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In the evaluation of information retrieval models, ranking performance has long been considered
the benchmark measure of model functionality. It has become apparent, however, that merely
looking at accuracy and precision fails to capture the complexity of model behavior, allowing for
the persistence of models that reinforce biases of unfair real-world data. It is often difficult to
apply standard fairness measures like statistical parity or to analyze a standard confusion matrix
in ranking contexts. This study proposes an alternative method of analyzing the global behavior
of ranking models through the aggregation of model agnostic local linear explanations. Using a
LambdaMART model trained on a eighteen-feature dataset, we learned locally interpretable model
explanations (LIME) for each data point in the held-out test set and used their aggregated weights
to make judgements on the overall model’s decision making structure. From the LambdaMART
model, we found that stream length, the summary statistics associated with term frequencies, and
the summary statistics associated with TF ∗ IDF scores were the most consistently influential in
the model’s decision making.

I. INTRODUCTION

In the field of information retrieval, the application of
black box machine-learned models has become increas-
ingly ubiquitous. The pervasiveness of these tools in a
variety of application settings, from everyday commer-
cial use to medicine and research, warrants a closer look
at their potential for misunderstanding and misuse. In
particular, models must address both a responsibility to
provide the user with the items that they wish to retrieve
and a duty to expose relevant items to the user [1].

Information retrieval models are generally trained on a
data-set of features related to the frequency with which
certain words appear in a query and a document and a
range of other metrics of relation between a query and a
potentially related document (Figure 1). In routine use,
these models learn a complex model and output a pre-
diction, score, or ranking without revealing the internal
mechanics of how each feature influences the final rank-
ings.

While each feature in a ranking data-set might have a
directly human-interpretable reasoning for its influence in
a ranking algorithm, the complexity introduced by com-
bining expansive feature sets via sophisticated nonlinear
functions obscures this meaning. Therefore, developers
find it progressively more difficult to identify unfairness,
bias, or artifacts in their models, even if the original data
features were intelligible.

Furthermore, the ability to interpret the reasoning be-
hind a machine learning model has serious practical im-
plications on an engineer’s ability to ascertain the func-
tionality of the model. The current model uses some
combination of performance metrics like normalized cu-
mulative discounted gain (nDCG)[2], Precision@K [3], or
Kendall’s Tau [4] and checking a sample of data points
to verify functionality. Nevertheless, if a newly devel-
oped model does not perform predictably or accurately
according to these metrics, it remains difficult to estab-

lish precisely where the existing model errs or identify
concrete changes that need to be made.

FIG. 1: Sample pipeline to transform query-passage pairs
into feature vectors: Both queries and passages are pre-
processed using techniques like stopping, stemming, etc.
The sample feature vector contains features directly cal-
culated from the processed query and document (refer-
ring to the first two values), as well as features generated
from TF and IDF scores calculated based off the entire
corpus at large (the latter values).

In addition to the technical barriers that unintelligi-
ble models pose, the ‘black-box’ system also raises ques-
tions of technological trust, especially in real-world de-
ployment. As unpredictable use cases arise, the ability to
regulate, audit, and reproduce ranking results becomes
relevant in developing legislation, policy, and even po-
tentially establishing legal liability[5]. There are many
potential issues with using the performance of the model
on a subset of the original data source to predict perfor-
mance in real world applications. Although the test set is
held out, the possibility of data leakage, either through
generated features or through the original data source,
remain ever present [6]. The selection of representative
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data points for point checking also generates potential
issues with the completeness and fairness of using those
points to extrapolate to a larger test set or to the real
world at large. Thus, if an search application wishes to
deploy a trustworthy ranking model, the decision-making
structure of that model should be carefully evaluated.

The remainder of the paper is structured as follows:
Section II presents background information on the defi-
nition of explainable models and model agnosticity. Sec-
tion III introduces relevant work in the field of explain-
ing information retrieval models and presents the spe-
cific models (LIME and LambdaMART) that this paper
works with. Section IV provides an overview of meth-
ods of data generation and the training of the ranking
and explanation models. Section V presents the results
later discussed in section VI. Lastly, Section VII explores
potential further research moving forward.

