2 Markov Decision Process

A Markov Decision Process (MDP) provides a model for sequential decision mak-

ing in stochastic environments. An MDP is defined by the tuple M = (S,A, γ, T,R),

where S is a set of states, A is a set of actions, γ is the discount factor, T : S ×A→ S is

the transition function, and R : S → R is the reward function. The robot seeks to find

a policy π : S → A that maximizes the sum of discounted rewards. An MDP contains

|A||S| policies and there exists at least one optimal policy π∗. The robot iteratively re-

fines its policy to π∗. Convergence is guaranteed because the space of policies is finite

and the robot iteratively improves its policy.

2.2.3 Labeled Markov Decision Process

A Labeled Markov Decision Process extends an MDP to consider atomic proposi-

tions of an LTL formula. A labeled MDP is defined by the tupleM = (S,A, T, s0, AP, L,R),

where S, A, T , and R are the standard MDP components, s0 is the initial state, AP is a

set of atomic propositions, and L : S → 2AP is a labeling function that maps states to

the atomic propositions they satisfy.

4

2.3 Related Work

2.2.4 Abstract Labeled Markov Decision Process

An Abstract Labeled Markov Decision Process (Oh et al., 2019) extends labeled

MDPs to abstract state spaces. An AL-MDP is defined by the tupleM i = (Si, Ai, T i, si0,

AP, Li, Ri), where i is the level of abstraction, Si, Ai, T i, si0, andRi are the labeled MDP

components in abstraction level i, Li : Si → 2AP is the labeling function, and AP is the

set of atomic propositions. Atomic propositions can be defined at varied levels of ab-

straction. The state si ∈ Si is assessed against atomic propositions at level i or higher.

An MDP M can be defined as the composition of AL-MDPs {M0, . . . ,M i, . . . ,M l},

where l denotes the highest level of abstraction. This construction supports fluid plan-

ning at different levels of abstraction.

2.3 Related Work

Route directions can be ambiguous and refer to an immense number of paths in

the environment. Lovelace et al. (1999) discuss a three-step model of generating route

directions: spatial knowledge, choice of route, and translating the route into spoken

instructions. The robot must reverse these steps in a way that satisfies the user’s intent

and is computationally tractable. There has been work on modeling large-scale spaces

for a robot (Kuipers, 2000) and following instructions in spaces containing a variety of

environment features (Matuszek et al., 2010b, Kollar et al., 2010, Tellex et al., 2011a).

Matuszek et al. (2010b) parse natural language route instructions into a formal path de-

scription language more easily interpreted by the robot’s planner. To ensure tractable

planning, they constrain the state-space of potential paths using actions that are avail-

able to the robot. Kollar et al. (2010) introduce the spatial description clause, a different

formalism that allows a robot to probabilistically reason about spatial relationships

in route directions. Their approach assumes route directions are given sequentially.

However, unrestricted natural language commands can present non-sequential and

non-Markovian goals and constraints.

The robot’s planner requires a grounded representation of the language com-

mand. Recent work has grounded natural language to linear temporal logic (LTL)

(Gopalan et al., 2018, Oh et al., 2019, Berg et al., 2020, Patel et al., 2020, Wang et al.,

5

2.3 Related Work

2020). LTL is a first-order logic capable of expressing non-Markovian goals and con-

straints. Importantly, every LTL formula has a corresponding deterministic automaton

(Büchi, 1990), which the planner follows to obey the task specification. Gopalan et al.

(2018) presents a sequence-to-sequence model (Sutskever et al., 2014) for grounding

natural language to a variant of LTL (Littman et al., 2017). While users are restricted

to location referring expressions seen during training, this work facilitates the devel-

opment of planning systems that obey non-Markovian language commands. The lan-

guage system introduced in Chapter 3 (Berg et al., 2020) handles unbounded location

references, allowing the robot to generalize to unseen outdoor environments. How-

ever, these environments are not defined at multiple levels of abstraction. Chapter 4

adapts location reference resolution to large outdoor environments defined at multiple

levels of abstraction. The environment map is searched for name-based matches (eg,

“Boston”) at higher levels of abstraction, and name and semantic-based matches (eg,

“state forests”) at the base level of abstraction.

Markov Decision Processes (MDPs) have been used for planning non-Markovian

tasks specified by natural language commands (Gopalan et al., 2018, Oh et al., 2019,

Berg et al., 2020, Patel et al., 2020). MDPs are a convenient choice for the planning prob-

lem because they are compatible with intermediate representations of the user’s lan-

guage command. However, MDPs struggle to tractably operate in large state spaces.

In this vein, Oh et al. (2019) introduces the Abstract-Product Markov Decision Process

(AP-MDP). AP-MDPs are a framework for planning non-Markovian tasks at differ-

ent levels of abstraction. Planning at multiple levels of abstraction offers considerable

reductions in computing time and the number of backups (Oh et al., 2019). The plan-

ning system (Chapter 4) is inspired by AP-MDPs but its formulation is modified and it

uses a different environment representation. In particular, the planning system uses A*

(Hart et al., 1968) to induce pruned, subtask-specific state spaces. Long-range planning

operates at a higher level of abstraction than the robot’s metric map, where retaining

the majority of the state space is critical. There is a rich body of work on hybrid rep-

resentations that combine low-level and high-level maps (Thrun, 1998, Poncela et al.,

2002, Kuipers et al., 2004, Kuric et al., 2017). This work focuses on higher-level non-

Markovian path planning, and assumes the robot contains lower-level autonomous

systems capable of responding to local obstacles and changes in the environment.

6

Chapter 3

Grounding Language to Landmarks in

Arbitrary Outdoor Environments

3.1 Introduction

Natural language can be temporally complex and contain unrestricted references.

Consider the command “go to the red bridge but first stop at CVS.” This command refer-

ences the “red bridge” before “CVS,” but specifies that CVS should be visited first. One

location is referenced by proper name (“CVS”) and the other by semantic descriptors

(“red bridge”). The robot must translate temporal objectives into a structured form,

resolve location referring expressions to real-world landmarks, and integrate this in-

formation to support lower-level operations such as planning. There has been work

on translating language to structured forms that assumes the robot can be trained on

its environment map (Tellex et al., 2011b, Artzi and Zettlemoyer, 2013, Paul et al., 2018,

Oh et al., 2019). However, as the robot enters large outdoor environments, it would

be computationally infeasible to pre-train on all possible locations and referring ex-

pressions. There is a need for a system that combines a neural model supporting the

globally consistent task—inferring temporal structure—with a lower-cost, generaliz-

able procedure for the location-dependent task—resolving location references to real-

world landmarks. Taken together, the system should allow the robot to understand

natural language commands in new outdoor environments without further training.

7

3.2 Overview of the Approach

Figure 3.1 Simulated Skydio R1 in Tulsa, Oklahoma. This map was not shown dur-
ing training and the end-to-end system succeeds at performing 76.19% of the tested
natural language commands in this environment.

This chapter presents a model that grounds natural language to Linear Temporal

Logic (LTL) and resolves unrestricted referring expressions to real-world landmarks.

The model understands temporally complex natural language instructions and gen-

eralizes to new environments without further training. By combining the language

model and an Abstract Product Markov Decision Process-based planning model (Oh

et al., 2019), we establish an end-to-end framework that takes natural language in-

structions as input and returns motion plans as output. The language model was

evaluated on a corpus of 1540 natural language instructions referring to locations in 22

cities. In addition, we used the end-to-end framework coupled with a simulated aerial

robot, shown in Figure 3.1, to conduct a user study. Last, we tested the framework

on a Skydio R1 quadcopter in a park near Brown’s campus. Our results demonstrate

functionality, successful generalization to new environments, and a high-performance,

low-workload user experience.

3.2 Overview of the Approach

Our system allows a person to command a drone with natural language in a

never-before-seen environment. The system can interpret natural language commands,

including references to nearby landmarks, with no training data for the environment.

A graphical representation of our system is shown in Figure 3.2.

The language model grounds natural language commands to LTL formulae. The

LTL structure is created by CopyNet (Gu et al., 2016), a Seq2Seq model capable of copy-

8

3.3 CopyNet

NL command input:
“Go to the

medicine store.”

CopyNet output:
F (lm(medicine

store)lm)

Landmark res-
olution output:

1. F (cvs)
2. F (

medical research lab)
...

LANGUAGE MODEL

Lookup table in OSM:
cvs := (lat, lon)

Voronoi map generationAP-MDP planner output:
[(lat, lon) ; ...]

PLANNING MODEL

Figure 3.2 End-to-End System Pipeline. Natural language is given to the language
model, which returns a grounded LTL formula. The planning model then creates a

motion plan which satisfies the LTL formula.

ing out of vocabulary (OOV) words. To ground natural language landmark referring

expressions to landmarks in a map unseen to the language model, we use a resolution

model that draws semantic information from a mapping database. The final output of

the language model is an LTL formula with natural language in the logical form, e.g.

F(CVS ∧ F(red bridge)).

The LTL formula is then passed to the planning model. The planning model uses

a map generated from OSM, partitioned into Voronoi cells (Voronoi, 1908). The par-

titioned map along with the LTL formula are supplied to the AP-MDP planner (Oh

et al., 2019). This planner extracts goals and constraints from the LTL formula to cre-

ate a motion plan as a series of latitude and longitude points.

3.3 CopyNet

To translate natural language commands into logical forms, current approaches

use a Seq2Seq model (Oh et al., 2019, Gopalan et al., 2018, Dong and Lapata, 2016).

Seq2Seq models learn how to translate input sequences into output sequences. How-

ever, existing Seq2Seq models learn a mapping from a fixed input language to a fixed

output language, and require all symbols in the output language to have appeared

at training time. In contrast, our language model generalizes to any region, and thus

needs the ability to understand words and commands the language model has not

9

3.3 CopyNet

been trained on. In particular, it is essential that we extract unseen landmark referring

expressions from the natural language command. For example, given the command

“go to the medicine store,” our model needs to correctly identify that “medicine store” is

the referring expression and the corresponding LTL formula would be F(medicine store).

We approach this challenge with CopyNet (Gu et al., 2016), which is developed for

cases when the output contains many subsequences from the input. CopyNet intro-

duces a copy-attention mechanism atop the traditional Seq2Seq framework (Bahdanau

et al., 2014). This copy mechanism is fundamental to our language model, allowing

for a more domain-general model even with a small training set.

When comparing CopyNet to a purely generative recurrent neural network with

the LCSTS dataset (Hu et al., 2015), Gu et al. demonstrates that CopyNet improves pro-

duction of readable output for out-of-vocabulary (OOV) words. We selected CopyNet

because it was accessible in multiple open-source implementations. We use Adam

Klezcweski’s implementation of CopyNet1 with the addition of pre-trained GloVe

embedding vectors (Pennington et al., 2014). We use mjc92’s dataset2 to validate

Klezcweski’s model.

To train our model, we use a corpus of 668 natural language navigation instruc-

tions collected by Oh et al. (2019). Each command has a corresponding LTL for-

mula, making this dataset well-suited for training a Seq2Seq model like CopyNet. We

augment the data by replacing goal locations with Brown campus landmark names

scraped from OSM. We then divide these landmarks into unique datasets containing

landmarks from north campus and south campus. In addition, we wrap references to

landmarks with lm(and)lm as shown in step two of Figure 3.2, simplifying extrac-

tion of landmark referring expressions for the landmark resolution model. Finally, we

limit the dataset to the following three LTL structures:

F(φ) | F(φ ∧ F(ψ)) | F(φ ∧ ¬ψ)

1https://github.com/adamklec/copynet
2https://github.com/mjc92/CopyNet

10

https://github.com/adamklec/copynet
https://github.com/mjc92/CopyNet

3.4 Landmark Resolution Model

3.4 Landmark Resolution Model

3.4.1 Mapping Database

A key focus of our framework is the language model that grounds language to

landmarks, as humans find landmarks important for navigation instructions, particu-

larly for unfamiliar environments (Lovelace et al., 1999). Landmarks are geographic

objects important to human spatial cognition (Richter and Winter, 2014). Following

previous work (Rousell et al., 2015, Drager and Koller, 2012) we use OSM as our land-

mark database.

OSM is a global open-source map where any user can add landmarks and infor-

mation about the landmarks. Critically, this information can be semantic in nature,

such as the type of cuisine for a restaurant or the function of a building. We leverage

OSM’s extensive semantic database as the foundation of our language model, enabling

groundings of semantic referring expressions to landmarks.

Two building blocks of the OSM database are nodes and ways. Nodes are points

with a latitude, longitude, and unique numerical ID. Nodes commonly represent land-

marks such as statues, benches, and trees. Ways are lists of nodes, commonly repre-

senting larger landmarks like buildings, roads, and greens. Closed ways have a poly-

gon geometry. Both nodes and ways can be tagged with key-value pairs about their

appearances, functions, or other semantic information.

3.4.2 Landmark Resolution Model

Given all the possible landmark candidates in the map, the model needs to re-

solve the user’s referring expression to the correct landmark. The landmark resolution

model finds the maximally probable candidate by calculating the similarities between

the referring expression and each landmark’s semantic information.

The landmark resolution model receives the CopyNet output of an LTL formula

with the user’s referring expression. While any arbitrary model could resolve this ex-

pression given textual descriptions, images, or robot sensor data, we present a model

11

3.4 Landmark Resolution Model

that uses word embeddings to resolve the user’s referring expression to the landmark

name.

The model uses the database’s semantic information about each landmark to find

the intended landmark. However, the user’s referring expression may not lexically

align with the landmark database. For example, we would expect “store” and “shop”

to have similar meaning, even if OSM’s data model only supports key:shop. To

resolve these lexical conflicts, we use word embeddings, which represent words or

phrases as vectors in a high-dimensional vector space (Pennington et al., 2014, Mikolov

et al., 2013, Bojanowski et al., 2016, Joulin et al., 2017, Grave et al., 2018). High-

dimensionality allows us to use cosine similarity (the cosine of the angle between

vectors) to compare semantic referring expressions.

A referring expression may fall into one or more of three possible categories:

name, address, and general description. An example of a command using more than

one category would be “fly to CVS pharmacy,” which includes name and description.

name: Our model exclusively uses the OSM key name.

address: Our model exclusively uses addr:house number and addr:street.

descriptions: Our model uses keys we observed to be semantically significant in nat-

ural language commands, such as amenity, shop, and leisure.

For each category we gather the key values into lists. Then, to handle multiple

categories of values, we create all possible combinations of these lists. For each com-

bination, we compute the average of their word vectors. We then calculate the cosine

distance between each of these averaged vectors and the phrase vector for the refer-

ring expression. Finally, we use the minimum cosine distance to identify the referred

landmark. We evaluate this approach against other models in Section 3.6.2.2. The co-

sine distance between two vectors is defined as the difference between one and their

cosine similarity.

12

3.5 Voronoi Maps and Planning

Figure 3.3 Map partitioned into Voronoi cells. White holes represent regions contain-
ing landmarks.

3.5 Voronoi Maps and Planning

We use the AP-MDP planner to convert grounded LTL formulae to high-level

motion plans, and leave lower-level motion planning to the drone’s autonomy system.

Oh et al. (2019) partitions a hard-coded map into a grid of flyable zones and target

landmarks. However, since other real-world geometries can be large and complex, a

more flexible approach to map partitioning is required.

Our approach uses Voronoi cells (Voronoi, 1908). We query OSM for landmarks in

a 300 meter radius square around a center point, creating holes for each way polygon

and five meter radius square holes around each node. Then, we randomly generate

points inside the solid region, which are used to partition the map into Voronoi cells

as shown in Figure 3.3. We have observed the Voronoi cells can enable faster planning

over large distances. When comparing our results in the predefined map by Oh et al.

(2019), Voronoi-based planning between two landmarks 48.28 meters apart ran in 37.08

± 6.43 seconds, whereas the grid-based approach ran in 90.49 ± 0.27 seconds (over

three runs). Further, the AP-MDP planner understands landmarks as a single latitude

and longitude coordinate, not a polygon. As such, we represent ways in the planner

by choosing one corner node as its representative point.

To align with limitations of both natural language and our framework, we filter

certain landmarks. Landmarks need to be named for the purposes of natural language

commands, so they must have a key:name. We exclude any landmark containing the

key highway, railway, place, boundary, or waterway, because it is difficult to

use a singular representative point for very large landmarks.

13

3.6 Evaluation

Percentage (%)

Speech-to-text errors 4.76
Incorrect grounding (Landmark Resolution) 2.38
Planner errors 4.76
Improper LTL (CopyNet) 11.90
Succeeded 76.19

Table 3.1: System performance accuracy for in-person user evaluation

Raw NASA-TLX (pts)

Performance 14.85± 05.38
Mental demand 03.50± 02.42
Physical demand 02.83± 04.49
Temporal demand 01.50± 01.50
Effort 03.40± 03.17
Frustration 05.50± 05.08

Table 3.2: Raw NASA-TLX scores on a 20 point scale

3.6 Evaluation

We test that our system accurately grounds natural language commands with ref-

erences to landmarks, without being trained on those landmarks. We conduct an

end-to-end user evaluation where participants give natural language commands to

the drone and observe the robot’s actions in simulation. In addition, we perform a

corpus-based evaluation on a diverse set of maps to test the limits of our framework.

Finally, we demonstrate the system acting in a real outdoor domain1.

3.6.1 User Evaluation

To test end-to-end performance on a map unseen to the language model during

training, we ran an in-person user evaluation with 14 voluntary student participants.

Each student gave three spoken natural language commands to our system and evalu-

ated the resulting behavior of a Skydio R1 drone in a simulated outdoor map of Tulsa,

Oklahoma.

The simulator is built in Unity (Unity Technologies), using outdoor environments

generated with the Mapbox SDK (Mapbox) (Figure 3.1). Using ROS and ROS# (Quigley

et al., 2009, Siemens, 2017), the simulator and planner communicate about the drone’s

1https://youtu.be/a-JGems7fzs

14

https://youtu.be/a-JGems7fzs

3.6 Evaluation

flight status and flight trajectories. The simulator allows the participant to view the

trajectory the drone takes given the participant’s natural language command.

As shown in Table 3.1, our model accurately grounds natural language commands

to LTL and formed correct motion plans for 76.19% of user commands. In this table,

we also break down failure cases. We observe challenges with two forms of natural

language commands: commands that include spatial language, such as “go to l1 near

l2”; or commands with verbs or unexpectedly long phrases that CopyNet has not been

sufficiently trained on. Spatial language phrases cause CopyNet to not copy enough

words, resulting in improper groundings or improper LTL structures. We hypothesize

that CopyNet failures are due to the limited use of spatial language in CopyNet’s

training dataset, and that a more representative training dataset would address these

problems. Also, planner errors were due to an indexing bug that we resolved post-

evaluation.