II. BACKGROUND

An explainable ranker, as described by Singh and
Anand, must empower users and developers to answer
the following questions:

1. ’What is the intent of the query according to the
ranker?’

2. ‘Why is one document ranked higher than an-
other?’

3. ‘Why is this document relevant to the query?’
This study focused on the latter two questions, exam-

ining features that quantify relationship between a query
and document and features that compare the relevance
of the document of interest compared to the rest of the
corpus [7].

In creating an explanation for some model, develop-
ers are challenged to balance the fidelity-interpretability
tradeoff. That is, while the entire rationale for the ex-
istence of an explaining model relies on its ability to ef-
fectively emulate model behavior, an explanation that
does this perfectly by recreating the model is useless
to a user that cannot match that explanation to an in-
terpretable real-world meaning. On the other hand, an
explaining model that only reinforces what the user al-
ready knows (and is thus maximally interpretable) but
performs poorly compared to the actual model will never
be used.

So far, a small subset of models are described as in-
herently “interpretable,” including decision trees, rules,
additive models, and linear models[8]. These models can
be grouped together due to their ability to be closely in-
spected and interpreted. For example, each node of a
decision tree can be inspected and evaluated for what
quantitative judgement is made at that point.

This project follows a different approach: model agnos-
tic interpretability [9]. A model agnostic explanation can
be applied to any ranking model, regardless of its imple-
mentation, so long as the explaining algorithm can access
the inputs and outputs of the ranking model. Model ag-

nosticity allows for flexibility in the types of models that
could potentially be used to perform a task and in the
format of the explanation. Additionally, model agnostic
explainability allows for the use of more powerful algo-
rithms that are not limited by the immediate explain-
ability of preserving a white box model.

III. RELATED WORK

The importance of model agnosticity is especially ap-
parent considering the variety in approaches to the
learn-to-rank problem. The models RankSVM[10],
RankBoost[11], and RankNet[12] all approach ranking
problems as a pairwise classification but employ a variety
of different training methods: support vector machines,
boosting, and neural nets, respectively. Additional layers
of complexity, like that introduced by relevance match-
ing [13–15] further improve performance and distance the
model from human interpretability. The rapid evolution
of the components of top performing models makes post-
hoc, model-agnostic explanations a necessity, one recog-
nized by much of the research in the field.

The work around model agnostic explainable models
can be split into two approaches: global and local ex-
planations. Global explanation models attempt to cap-
ture the behaviour of more complex models by creating
models that behave like that more complex model, but
are inherently interpretable, like logic rules [16] or deci-
sion trees [17]. The simplicity of these models, however,
makes it difficult for them to maintain fidelity to the com-
plex global behavior of a the real ranking model, even
with more secondary training data and modified learn-
ing approaches. Furthermore, studies found that global
techniques are sensitive to different ranking techniques,
making it difficult for global models to be truly model
agnostic [18].

On the other hand, local explanations apply similar
methods on the scale of a single data point. While these
explanations cannot be generalized to the global model,
they attempt to provide some insight into the behavior of
the model around the specific portion of the input space
where the datapoint of interest lies.

Using the existing, complex black-box model, the ex-
plainer perturbs the datapoint and uses the outputs from
the complex model to generate a linear model of local be-
havior. By nature, the linear model is interpretable, as
the weights of the linear model can be surfaced and vi-
sualized.

LIME (Locally Interpretable Model-Agnostic Ex-
plainer) uses this method to explain the output of mod-
els built to solve classification problems [9]. Given some
black-box model M , LIME trains a linear SVM, E, that
minimizes the loss between the predictions output by E
and the original model M for some input value i. The
linear model is created by generating a training set of
data from perturbing i randomly.

Because LIME is built to explain binary classification
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problems, the score-based ranking output must be con-
verted to a binary classification. We use the following
three methods described by Singh and Anand [7].