After using our system, users answered the NASA-TLX questionnaire to measure

workload on a scale of 0 to 20 (least to most) (Hart and Staveland, 1988). On average,

users reported high performance and low workload (Table 3.2). Additionally, we use

the Systems Usability Scale (SUS) (Brooke, 1996) to understand system ease of use. We

report a mean SUS score of 76.25 with standard deviation of 18.39, which is above the

average SUS score of 68 (Sauro, 2011).

3.6.2 Component Evaluation

We analyze the performance of individual components of our language pipeline

to understand failure modes and potential improvements to our end-to-end system.

3.6.2.1 CopyNet Evaluation

We trained two models to evaluate CopyNet. The first is trained on natural lan-

guage commands with a single landmark, the second on natural language commands

with two landmarks. We trained with a learning rate of 0.001 over 8 epochs for the

single landmark model and 15 epochs for the two landmark model. The models were

then evaluated against phrases with seen and unseen landmarks as shown in Table 3.3.

15

3.6 Evaluation

Number of Seen (%) 1 Seen, Unseen (%)
Landmarks 1 Unseen (%)

One 100.00± 0.00 N/A 74.50± 2.88
Two 99.48± 0.20 69.18± 2.52 53.49± 2.95

Table 3.3: CopyNet accuracy

Name Uniform tf-idf Our Model

Accuracy fastText 41.86 43.41 51.94 58.14
(%) Word2Vec 42.64 45.74 54.26 58.91

Glove840B 44.96 48.06 55.81 68.99

MRR fastText 47.72 61.73 49.15 66.84
(%) Word2Vec 51.22 63.51 54.38 68.97

Glove840B 51.39 65.22 54.38 76.35

Table 3.4: Landmark grounding accuracy and MRR results for different landmark res-
olution and word embedding models

For two landmark commands, we observe on average that CopyNet grounds 69.18%

of commands containing one unseen landmark and 53.49% of commands containing

two unseen landmarks to the correct LTL structure (Table 3.3). CopyNet errors are

principally attributed to not copying enough words from input to output.

3.6.2.2 Landmark Resolution Evaluation

We compare our landmark resolution model to other models, as shown in Table

3.4. We create the following baselines to evaluate the effectiveness of our landmark

resolution model. The Name model represents a landmark by just its name phrase

vector, an average of word embedding vectors for every word in its name. The Uni-

form model represents a landmark by assigning equal weight to every OSM semantic

feature (including the name of the landmark) and averages their phrase vectors. The

term frequency-inverse document frequency (tf-idf) (Sammut and Webb, 2010) model

weighs each semantic feature’s phrase vector with its tf-idf score, a metric to down-

weigh frequent or uninformative words by document, where each map is a document.

All models use minimum cosine distance to identify the referred landmark.

Landmark names often contain proper nouns, which may be OOV. We evaluate if

using morphological information (e.g. prefixes, suffixes, roots, etc.) helps the model

process OOV words by comparing fastText (Bojanowski et al., 2016, Grave et al., 2018),

16

3.6 Evaluation

which uses such information, to larger word embedding models like Word2Vec and

GloVe (Mikolov et al., 2013, Pennington et al., 2014).

We evaluate on 129 references collected from seven researchers in the Brown Uni-

versity Humans to Robots Lab. We showed each person OSM landmark information

from a single map and asked for different landmark referring expressions by type(s):

name, address, and description.

We define the grounding accuracy to be the percentage of landmarks returned

by our language model that matches the intended reference. We calculate grounding

accuracy and mean reciprocal rank (MRR) of every landmark resolution model and

word embedding combination. MRR is defined as the average of the reciprocal rank

scores across multiple queries. The reciprocal rank score of a query (a user’s semantic

reference) is the multiplicative inverse of the correct landmark’s ranking. For example,

if the landmark resolution model ranks the true landmark corresponding to a user’s

semantic reference as third-most likely, the reciprocal rank would be 1/3 (assuming

the list is three landmarks long). Table 3.4 shows that our landmark resolution model

performs best with GloVe, which we attribute to its large vocabulary.

3.6.3 Corpus-Based Evaluation

We test our language model’s ability to both identify the appropriate LTL struc-

ture and properly extract landmarks from unseen commands by collecting a test set

of challenging natural language commands from AMT. We collected commands for 22

urban American regions. (Table 3.5).

AMT workers viewed a screenshot of a region in OSM with an overlaid trajectory

(Figure 3.4). Trajectories allow us to ask AMT workers for natural language commands

without extensive language prompting. At the start of each task, AMT workers saw

an example map and related example commands. We further provided a detailed

task description to ensure AMT workers responded with high-level commands, not

low-level, action-oriented instructions. Every AMT worker was given semantic infor-

mation about each landmark to allow for flexibility in landmark referring expressions.

We provided Google search cards without the landmark’s address as to not bias the

17

3.6 Evaluation

Figure 3.4 AMT trajectory example. An OSM region with trajectory that corresponds
to F(lm(l1)lm ∧ F(lm(l2)lm))

AMT workers with OSM semantic data. We have published 1540 collected commands,

each formed by a unique AMT worker. Compensation was $0.50 per task.

City Name Number of Landmarks Accuracy (%)

Jacksonville #2 16 17.14
Boston 39 20.00
New York #1 71 30.00
Chicago #2 26 35.71
Charlotte #1 24 35.71
Seattle 119 37.14
Denver #1 27 40.00
Philadelphia #1 21 44.29
Indianapolis 10 45.71
Denver #2 21 45.71
Jacksonville #1 19 47.14
Los Angeles #1 60 48.57
Los Angeles #2 62 52.86
Columbus #2 26 52.86
Chicago #1 22 54.29
Houston 32 54.29
New York #2 73 54.29
Philadelphia #2 90 55.71
San Diego #1 41 55.71
San Diego #2 31 55.71
Charlotte #2 15 57.14
Columbus #1 10 70.00

Average 38.86 45.91 ± 12.70

Table 3.5: Corpus-based language pipeline accuracy

We achieve a 45.91% mean accuracy of grounding natural language to correct

fully-formed LTL. Some inaccuracies in the corpus-based evaluation may be due to

unclear AMT instructions, which would lead to incorrect AMT worker annotations.

18

Chapter 4

Using Language to Generate State

Abstractions for Long-Range Planning

in Outdoor Environments

4.1 Introduction

Robots are increasingly deployed to outdoor domains for autonomous missions:

fixed-wing drones are delivering critical medical goods (Ackerman and Koziol, 2019),

quadcopters are surveying infrastructure and land (Skydio, 2020), and autonomous

trucks are being tested on public roads (Hirsch, 2020). These robots will have to be

tasked by humans—for example, a pilot providing high-level navigation tasks to a

drone delivery fleet or an autonomous truck operator instructing the vehicle to detour

towards better weather. As interactions with outdoor robots become more common,

we need an interface that allows a human to give commands to a robot in a natural

way, while exploiting all of the knowledge that may be present in such commands.

Natural language offers an intuitive and expressive interface for human-robot in-

teraction. There is a substantial body of work on resolving natural language to plans

for a robot (Tellex et al., 2020). Motivated by the complex temporal goals and con-

straints often expressed in natural language, recent work has focused on developing

models to handle non-Markovian commands (Gopalan et al., 2018, Oh et al., 2019, Berg

19

4.1 Introduction

Figure 4.1 Simulated Skydio R1 flying over Massachusetts, USA and following the
task “go to Boston and go through the state forest on the way.”

et al., 2020, Patel et al., 2020). These approaches leverage a sequential decision-making

framework that supports non-Markovian objectives, but is computationally expensive

due to the necessary processing of extended state histories. For example, to follow the

command “go to Boston and go through the state forest on the way,” the robot must evalu-

ate its state history to ensure a visit to a state forest followed by a visit to Boston. As

the robot’s environment grows large, it becomes increasingly difficult to rapidly plan

extended state sequences.

This chapter presents a system that combines abstraction and environment filter-

ing to improve planning performance on non-Markovian commands in large outdoor

environments. To achieve faster operation, the system dynamically reduces the plan-

ner’s state space as it progresses through a series of decomposed subtasks. The system

is evaluated on LTL formulae spanning seven temporal structures and specified dis-

tances up to 80 kilometers. Results show significant performance gains while obeying

complex temporal goals and constraints. In addition, the system is tested on a simu-

lated aerial robot, shown in Figure 4.1, to demonstrate its functionality. These results

demonstrate more tractable planning of non-Markovian commands in city and state-

scale outdoor environments.

20

4.2 Overview of the Approach

4.2 Overview of the Approach

The planner takes a structured representation of the user’s language command

and outputs a sequence of coordinates in the global frame. First, the system generates

a hierarchical map of an aerial robot’s outdoor environment from publicly available

mapping data. Second, the system initiates planning using an LTL encoding of the

language command and an Abstract Process Markov Decision Process-based planner

(Oh et al., 2019) with a reward function, abstraction dynamics, and lower-level plan-

ning approach adapted to the unique constraints of large outdoor state spaces. Third,

as the system’s planner transitions through states of the LTL formula, it leverages se-

mantic similarities between the user’s language and the environment’s map features

to induce a filtered representation of the environment containing a constrained set of

paths for the planner to consider.

4.3 Modeling an Outdoor Environment

The environment is a multi-level graph with a user-definable radius. We test with

a map radius of 80 kilometers. Environment features are downloaded from Open-

StreetMap (OpenStreetMap contributors, 2017), a publicly available mapping service.

OSM maps contain nodes, ways, and relations. A node is a single global coordinate, a

way is a collection of nodes, and a relation is a collection of nodes, ways, and/or re-

lations (OpenStreetMap contributors, 2020). Our environment’s abstraction hierarchy

flows from the geometry and semantic data of these elements. At the base level, we

retain landmarks, corresponding to named nodes and ways. This level contains fea-

tures such as buildings, parks, and streets. The intermediate level, neighborhoods,

contains named nodes and ways that are tagged as neighborhoods. The highest level,

cities, corresponds to relations at administrative level 8. The aerial robot builds a

multi-level environment to accelerate planning performance and represent users’ cog-

nition of large spaces. A visualization of the environment is shown in Figure 4.2.

In our problem space, states and actions are defined by geometries and edges

in the environment. Consider the example task “go to Boston and go through the state

forest on the way.” The state for Boston is an irregular polygon representing the city

21

4.4 Map Generation

Figure 4.2 Visualization of the environment. The center is Brown University, Provi-
dence, RI, USA. The landmark (top left, partial view), neighborhood (top right, par-
tial view), city (bottom left) levels, and hierarchical map (bottom right) are shown.

limits. The aerial robot takes action a to reach Boston, where a identifies the edge

connecting the current state and Boston. As the number of states and actions grows

large, MDP-based planners can struggle to tractably operate. Performance limitations

are especially pronounced at the base landmarks level. We use the Abstract Prod-

uct Markov Decision Process (Oh et al., 2019) to help overcome these limitations. An

AP-MDP takes the product of AL-MDPs and the DBA B. This construction correlates

transitions in the environment with transitions of an LTL formula’s state. Importantly,

each transition in B is solved by an AL-MDP at the minimally satisfiable level of ab-

straction. For example, going through the state forest is solved by a landmark-level

AL-MDP, while going to Boston is solved by a city-level AL-MDP. Planning over

different levels of abstraction leads to considerable performance and efficiency gains.

22

4.4 Map Generation

4.4 Map Generation

In our problem space, the aerial robot receives a non-Markovian natural language

command referring to a long-range path. The aerial robot must then resolve the lan-

guage command to a structured form for the planner, and the planner must resolve the

structured form to a path for the aerial robot. Essential to both challenges is construct-

ing a map representation that captures mapping features necessary for grounding the

user’s language while remaining sufficiently compact for efficient planning.

Our map construction, shown in Figure 4.2, achieves these goals through abstrac-

tion. We define the outdoor map as the tuple MP = (G,H, T, Z), where:

1. G is the graph set, centered on a single global coordinate. In the example task,

this coordinate is located in Providence, RI, USA. gi ∈ G is the graph at abstrac-

tion level i. Level 0 corresponds to landmarks (Figure 4.2, top left), level 1 to

neighborhoods (Figure 4.2, top right), and level 2 to cities (Figure 4.2, bot-

tom left).

2. H is the hierarchical map composed from all gi ∈ G (Figure 4.2, bottom right).

This graph merges the landmark, neighborhood, and city-level graphs into

a unified environment map.

3. T is the transition map composed from ti ∈ T Ball trees (Omohundro, 1989). The

aerial robot queries T to transition between levels of abstraction. In the example

task, the aerial robot queries t2 to transition to the city level before planning a

path to Boston.

4. Z is the filtered graph set (Figure 4.5). Each ζ i(qj ,qj+1)
∈ Z is a sub-graph of gi con-

taining the dynamically filtered environment view for the subtask (qj, qj+1). In

the example task, ζ0q0,q1 contains landmark-level paths between Providence and

state forests, ζ2q1,q2 contains city-level paths between a state forest and Boston.

Mapping features from OpenStreetMap contain rich local geometric and global

hierarchical data that we leverage in the construction of MP. At the local level, map-

ping features commonly contain line or polygon geometries that are unnecessary for
23

4.5 Planning

language resolution. Therefore, we construct each gi as the Delaunay triangulation

(Delaunay, 1934) of the centroids1 of mapping features, and separately retain geomet-

ric data for planning. At the global level, the merged map H is composed from gi ∈ G

following the landmark, neighborhood, and city abstraction hierarchy. H stores

the mappings from child to parent features, as calculated by the containment of and/or

intersection between map feature geometries at different levels of abstraction.

As the aerial robot is operating in a large map, it becomes space-inefficient to

create edges between child and parent map features. The transition map, T , allevi-

ates space constraints by calculating transitions between sub-graphs at runtime. Each

ti ∈ T is constructed from the centroids of the corresponding gi using the Haversine

distance metric (Inman, 1835). When the aerial robot transitions between layers of ab-

straction, it queries T for the nearest centroid at the new level of abstraction. Last, the

filtered map set Z leverages semantic data from OpenStreetMap to induce subtask-

specific views of the environment. Mapping features can contain a wide variety of

textual semantic data, such as building type, waterway type, and land use (Open-

StreetMap contributors, 2021). We use this semantic data to prune centroids and edges

that are peripheral to the current subtask. In the example task, a landmark-level fil-

tered graph contains paths to state forests and a city-level filtered graph contains a

path to Boston. The construction of these graphs are discussed in Section 4.6.

4.5 Planning

We use a planning system inspired by the AP-MDP framework (Oh et al., 2019)

to resolve an LTL formula to a plan for the aerial robot. We summarize an AP-MDP as

the tuple MJ = (SJp , A
J , T Jp , s

J
0p, AP, Lp, Q,R

J
p), where j ∈ J is the level of abstraction,

SJp = SJ×Q is the set of product states, AJ is the set of actions, T Jp : SJp ×AJ×SJ
′

p → SJp

is the product transition function, sJ0p is the product start state, AP is the set of atomic

propositions in the LTL formula, Lp : SJp → Q is the product labeling function, Q is

the set of automaton states, and RJ
p : SJp × AJ × SJ

′
p → R is the product reward func-

tion. An AP-MDP decomposes the deterministic Büchi automaton B into np problems,

1At the landmark and neighborhood level, we use the geometric centroid. At the city level, we
use the administrative center (e.g., a town hall) when available in the mapping data; otherwise, we use
the geometric centroid.

24

4.5 Planning

Figure 4.3 A* planning within a landmark-level projection of subtask (q1, q2). Blue
points denote landmark-level map feature centroids within the projection, red points
denote the landmark-level path, and orange points denote where a landmark-city
transition is made during planning. The path starts at Quaddick State Forest, Thomp-
son, Connecticut and completes within Millennium Park, Suffolk County, Boston,
Massachusetts.

where np is the number of paths from the start state to the accepting state. We show

the example task’s DBA in Figure 4.4. Each subproblem is further decomposed into ni

subproblems, which we refer to as subtasks and denote as (qj, qj+1). A subtask repre-

sents a transition between states in B. Each subtask is solved using an AL-MDP Mj ,

where j is the lowest level of abstraction across the stay condition (logical constraint

on qj → qj) and goal condition (logical constraint on qj → qj+1) of the subtask. The

action-minimizing path along B satisfying F is accepted as the solution. We refer the

reader to Oh et al. (2019) for complete details.

We modify the AP-MDP framework in three ways. First, our reward function

considers the sequence of states between the current and next state that are crossed

but not visited. Second, abstract transitions are handled through the transition map T .

Third, the AL-MDPs are configured to exclusively plan at the highest-possible level of

abstraction, forgoing the base-level environment MDP in favor of A* path planning,

when possible. The first change enables compatibility with our environment construc-

tion, the second and third changes reduce computational overhead.

The environment can contain discontiguous connections. For example, the city-

level map in Figure 4.2 contains an edge between Pawtucket, RI and Seekonk, MA

that crosses the tip of East Providence, RI. We adapt the reward function to handle

these state crossings. At a high level, we ensure the current subtask’s stay condition

25

4.5 Planning

is satisfied along all states preceding the next state si′p . Assuming the stay condition

holds, the aerial robot receives its reward based on si′p . Let ai be the current action, e be

the edge that is traversed to complete action ai, and V be the set of states mapping to

atomic propositions in the stay and goal constraints that intersect with e. The reward

r is assigned as:

r =

100, if i. T i(si, ai, si′) = si
′ and

ii. δ(qj, L(v)) = qj, ∀v ∈ V − si
′ and

• δ(qj, L(si
′
)) = qj+1

−1, if (i) and (ii) and

• δ(qj, L(si
′
)) = qj

−100, otherwise.

Each subtask can start at a different level of abstraction than the previous subtask.

For example, the subtask from the aerial robot’s start location to the state forest is

planned at the landmark level, while the subtask from the state forest to Boston is

planned at the city level. Transitioning the abstraction hierarchy becomes expensive

as the environment grows large, due to the space-inefficiency of storing edges between

child and parent map features. The aerial robot uses the transition map T to transition

from the landmark to city level of the hierarchical map H . First, the aerial robot

performs a k-nearest neighbors query (we use k = 5) on the Ball tree t2 for cities

near its global coordinate. Second, the neighbor list is refined to parent city(ies) of the

state forest. Third, the aerial robot selects the neighbor closest to its current location,

records the transition point and edge in t2, and moves into the city level of H . The

transition process is the same for moving down the abstraction hierarchy, except the

neighbor list is refined by child map features of the aerial robot’s current location.