1. Top-k: All passages ranked higher than some cut-
off k are classified as relevant:

P (relevant|q, d) = 1

where q, d represents the query and document of
interest, respectively. All other passages receive a
classification as irrelevant:

P (relevant|q, d) = 0

2. Rank-based: All passages ranked higher than
some cut-off k are classified as relevant.

P (relevant|q, d) = 1

All other passages are classified assigned a proba-
bility score defined by the following formula:

P (relevant|q, d) = 1− R(q, d1)−R(q, d)

R(q, d1)

where R(q, d1) represents the score of the first
ranked, most relevant document.

3. Score-based: All passages ranked higher than
some cut-off k are assigned a probability score de-
fined by the following formula:

P (relevant|q, d) = 1− rank(d)

k

All other passages are classified as irrelevant:

P (relevant|q, d) = 0

Other work, including this paper, builds on the LIME
model. LIRME [19] investigated the stability and accu-
racy of LIME explanations applied to ranking models.
LIRME, however, largely focused on sampling method-
ology and feature size. Likewise, [7] develops a system
that uses LIME to explain the local results of a deep
relevance matching model (DRMM), tracing ranking de-
cisions back to query and document terms.

IV. METHODS

A. Data Generation

This project used a subset of the MS MARCO
(Microsoft Machine Reading Comprehension) Passage
Ranking dataset, originally generated from 100,000
anonymized Bing questions and human generated an-
swers [20]. From that original dataset, this project used
3,603,276 unique query-document pairs. The original
dataset was formatted in query id, positive id, and nega-
tive id triples. Triples were generated automatically from

human-labelled passage relevance scores. Each triple
consisted of a positively labelled passage and a second
negative passage that was randomly-selected from a list
of the top-1000 passages (scored using BM25) that were
not labelled positively. This structure allowed us to gen-
erate two query-passage pairs for each original datapoint.
Positive passage examples were assigned a score of 1 and
negative passage examples were assigned a score of -1.

The data was structured as described in Table I. The
eighteen features were chosen from the list of 46 descrip-
tive statistics selected by Han and Lei as most influen-
tial out of a super set of 136 features [21]. The orig-
inal Microsoft dataset contained document bodies, an-
chors, titles, and whole documents; thus, the feature size
decreased when translated to the MS MARCO dataset
which only includes passages. Additionally, some fea-
tures are privately owned by Microsoft and were excluded
from the dataset.

TABLE I: Feature Set Description

Index Feature Name
1 covered query number
2 covered query ratio
3 stream length

4-8 term frequency (sum, min, max, mean, variance)
9-13 inverse doc. freq. (sum, min, max, mean, variance)
14-18 TF*IDF (sum, min, max, mean, variance)

B. Ranking Model

The dataset was split into training, validation, and test
in a 90 − 5 − 5 split. We then used the pyltr imple-
mentation of the LambdaMART boosted tree model to
train a ranking model on each of the above datasets [22].
Compared to the 0.377-0.402 performance of state-of-
the-art models published with the MS MARCO dataset
for boosted trees, our model performance of 0.370 mean
nDCG was reasonable, considering the loss of various fea-
tures and smaller training set.

C. Explanation Model

For each of the remaining held-out test data points,
we used LIME to learn a local linear SVM that de-
scribed model behaviour around that point. Addition-
ally, each feature was separated using quartiles, deciles,
and entropy-based discretization and results from each
method of discretization were collected.

V. RESULTS

Each feature value was categorized into two groups
based on the weight that the explanation model for that
datapoint assigned that specific feature. Positive weights
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TABLE II: For each linear equation, the weights associated with each feature were grouped into positively influential
(having a positive values) and negatively influential (having a negative value). Using the Mann-Whitney U-test, we
evaluated the influence of the feature value on whether the feature weights would be positive or negative. For this
test the null hypothesis H0 was that the two distributions (positive and negative weights) were equal. For the tests

that were statistically significant for an α = 0.05 the cells were colored according to the directionality of the
difference in distributions. Green cells represent a feature where the distribution of relevant weights was greater

than the distribution of irrelevant weights, and vice versa for red cells.