The planner produces a sequence of states and actions (sseq, aseq) corresponding

to vertices and edges in H . In the example task, the state sequence contains two sub-

sequences: a series of landmarks satisfying subtask (q0, q1) and a series of cities

satisfying subtask (q1, q2). The state sequence satisfies the LTL formula, but it does not

specify a path at the base level of the environment. To calculate a base-level plan, the

26

4.6 Semantic Filtering

q0

q1

q2

¬α0
0

¬α2
0 ∧ α0

0 α2
0

α2
0 ∧ α0

0

¬α2
0

1

Figure 4.4 DBA for the command “go to Boston and go through the state forest on the way.”
The LTL formula is F(α0

0 ∧ F(α2
0)), where α0

0, α
2
0 are atomic propositions resolved to

map features at the landmark level (“state forest”) and the city level (“Boston”). The
transition from q0 to q2 is considered spatially infeasible and removed before planning.

aerial robot uses A* within a lower-level projection of transited higher-level mapping

features, as shown in Figure 4.3. The aerial robot constructs this projection using two

R-Trees (Guttman, 1984, Howard Butler, Brent Pedersen, Sean Gilles, and others)—one

storing edges, the other storing map feature geometries—to identify landmark-level

edges within visited and crossed neighborhood and/or city states. Additionally,

the R-Trees identify landmark-level edges bridging a single discontinuous region be-

tween higher-level states, for example, a river separating two cities. The path com-

pletes at a landmark near the boundary of the higher-level goal state. The process of

calculating a landmark-level projection and planning an A* path is repeated for all

sub-sequences computed at higher neighborhood and city levels of abstraction.

4.6 Semantic Filtering

Goals and constraints can often be specified at the base level of abstraction. For

example, the “state forest” refers to a map feature at the landmark level of abstrac-

tion. The aerial robot must use a landmark-level MDP to ensure the first subtask—go

through the state forest—is satisfied. However, as the environment grows large, it be-

comes computationally infeasible to plan at the base level of abstraction with an MDP.

We approach this problem by filtering the environment according to the stay and

goal conditions of the current subtask. Notice these conditions are composed from

atomic propositions of the LTL formula. For example, in Figure 4.4, the goal condition

of (q0, q1) is¬α2
0∧α0

0, which translates to¬Boston∧ state forest. All α ∈ AP are resolved

27

4.6 Semantic Filtering

Figure 4.5 Filtered graphs for tasks (q0, q1) (top) and (q1, q2) (bottom). The blue points
denote landmark-level paths and the magenta points denote a city-level path. The
yellow points represent the goal state(s) for the subtask.

to salient mapping features for the user’s language command (see Section 4.7); by

extension, all stay and goal conditions are resolved to salient mapping features for

their corresponding subtask. The aerial robot uses these features to calculate a filtered

view of the environment graph.

First, the aerial robot generates a set of paths Ω that include and exclude salient

mapping features Υ of the current subtask. These paths are generated at the minimally-

satisfiable level of abstraction using A*. In the example task, Ωq0.q1 is initialized with

landmark-level paths to state forests and Boston, including paths to state forests that

avoid Boston, and a path to Boston that avoids state forests. Since Boston is a city-

level feature, A* plans to a landmark-level feature near Boston’s centroid, identified

by retrieving the centroid from H and querying the Ball tree t0 ∈ T . Second, all ver-

tices and edges in Ωq0,q1 are used to create the filtered graph ζ0q0,q1 , shown in Figure 4.5.

Last, ζq0,q1 is provided to the AL-MDP of subtask (q0, q1) and planning commences.

The semantic filtering procedure is repeated at the start of each subtask. In effect,

the semantic filter induces a compact, subtask-specific view of the environment before

28

4.7 Language Resolution

using an AL-MDP to solve the subtask. We outline the semantic filtering procedure in

Algorithm 1.

Algorithm 1: Semantic Filtering
Input: gi, environment graph at level i

H , merged map (for hierarchy transitions)
T , transition map (for hierarchy transitions)
v0, start location in gi

APqj ,qj+1
, atomic propositions in the goal and stay conditions of (qj, qj+1)

Output: ζ iqj ,qj+1
, the filtered graph for (qj, qj+1)

1 Initialize Ωqj ,qj+1

2 Υ← retrieve map features(APqj ,qj+1
)

3 for α in APqj ,qj+1
do

4 for υ in Υα do
5 ωto ← astar(v0, υ, gi, H , T)
6 add(Ωqj ,qj+1

, ωto)
7 if |Υ \Υα| > 0 then
8 avoids← Υ \Υα

9 ωavoid ← astar(v0, υ, gi, H , T , avoids)
10 add(Ωqj ,qj+1

, ωavoid)
11 end
12 end
13 end
14 ζ iqj ,qj+1

← subgraph(gi, Ωqj ,qj+1
)

15 return ζ iqj ,qj+1

4.7 Language Resolution

Atomic propositions of the LTL formula must be resolved to features in the envi-

ronment. This challenge has been addressed in Chapter 3, however, we briefly discuss

a modification to the landmark resolution procedure that enables support of hierarchi-

cal environments. Our approach follows the intuition that spatially large regions are

referred to by name, while smaller local regions are referred to by name and semantic

descriptors. We use cosine similarity to assess name and semantic similarity between

atomic propositions and mapping features, as in Chapter 3. For each mapping feature,

we pre-compute 300-dimensional GloVe embeddings (Pennington et al., 2014) via the

spaCy library (Honnibal et al., 2020) of the feature’s name and semantic properties. At

plan time, we search for similar map features based on name similarity at the city

and neighborhood levels, and both name and semantic similarity at the landmark

29

4.8 Evaluation

level. We search the environment from the highest to lowest level of abstraction and

stop the search once a match has been identified. A match is defined as the cosine sim-

ilarity exceeding λn or λs, thresholds for name and semantic similarity respectively. At

the city and neighborhood level we select the highest name-based match. At the

landmark level, we select the top k number of semantic and name-based matches.

We use λn = 0.95, λs = 0.7, and k = 20.

4.8 Evaluation

In this section, we test our system’s ability to plan for natural language instruc-

tions in large outdoor environments. First, we evaluate performance and efficiency

on 7 classes of LTL formulae. Second, we test performance on the example task with

different multi-feature thresholds. Third, we test natural language commands refer-

ring to features in our environment. Last, we demonstrate functionality with a simu-

lated aerial robot. Our system demonstrates tractable planning performance on non-

Markovian instructions in large outdoor environments.

4.8.1 Environment

We conduct our tests in the environment centered on Brown University, Provi-

dence, RI, USA (Figure 4.2). The environment was generated by querying for landmarks,

neighborhoods, and cities within an 80-kilometer radius of the center point. The

landmark and city-level queries returned map features with centroids more than 80

kilometers from the environment center point. We decided to keep these features in

the map. In total, the environment contains 251,184 states and 752,866 action edges.

There are 250,502 landmarks, 408 neighborhoods, and 274 cities. Up to 23 actions are

available for landmark-level states (µ = 5.99, σ = 1.47), up to 12 actions are available

for neighborhood-level states (µ = 5.912, σ = 1.45), and up 10 actions are available

for city-level states (µ = 5.85, σ = 0.99).

4.8.2 Long-Range Planning

We test our system on 112 LTL formulae encoding 7 temporal structures and span-

ning specified distances up to 80 kilometers. Each formula contains up to 4 atomic

30

4.8 Evaluation

propositions specified at the city level of the abstraction hierarchy. Each proposition

contains location references that are known to resolve to one mapping feature. An

example input formula is {¬b U a, b: cumberland, a: wrentham}, where cumberland and

wrentham resolve to the centroids of Cumberland, Rhode Island, USA and Wrentham,

Massachusetts, USA. The a proposition represents the goal state and is varied for each

formula. The b, c, and d propositions represent constraints and are constant across all

commands. In this experiment, we consider two measures of distance: specified and

planned. Specified distance is the straight-line geodesic distance between the start

coordinate and the goal state’s centroid. Planned distance is the total length of the

path.

Results for this experiment are shown in Figures 4.6, 4.7, and 4.8. We test three

planning configurations: no abstraction and semantic filtering (NA/S), abstraction

and semantic filtering (A/S), and abstraction without semantic filtering (A/NS). For

each planning configuration, we evaluate planning performance (planning time), plan-

ning efficiency (number of backups), and spatial efficiency (difference in planned dis-

tance) as a function of the LTL formula’s specified distance. Planning time includes

location reference resolution, AP-MDP-based planning, semantic filtering (for NA/S

and A/S), and landmark-level path resolution (for A/S and A/NS). The horizon-

tal error bars in the performance graphs (Figure 4.6) represent the difference between

specified distance and planned distance. Planned distance can be less than specified

distance because SD is calculated between state center points, but the planners can

satisfy higher-level goals and constraints at the state boundaries. Conversely, planned

distance can be greater than specified distance when temporal constraints require sub-

stantial deviations along the path to the goal state.

The abstract planners exhibit considerably higher average performance (µA/S =

20.53s, µA/NS = 27.05s) than the no-abstraction planner (µNA/S = 206.13s) and sus-

tain high performance as temporal complexity and specified distance increases (Figure

4.6). We observe a marginal difference in average performance and planning efficiency

between A/S and A/NS, suggesting that abstraction offers comparatively greater per-

formance and efficiency gains (Figure 4.7). Importantly, the benefits of abstraction are

not consistently available to the aerial robot. When goals and constraints are specified

31

4.8 Evaluation

at the landmark level, the aerial robot must plan in a significantly larger state space

without abstraction. The NA/S planner simulates these lower-level planning con-

ditions and demonstrates tractable performance and efficiency. In the simplest LTL

formula (F(a)), the NA/S planner exhibits slightly better performance than A/NS

over shorter distances (specified distance = 4.38km, 10.82km, 16km, 20.42km). Ab-

stract planning carries additional overhead (landmark-level path resolution) that can

lower relative performance efficiency when the state space is sufficiently small. How-

ever, as temporal complexity and size of the state space increases, abstract planning

offers considerable performance gains. We attribute variance in NA/S planner effi-

ciency to the non-uniform density of the landmark-level state space. Some paths go

through urban, higher-density regions, while others go through rural, lower-density

regions. As a concrete example, the NA/S planner with 70-kilometer F(a) ∧ G(¬b)

plans in a state space containing 761 landmarks. The NA/S planner with 80-kilometer

F(a) ∧ G(¬b) plans in a state space containing 311 landmarks. The corresponding dif-

ference in planning time suggests state space compaction is especially important at the

landmark level.