Quartile Decile Entropic
Feature Accept H0 Reject H0 Accept H0 Reject H0 Accept H0 Reject H0

Covered Query Number 0.079 — — 1.211 × 10−7 0.1244 —
Covered Query Ratio — 0.029 — 3.28 × 10−6 — 0.0003

Stream Length — 0.000 — 0.000 — 0.000
Term Frequency (sum) — 0.000 — 0.000 0.082 —
Term Frequency (min) — 0.000 — 0.000 — 0.000
Term Frequency (max) — 0.000 — 0.000 — 0.000
Term Frequency (mean) — 0.000 — 0.000 — 0.000

Term Frequency(variance) — 0.000 — 0.000 — 0.000
Inverse Document Frequency (sum) 0.134 — — 0.00285 — 0.000
Inverse Document Frequency (min) — 0.021 — 4.212 × 10−6 — 0.000
Inverse Document Frequency (max) 0.407 — 0.051 — — 0.000
Inverse Document Frequency (mean) 0236 — — 1.062 × 10−7 — 0.000

Inverse Document Frequency(variance) — 0.000 — 0.000 × 10−7 — 0.000
TF*IDF (sum) — 0.000 — 0.000 — 0.000
TF*IDF (min) — 0.000 — 0.000 — 0.000
TF*IDF (max) — 0.000 — 1.56 × 10−12 — 0.000
TF*IDF (mean) — 0.000 — 0.000 — 0.000

TF*IDF (variance) — 0.000 — 0.000 — 0.000

were labelled as markers of relevance, while negative
weights were labelled as irrelevant. Each feature distri-
bution was plotted on a histogram comparing the number
of LIME models that classified the feature as a relevant
feature to the number of models where that feature is
classified as irrelevant.

In general, most features fell into one of two groups.
One group of features were equally likely to be classified
as relevant or irrelevant regardless of the actual value of
the feature (Figure 2a). Other feature distributions were
skewed based on the value of the feature (Figure 2b).
Of these two groups, the latter provided more useful in-
sight into model behavior, as features showing significant
skew in favor of higher or lower values indicated that the
value of those features could be predictive of the ultimate
classification. Complete results repeated over different
methods of discretization are shown in the Appendix.

In order to quantify this difference, we used the Mann-
Whitney U-test to compare the two distributions (rele-
vant and irrelevant). We tested a null hypothesis, H0,
that the two distributions are sampled from equal pop-
ulations. Our alternate hypothesis was that the two
populations are in fact unequal and one distribution is
greater or lesser than the other. Overall, the influence of
stream length and the statistics associated with term fre-
quency and TF*IDF score were consistently distinguish-
able across all methods of discretization. The results of
this test are shown in Table II.

Additionally, we visualized the distribution of the

weights of certain variables plotted against the feature
values. While many of the weights were relatively nor-
mally distributed, as shown in Figure 3a, other scatter
plots showed significant skew towards either higher (Fig-
ure 3b) or lower (Figure 3c) values.

VI. DISCUSSION

The results shown above affirmed the conclusions of the
conventional understanding of the selected features. The
features that were most consistently influential (in ei-
ther direction) were those associated with term frequency
and TF*IDF score. Since both are representations of the
shared vocabulary between a query and a passage, the
influence of term frequency and TF*IDF score statistics
in determining a good match between a query and a doc-
ument was unsurprising. Furthermore, the relative in-
consistency seen in inverse document frequency has also
been previously documented [21]. While inverse docu-
ment frequency intends to describe some dimension of
passage uniqueness, the connection between these values
and the overall relation between the query and passage
was unclear. Furthermore, although it was possible that
IDF values are not a good indicator of a good match, it
may also be possible that the relation between inverse
document frequency and relevance is more complex than
a simple linear relationship and is not apparent through
the analysis presented here.



5

FIG. 2: From right to left: a) Histogram of covered query
ratio distribution shows even distribution between rel-
evant (blue) and irrelevant (orange). b) Histogram of
stream length distribution shows that relevant weights
are skewed towards low stream lengths and irrelevant
weights are skewed towards high values of stream length.