We compare planned distances between the A/S, A/NS, and NA/S configura-

tions to evaluate spatial efficiency (Figure 4.8). The average spread in planned distance

is relatively small over all configurations (µ = 3.23km, σ = 3.02km) and even smaller

between semantic filtering configurations (µ = 2.07km, σ = 2.39km). We attribute

cases of longer NA/S paths to the reward function, which is designed to minimize the

number of actions taken by the aerial robot. In large outdoor environments composed

of irregular geometries, NA/S action minimization at the landmark-level can be less

spatially efficient than A/S and A/NS city-level action minimization coupled with

A* landmark-level path resolution.

Last, as a performance baseline for NA/S we planned one LTL formula (F(a),

specified distance = 4.38 kilometers) with no abstraction and no semantic filtering;

the planning time was 11.57 hours. While this comparison is not direct—semantic

filtering places hard constraints on the depth of the state space—our system’s ability

to tractably operate at the landmark level is an encouraging result.

32

4.8 Evaluation

Figure 4.6 Long-range planning performance. Planning time (seconds, lower is better)
is shown on the vertical axes. Specified distance (kilometers) is shown on the hori-
zontal axes. The difference between specified and planned distance is shown by the
horizontal arrows on the performance curves.

33

4.8 Evaluation

Figure 4.7 Long-range planning efficiency. Bellman backups (lower is better) is shown
on the vertical axes. Specified distance (kilometers) is shown on the horizontal axes.

34

4.8 Evaluation

Figure 4.8 Long-range planning distances. Total planned distance (kilometers) is
shown on the vertical axes. Specified distance (kilometers) is shown on the horizontal
axes.

35

4.8 Evaluation

Figure 4.9 Planning results for the example task “go to Boston and go through the state
forest on the way.” The LTL formula is F(b ∧ F(a)), where atomic proposition a corre-
sponds to “Boston” and proposition b corresponds to the “state forest.” The horizontal
axis is the feature threshold for atomic proposition b, the vertical axis is planning time.

4.8.3 Planning with multiple semantic matches

In the example task “go to Boston and go through the state forest on the way,” the

phrase “state forest” could refer to multiple unique features in the environment. The

planner supports multi-feature atomic propositions by selecting the feature along the

highest-reward path. The number of potential features must be capped to sustain

tractable operation. We test the example task with a systematically increasing multi-

feature threshold. Our results, shown in Figure 4.9, demonstrate the relationship be-

tween planning time and environment size. Planning time for the example task’s LTL

formula is 382.15 seconds with a feature threshold of one; planning time is 1396.44

seconds with a feature threshold of 20. The environment size scales accordingly: the

one-feature threshold induces an environment view with 565 states (552 landmarks,

13 cities); the 20-feature threshold induces a view with 1615 states (1603 landmarks, 12

cities). Larger multi-feature thresholds require more path generations during semantic

filtering and Bellman backups during planning. Balancing the multi-feature threshold

and planning time is a design decision that could vary across applications and envi-

ronments. For example, a land surveyor may increase the threshold for nature and

water body-related propositions, while a delivery operator may set the threshold to

one for all propositions and refer to environment features with unique names.

36

4.8 Evaluation

Figure 4.10 Simulated Skydio R1 flying over Quaddick State Forest, Connecticut (left)
and reaching Millennium Park, Boston (right).

4.8.4 Language Grounding

We test the example task “go to Boston and go through the state forest on the way”

and 44 randomly sampled commands from the Language to Landmarks dataset (Berg

et al., 2020) on the sequence-to-sequence model presented in Oh et al. (2019). We used

this model to test an alternate grounding procedure that leverages a publicly avail-

able pre-trained model (Shi and Lin, 2019, Gardner et al., 2018) to pre-process loca-

tion reference extractions. The dataset contains language-LTL pairings referring to

trajectories in real OpenStreetMap environments. These commands are challenging to

parse because they exhibit unrestricted vocabulary and grammar. In each command,

we replace location references grounding to LTL atomic propositions with randomly

selected landmark, neighborhood, and city location names from the testing envi-

ronment. We use Semantic Role Labeling (Shi and Lin, 2019, Gardner et al., 2018) to

extract location references and map to in-vocabulary phrases before grounding. Sim-

ilar to Oh et al. (2019), we observe lower grounding accuracy on unseen commands.

Challenges include difficulty of the testing commands, faulty SRL extractions, and

limited generalizability of the model. However, we note the example task successfully

grounded to its corresponding LTL formula.

4.8.5 Aerial robot in simulation

We tested the example task on a simulated Skydio R1 quadcopter, shown in Figure

4.1 and Figure 4.10. The simulator is built with Unity (Unity Technologies) and is

detailed in Section 3.6.1. The quadcopter successfully followed the planner’s output.

37

Chapter 5

Conclusions

This work presents language grounding and long-range planning systems for an

aerial robot operating in large outdoor environments. These systems understand tem-

porally complex instructions and unrestricted references to map features without ad-

vance training on the environment. Corpus and user evaluations establish accuracy

and usability of the language system, while benchmarks on multiple classes of LTL

formulae demonstrate tractable planning performance while obeying complex goals

and constraints. Testing on a simulated aerial robot demonstrates functionality of both

systems.

Future work can build on the landmark resolution procedure, environment rep-

resentation, and planning system. Landmark resolution accuracy could benefit from

more streams of semantic data, such as visual inputs and user gestures. In addition,

a user feedback system would help disambiguate multi-feature atomic propositions.

Natural language instructions can specify goals and constraints below the landmark

level, for example, action-based goals like “turn right then go to the state forest” and lo-

cal feature-based constraints like “avoid large trees on the way.” Adjustable resolution

at salient map regions would support increased planning precision while sustaining a

globally compact representation of the environment. For real-world deployment, the

environment representation and planner need to integrate airspace rules. Last, users

may communicate semantic objectives such as “take the most scenic route.” The plan-

ner could learn intuitive path heuristics and formal representations of non-temporal

objectives to support these instructions.

38

References

E. Ackerman and M. Koziol. In the air with zipline’s medical delivery

drones. Available at https://spectrum.ieee.org/robotics/drones/

in-the-air-with-ziplines-medical-delivery-drones, 2019.

J. Andreas and D. Klein. Alignment-based compositional semantics for instruction

following. CoRR, abs/1508.06491, 2015. URL http://arxiv.org/abs/1508.

06491.

Y. Artzi and L. Zettlemoyer. Weakly supervised learning of semantic parsers for map-

ping instructions to actions. Transactions of the Association for Computational Linguis-

tics, 1:49–62, 2013. doi: 10.1162/tacl a 00209. URL https://www.aclweb.org/

anthology/Q13-1005.

Y. Artzi, D. Das, and S. Petrov. Learning compact lexicons for ccg semantic parsing.

In Conference on Empirical Methods in Natural Language Processing. Association for

Computational Linguistics, October 2014.

D. Arumugam, S. Karamcheti, N. Gopalan, L. L. Wong, and S. Tellex. Accurately

and efficiently interpreting human-robot instructions of varying granularities. arXiv

preprint arXiv:1704.06616, 2017.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning

to align and translate. CoRR, abs/1409.0473, 2014.

M. Berg, D. Bayazit, R. Mathew, A. Rotter-Aboyoun, E. Pavlick, and S. Tellex. Ground-

ing language to landmarks in arbitrary outdoor environments. In 2020 IEEE In-

ternational Conference on Robotics and Automation (ICRA), pages 208–215, 2020. doi:

10.1109/ICRA40945.2020.9197068.

39

https://spectrum.ieee.org/robotics/drones/in-the-air-with-ziplines-medical-delivery-drones
https://spectrum.ieee.org/robotics/drones/in-the-air-with-ziplines-medical-delivery-drones
http://arxiv.org/abs/1508.06491
http://arxiv.org/abs/1508.06491
https://www.aclweb.org/anthology/Q13-1005
https://www.aclweb.org/anthology/Q13-1005

REFERENCES

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with sub-

word information. arXiv preprint arXiv:1607.04606, 2016.

J. Brooke. SUS-a quick and dirty usability scale. Usability Evaluation in Industry, 189

(194):4–7, 1996.

J. R. Büchi. On a decision method in restricted second order arithmetic. In The collected

works of J. Richard Büchi, pages 425–435. Springer, 1990.

D. L. Chen. Fast online lexicon learning for grounded language acquisition. In Proceed-

ings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL-

2012), pages 430–439, July 2012. URL http://www.cs.utexas.edu/users/

ai-lab/?chen:acl2012.

J. Cheng, S. Reddy, V. Saraswat, and M. Lapata. Learning structured natural language

representations for semantic parsing. In Proceedings of the 55th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), pages 44–55,

Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.

18653/v1/P17-1005. URL https://www.aclweb.org/anthology/P17-1005.

daltonfury42. Truecase. URL https://github.com/daltonfury42/truecase.

M. Damonte, R. Goel, and T. Chung. Practical semantic parsing for spoken language

understanding. CoRR, abs/1903.04521, 2019. URL http://arxiv.org/abs/

1903.04521.

B. N. Delaunay. Sur la sphère vide. Bull. Acad. Sci. URSS, 1934(6):793–800, 1934.

L. Dong and M. Lapata. Language to logical form with neural attention. CoRR,

abs/1601.01280, 2016. URL http://arxiv.org/abs/1601.01280.

L. Dong and M. Lapata. Coarse-to-fine decoding for neural semantic parsing. In ACL,

2018.

M. Drager and A. Koller. Generation of landmark-based navigation instructions from

open-source data. In Proceedings of the 13th Conference of the European Chapter of the

Association for Computational Linguistics, 2012.

40

http://www.cs.utexas.edu/users/ai-lab/?chen:acl2012
http://www.cs.utexas.edu/users/ai-lab/?chen:acl2012
https://www.aclweb.org/anthology/P17-1005
https://github.com/daltonfury42/truecase
http://arxiv.org/abs/1903.04521
http://arxiv.org/abs/1903.04521
http://arxiv.org/abs/1601.01280

REFERENCES

J. Dzifcak, M. J. Scheutz, C. Baral, and P. W. Schermerhorn. What to do and how

to do it: Translating natural language directives into temporal and dynamic logic

representation for goal management and action execution. 2009 IEEE International

Conference on Robotics and Automation, pages 4163–4168, 2009.

S. Edunov, M. Ott, M. Auli, and D. Grangier. Understanding back-translation at scale.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process-

ing, pages 489–500. Association for Computational Linguistics, 2018.

M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. Liu, M. Peters, M. Schmitz,

and L. Zettlemoyer. Allennlp: A deep semantic natural language processing plat-

form. arXiv preprint arXiv:1803.07640, 2018.

S. Gehrmann, Y. Deng, and A. M. Rush. Bottom-up abstractive summarization. ArXiv,

abs/1808.10792, 2018.

N. Gopalan, D. Arumugam, L. L. Wong, and S. Tellex. Sequence-to-sequence language

grounding of non-markovian task specifications. In Robotics: Science and Systems,

2018.

E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov. Learning word vectors

for 157 languages. In Proceedings of the International Conference on Language Resources

and Evaluation (LREC 2018), 2018.

J. Gu, Z. Lu, H. Li, and V. O. K. Li. Incorporating copying mechanism in sequence-to-

sequence learning. ArXiv, abs/1603.06393, 2016.

Ç. Gülçehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio. Pointing the unknown

words. CoRR, abs/1603.08148, 2016. URL http://arxiv.org/abs/1603.

08148.

A. Guttman. R-trees: A dynamic index structure for spatial searching. SIGMOD Rec.,

14(2):47–57, June 1984. ISSN 0163-5808. doi: 10.1145/971697.602266. URL https:

//doi.org/10.1145/971697.602266.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination

of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):

100–107, 1968.
41

http://arxiv.org/abs/1603.08148
http://arxiv.org/abs/1603.08148
https://doi.org/10.1145/971697.602266
https://doi.org/10.1145/971697.602266

REFERENCES

S. G. Hart and L. E. Staveland. Development of nasa-tlx (task load index): Re-

sults of empirical and theoretical research. In P. A. Hancock and N. Meshkati,

editors, Human Mental Workload, volume 52 of Advances in Psychology, pages

139 – 183. North-Holland, 1988. doi: https://doi.org/10.1016/S0166-4115(08)

62386-9. URL http://www.sciencedirect.com/science/article/pii/

S0166411508623869.

J. Hirsch. Waymo tests autonomous trucks in texas. Available at https://www.

ttnews.com/articles/waymo-tests-autonomous-trucks-texas, 2020.

M. Honnibal and M. Johnson. An improved non-monotonic transition system for de-

pendency parsing. In Proceedings of the 2015 Conference on Empirical Methods in Nat-

ural Language Processing, pages 1373–1378, Lisbon, Portugal, September 2015. Asso-

ciation for Computational Linguistics. URL https://aclweb.org/anthology/

D/D15/D15-1162.

M. Honnibal and I. Montani. spaCy 2: Natural language understanding with Bloom

embeddings, convolutional neural networks and incremental parsing. To appear,

2017.

M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd. spaCy: Industrial-

strength Natural Language Processing in Python, 2020. URL https://doi.org/

10.5281/zenodo.1212303.

Howard Butler, Brent Pedersen, Sean Gilles, and others. Rtree: Spatial indexing for

python. URL https://toblerity.org/rtree/.

B. Hu, Q. Chen, and F. Zhu. Lcsts: A large scale chinese short text summarization

dataset. In EMNLP, 2015.

A. S. Huang, S. Tellex, A. Bachrach, T. Kollar, D. Roy, and N. Roy. Natural language

command of an autonomous micro-air vehicle. In Intelligent Robots and Systems

(IROS), 2010 IEEE/RSJ International Conference on, pages 2663–2669. IEEE, 2010.

J. Inman. Navigation and Nautical Astronomy for the Use of British Seamen.

C. and J.Rivington, 1835. URL https://books.google.com/books?id=

-fUOnQEACAAJ.
42

http://www.sciencedirect.com/science/article/pii/S0166411508623869
http://www.sciencedirect.com/science/article/pii/S0166411508623869
https://www.ttnews.com/articles/waymo-tests-autonomous-trucks-texas
https://www.ttnews.com/articles/waymo-tests-autonomous-trucks-texas
https://aclweb.org/anthology/D/D15/D15-1162
https://aclweb.org/anthology/D/D15/D15-1162
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://toblerity.org/rtree/
https://books.google.com/books?id=-fUOnQEACAAJ
https://books.google.com/books?id=-fUOnQEACAAJ

REFERENCES

V. Joshi, M. E. Peters, and M. Hopkins. Extending a parser to distant domains using a

few dozen partially annotated examples. In ACL, 2018.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for efficient text classi-

fication. In Proceedings of the 15th Conference of the European Chapter of the Association

for Computational Linguistics: Volume 2, Short Papers, pages 427–431. Association for

Computational Linguistics, April 2017.

R. Knowles and P. Koehn. Context and copying in neural machine translation. In

EMNLP, 2018.

T. Kollar, S. Tellex, D. Roy, and N. Roy. Toward understanding natural language di-

rections. In 2010 5th ACM/IEEE International Conference on Human-Robot Interaction

(HRI), pages 259–266. IEEE, 2010.

T. Kollar, S. Tellex, D. Roy, and N. Roy. Grounding verbs of motion in natural language

commands to robots. Experimental Robotics Springer Tracts in Advanced Robotics, page

31–47, 2014. doi: 10.1007/978-3-642-28572-1 3.

K. Konolige, E. Marder-Eppstein, and B. Marthi. Navigation in hybrid metric-

topological maps. In 2011 IEEE International Conference on Robotics and Automation,

pages 3041–3047. IEEE, 2011.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Translating structured english to

robot controllers. Advanced Robotics, 22(12):1343–1359, 2008.

B. Kuipers. The spatial semantic hierarchy. Artificial intelligence, 119(1-2):191–233, 2000.

B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, and F. Savelli. Local metrical and

global topological maps in the hybrid spatial semantic hierarchy. In IEEE Interna-

tional Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, vol-

ume 5, pages 4845–4851 Vol.5, 2004.

I. Kuric, V. Bulej, M. Saga, and P. Pokorny. Development of simulation software

for mobile robot path planning within multilayer map system based on metric

and topological maps. International Journal of Advanced Robotic Systems, 14(6):

1729881417743029, 2017. doi: 10.1177/1729881417743029. URL https://doi.

org/10.1177/1729881417743029.
43

https://doi.org/10.1177/1729881417743029
https://doi.org/10.1177/1729881417743029

REFERENCES

G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. Neural archi-

tectures for named entity recognition. ArXiv, abs/1603.01360, 2016.

L. V. Lita, A. Ittycheriah, S. Roukos, and N. Kambhatla. Truecasing. In Proceedings of

the 41st Annual Meeting of the Association for Computational Linguistics, pages 152–159,

2003.

M. L. Littman, U. Topcu, J. Fu, C. L. I. Jr., M. Wen, and J. MacGlashan. Environment-

independent task specifications via GLTL. CoRR, abs/1704.04341, 2017. URL http:

//arxiv.org/abs/1704.04341.

K. L. Lovelace, M. Hegarty, and D. R. Montello. Elements of good route directions in

familiar and unfamiliar environments. In International conference on spatial informa-

tion theory, pages 65–82. Springer, 1999.

J. MacGlashan, M. Babes-Vroman, M. desJardins, M. L. Littman, S. Muresan, S. Squire,

S. Tellex, D. Arumugam, and L. Yang. Grounding english commands to reward

functions. In Robotics: Science and Systems, 2015.

M. MacMahon, B. Stankiewicz, and B. Kuipers. Walk the talk: Connecting language,

knowledge, and action in route instructions. The Twenty-First National Conference on

Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence

Conference, 2(6):4, 2006.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer-Verlag, Berlin, Heidelberg, 1992. ISBN 0-387-97664-7.

Mapbox. Mapbox unity sdk. URL https://github.com/mapbox/

mapbox-unity-sdk.

C. Matuszek, D. Fox, and K. Koscher. Following directions using statistical ma-

chine translation. In Proceedings of the 5th ACM/IEEE International Conference on

Human-robot Interaction, HRI ’10, pages 251–258, Piscataway, NJ, USA, 2010a. IEEE

Press. ISBN 978-1-4244-4893-7. URL http://dl.acm.org/citation.cfm?id=

1734454.1734552.

44

http://arxiv.org/abs/1704.04341
http://arxiv.org/abs/1704.04341
https://github.com/mapbox/mapbox-unity-sdk
https://github.com/mapbox/mapbox-unity-sdk
http://dl.acm.org/citation.cfm?id=1734454.1734552
http://dl.acm.org/citation.cfm?id=1734454.1734552

REFERENCES

C. Matuszek, D. Fox, and K. Koscher. Following directions using statistical machine

translation. In 2010 5th ACM/IEEE International Conference on Human-Robot Interac-

tion (HRI), pages 251–258. IEEE, 2010b.