It was also interesting to note that the breakdown be-
tween the different summary statistics remained consis-
tent between term frequency and TF*IDF. Although this
may be attributed to the mathematical relation between
the two values, the observation may further support the
theory that IDF is not as influential as the term-based
values due to the lack of consistency in IDF results across
different discretization methods.

Of note, the minimums and means of both values were
distributed such that irrelevant weights were generally
associated with higher feature values while the maxes
and variances were distributed such that relevant weights
were associated with higher feature values. These results
were somewhat surprising; we would assume that val-
ues like a high term frequency or TF*IDF sum, mean,
or minimum would indicate a query-document pair with
more commonality and therefore represent greater rele-
vance. Similarly, we would assume that high variance is
indicative of groups of words that do not share similar
levels of uniqueness and are less likely to return useful
results. Although these results contradicted many of the
assumptions that we might make, they provided some
valuable insight into the inner workings of our ranking
model. For example, weighting high variances positively
may indicate that queries with high term variance con-
centrate meaning in fewer words and are thus easier to
match to relevant documents.

Nevertheless, this style of analysis was limited by its
ability to capture the interaction between different vari-
ables. For example, a complex model could capitalize on
the interaction between the variance and sum of a fea-
ture like inverse document frequency across all the terms
of the input query such that a query-document pair with
a high variance and high sum is labelled irrelevant but
a pair with a low variance and high sum is labelled ir-
relevant. While the aforementioned linear models can
capture the behavior of individual features (variance of
inverse document frequency, in this case), it failed to cap-
ture the interactions between different features.

FIG. 3: Left to right and top to bottom: a) Weights
evenly distributed as TF*IDF min increases b) Weight
increases as idf mean increases c) Weight decreases as
tf-sum increases

VII. CONCLUSION AND FUTURE WORK

In this paper, we considered a method of model-
agnostic explanation that can provide insight into how
a non-linear ranking model uses the features that it has
been given. We used LambdaMART as a base ranking
model and implemented a LIME explanation for test dat-
apoints in order to visualize the local behaviour at var-
ious points in the input space. Although the behavior
of local models cannot be used to make comprehensive
judgements on global model behavior, our results show
that there were several features that are consistently in-
fluential in determining either relevance or irrelevance
that could be potential targets for further investigation.

One potential avenue of further work could center
around the implementation of a search engine applica-
tion to be used in user testing contexts. Two potential
use cases are proposed below:

1. Debugging/Model Improvement: In order to
effectively evaluate model performance and identify
potential errors or biases before deployment, users
who view these explanations may wish to modify or
correct certain model behavior in order to improve
performance. In this case, a user study to answers
the question of whether or not the model expla-
nation helps users understand what aspects of the
model must be changed in order to produce some
result on the output.

2. Understanding Results: A study surrounding
using the visualization to better understand search
results would aim to determine whether or not visu-
alizations increased users’ trust in the rankings that
are produced by the model. Furthermore, it would
potentially be interesting to see if users were able
to modify their queries, either organically through
modifying the raw text of the query or artificially
by modifying values in the feature input, in order
to obtain better results (Figure 4).
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FIG. 4: Using both aggregate and individual explanations, the above sample shows a possible implementation of a
interface system that allows users to perform query expansions based on aggregate model behavior. The search bar
drop-down menu for each keyword shows synonyms and a feature of interest (inverse document frequency, in this

case) allowing users to modify their search terms and modify the feature array as it relates to IDF statistics.
Possible synonyms for query terms are color-coded according to aggregated influence. In this example a higher IDF

is indicative of relevance.

Lastly, there has been significant work done on the
development of fairness-aware rankings systems, such as
FA*IR [23] and Unbiased LambdaMART [24]. A poten-
tial future research direction could investigate the differ-
ences in the explanations generated around these ”fair”
rankers and perhaps contribute developing systems of
comparison between various rankers and allow users to
better evaluate the differences between different ranking
models.
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FIG. 5: Quartile Weights: Colored graphs indicate features where the difference between the two distributions was
statistically significant. Red indicates that irrelevant weighted features are greater than relevant feature values and

green represents the opposite.
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FIG. 6: Decile Weights



10

FIG. 7: Entropy Weights