C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox. Learning to parse natural lan-

guage commands to a robot control system. In Experimental robotics, pages 403–415.

Springer, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representa-

tions of words and phrases and their compositionality. In Proceedings of the 26th

International Conference on Neural Information Processing Systems - Volume 2, NIPS’13,

pages 3111–3119, USA, 2013. Curran Associates Inc. URL http://dl.acm.org/

citation.cfm?id=2999792.2999959.

D. K. Misra, K. Tao, P. Liang, and A. Saxena. Environment-driven lexicon induction

for high-level instructions. In Proceedings of the 53rd Annual Meeting of the Associa-

tion for Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pages 992–1002, Beijing, China, July

2015. Association for Computational Linguistics. doi: 10.3115/v1/P15-1096. URL

https://www.aclweb.org/anthology/P15-1096.

D. K. Misra, J. Langford, and Y. Artzi. Mapping instructions and visual observations

to actions with reinforcement learning. CoRR, abs/1704.08795, 2017. URL http:

//arxiv.org/abs/1704.08795.

Y. Oh, R. Patel, T. Nguyen, B. Huang, E. Pavlick, and S. Tellex. Planning with state

abstractions for non-markovian task specifications. arXiv preprint arXiv:1905.12096,

2019.

S. M. Omohundro. Five Balltree Construction Algorithms. International Computer Sci-

ence Institute Berkeley, 1989.

OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org .

https://www.openstreetmap.org, 2017.

OpenStreetMap contributors. Elements. https://wiki.openstreetmap.org/

wiki/Elements, November 2020.
45

http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://www.aclweb.org/anthology/P15-1096
http://arxiv.org/abs/1704.08795
http://arxiv.org/abs/1704.08795
 https://www.openstreetmap.org
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Elements

REFERENCES

OpenStreetMap contributors. Map features. https://wiki.openstreetmap.

org/wiki/Map_features, February 2021.

C. Padwick. Ai for agriculture: How pytorch enables blue river’s

robots. Available at https://www.therobotreport.com/

ai-for-agriculture-how-pytorch-enables-blue-rivers-robots/,

2020.

R. Patel, E. Pavlick, and S. Tellex. Grounding language to non-markovian tasks with

no supervision of task specifications. In Robotics science and systems, 2020. doi: 10.

15607/RSS.2020.XVI.016.

R. Paul, A. Barbu, S. Felshin, B. Katz, and N. Roy. Temporal grounding graphs for lan-

guage understanding with accrued visual-language context. ArXiv, abs/1811.06966,

2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word rep-

resentation. In Empirical Methods in Natural Language Processing (EMNLP), pages

1532–1543, 2014. URL http://www.aclweb.org/anthology/D14-1162.

A. Poncela, E. Perez, A. Bandera, C. Urdiales, and F. Sandoval. Efficient integration

of metric and topological maps for directed exploration of unknown environments.

Robotics and Autonomous Systems, 41(1):21 – 39, 2002. ISSN 0921-8890. doi: https:

//doi.org/10.1016/S0921-8890(02)00272-5. URL http://www.sciencedirect.

com/science/article/pii/S0921889002002725.

M. Quigley, J. Faust, T. Foote, and J. Leibs. ROS: An open-source robot operating

system. In IEEE International Conference on Robotics and Automation Workshop on Open

Source Software, 2009.

K.-F. Richter and S. Winter. Introduction: What Landmarks Are, and Why They Are Im-

46

https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features
https://www.therobotreport.com/ai-for-agriculture-how-pytorch-enables-blue-rivers-robots/
https://www.therobotreport.com/ai-for-agriculture-how-pytorch-enables-blue-rivers-robots/
http://www.aclweb.org/anthology/D14-1162
http://www.sciencedirect.com/science/article/pii/S0921889002002725
http://www.sciencedirect.com/science/article/pii/S0921889002002725

REFERENCES

portant, pages 1–25. Springer International Publishing, April 2014. ISBN 978-3-319-

05731-6. doi: 10.1007/978-3-319-05732-3 1.

A. Rousell, S. Hahmann, M. Bakillah, and A. Mobasheri. Extraction of landmarks

from openstreetmap for use in navigational instructions. In Association of Geographic

Information Laboratories in Europe, 2015.

C. Sammut and G. I. Webb, editors. TF–IDF, pages 986–987. Springer US, Boston, MA,

2010. ISBN 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8 832. URL https:

//doi.org/10.1007/978-0-387-30164-8_832.

J. Sauro. Sustisfied? little-known system usability scale facts user experience maga-

zine, 2011. URL https://uxpamagazine.org/sustified/.

P. Shi and J. Lin. Simple bert models for relation extraction and semantic role labeling.

ArXiv, abs/1904.05255, 2019.

Siemens. ROS#, 2017. https://github.com/siemens/ros-sharp, [Accessed:

2018].

Skydio. Company overview. Technical report, Skydio, Inc., 2020. URL

https://drive.google.com/file/d/13V4XcHudwhI61zyfz5L7eJ_

BNvg0-GOV/view.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural net-

works. CoRR, abs/1409.3215, 2014. URL http://arxiv.org/abs/1409.3215.

H. Tan, L. Yu, and M. Bansal. Learning to navigate unseen environments: Back trans-

lation with environmental dropout. In Proceedings of NAACL-HLT 2019. Association

for Computational Linguistics, 2019.

S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller, and N. Roy. Under-

standing natural language commands for robotic navigation and mobile manipula-

tion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 25, 2011a.

S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. Teller, and N. Roy.

Approaching the symbol grounding problem with probabilistic graphical models.

AI Magazine, 32(4):64, 2011b. doi: 10.1609/aimag.v32i4.2384.

47

https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/978-0-387-30164-8_832
https://uxpamagazine.org/sustified/
https://github.com/siemens/ros-sharp
https://drive.google.com/file/d/13V4XcHudwhI61zyfz5L7eJ_BNvg0-GOV/view
https://drive.google.com/file/d/13V4XcHudwhI61zyfz5L7eJ_BNvg0-GOV/view
http://arxiv.org/abs/1409.3215

REFERENCES

S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek. Robots that use language.

Annual Review of Control, Robotics, and Autonomous Systems, 3:25–55, 2020.

S. Thrun. Learning metric-topological maps for indoor mobile robot navigation.

Artificial Intelligence, 99(1):21 – 71, 1998. ISSN 0004-3702. doi: https://doi.

org/10.1016/S0004-3702(97)00078-7. URL http://www.sciencedirect.com/

science/article/pii/S0004370297000787.

Unity Technologies. Unity. URL https://unity.com/.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin. Attention is all you need. In NIPS, 2017.

G. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes

quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Jour-

nal für die reine und angewandte Mathematik, 134:198–287, 1908.

C. Wang, C. Ross, Y.-L. Kuo, B. Katz, and A. Barbu. Learning a natural-language to ltl

executable semantic parser for grounded robotics, 2020.

Yelp. Yelp open dataset, 2019. URL https://www.yelp.com/dataset.

P. Yin, C. Zhou, J. He, and G. Neubig. Structvae: Tree-structured latent variable models

for semi-supervised semantic parsing. CoRR, abs/1806.07832, 2018. URL http:

//arxiv.org/abs/1806.07832.

Q. Zhou, N. Yang, F. Wei, and M. Zhou. Sequential copying networks. Proceedings of

the AAAI Conference on Artificial Intelligence, 32(1), Apr. 2018. URL https://ojs.

aaai.org/index.php/AAAI/article/view/11915.

48

http://www.sciencedirect.com/science/article/pii/S0004370297000787
http://www.sciencedirect.com/science/article/pii/S0004370297000787
https://unity.com/
https://www.yelp.com/dataset
http://arxiv.org/abs/1806.07832
http://arxiv.org/abs/1806.07832
https://ojs.aaai.org/index.php/AAAI/article/view/11915
https://ojs.aaai.org/index.php/AAAI/article/view/11915

	1 Introduction
	2 Background and Related Work
	2.1 Linear Temporal Logic
	2.2 Planning Components
	2.2.1 Deterministic Büchi Automaton
	2.2.2 Markov Decision Process
	2.2.3 Labeled Markov Decision Process
	2.2.4 Abstract Labeled Markov Decision Process

	2.3 Related Work

	3 Grounding Language to Landmarks in Arbitrary Outdoor Environments
	3.1 Introduction
	3.2 Overview of the Approach
	3.3 CopyNet
	3.4 Landmark Resolution Model
	3.4.1 Mapping Database
	3.4.2 Landmark Resolution Model

	3.5 Voronoi Maps and Planning
	3.6 Evaluation
	3.6.1 User Evaluation
	3.6.2 Component Evaluation
	3.6.2.1 CopyNet Evaluation
	3.6.2.2 Landmark Resolution Evaluation

	3.6.3 Corpus-Based Evaluation

	4 Using Language to Generate State Abstractions for Long-Range Planning in Outdoor Environments
	4.1 Introduction
	4.2 Overview of the Approach
	4.3 Modeling an Outdoor Environment
	4.4 Map Generation
	4.5 Planning
	4.6 Semantic Filtering
	4.7 Language Resolution
	4.8 Evaluation
	4.8.1 Environment
	4.8.2 Long-Range Planning
	4.8.3 Planning with multiple semantic matches
	4.8.4 Language Grounding
	4.8.5 Aerial robot in simulation

	5 Conclusions
	References

