
ViperProbe: Using eBPF Metrics to Improve
Microservice Observability∗

Brown University Computer Science Honors Thesis

Joshua Levin
Brown University

jlevin1@cs.brown.edu

ABSTRACT
Recent shifts to microservice-based architectures and the
supporting servicemesh radically disrupt the landscape of
performance-oriented management tasks. While the adop-
tion of frameworks like Istio and Kubernetes ease the man-
agement and organization of such systems, they do not them-
selves provide strong observability. Microservice observabil-
ity requires diverse, highly specialized, and often adaptive,
metrics and algorithms to monitor both the health of indi-
vidual services and the larger application. However, modern
metrics collection frameworks are relatively static and rigid.
We introduce ViperProbe, an eBPF-based microservices

collection framework that provides dynamic sampling and
collection of deep, diverse, and precise system metrics. We
also contribute the observation that the adoption of a com-
mon set of design patterns, e.g., servicemesh, enables offline
analysis. By examining the performance profile of these pat-
terns before deploying on production, ViperProbe can effec-
tively reduce the set of collected metrics, thereby improving
the efficiency and effectiveness of those metrics. We describe
this subset of metrics as the CriticalMetrics.

To the best of our knowledge, ViperProbe is the first scal-
able eBPF-based dynamic and adaptive microservices met-
rics collection framework. Our results show ViperProbe has
limited overhead, provide an analysis of eBPF metric per-
formance, examine Envoy’s metric performance profile, and
show ViperProbe’s eBPF metrics were significantly more
effective for horizontal autoscaling.

1 INTRODUCTION
Microservices are the result of a series of evolutions in dis-
tributed systems aimed to design more abstract, lightweight,
flexible, and scalable systems for cloud platforms. The growth
and rapid adoption of tools like Docker [4] and Kubernetes [17]
quickly made container-based design an industry standard.
These tools made deploying, managing, and developing mi-
croservice architectures tractable for companies. Following
∗Primary Reader: Theophilus A. Benson, Second Reader: Rodrigo Fonseca

Honors Thesis, May 2020
2020.

the growth of microservices, a series of design patterns
and frameworks for managing large microservice deploy-
ments emerged. These patterns and tooling (i.e. Istio [10]
and Linkerd [13]) are referred to as the servicemesh. The re-
sulting servicemesh has significantly increased the velocity
of code changes and deployment, the diversity and special-
ization of services, and the required coordination between
services. The extreme number, heterogeneity, diversity and
code-velocity of microservice components (i.e., services) sig-
nificantly challenges traditional diagnosis and troubleshoot-
ing techniques [24, 39–41, 47].

In distributed systems, observability describes the ability
to understand what, where, when, and why events took place
in order to perform performance management, optimization,
or debugging. Observability in distributed systems relies on
three key tools: distributed tracing, metrics, and logs. Mi-
croservices dramatically scale the diversity and number of
metrics in distributed systems [30, 69]. As such, there has
been significant work [26, 70] aimed at understanding which
subset of metrics are relevant for each task. It is generally
understood that only a subset of metrics and traces are rel-
evant for each performance management task (e.g. scaling,
overload control, routing). These metrics which are central
for performing management tasks effectively are the Criti-
calMetrics. The growing wisdom is that the constant code
changes and number of metrics and components make offline
analysis intractable, and the deluge of data requires metric
sampling.
In this paper, we present ViperProbe, an alternative ap-

proach and platform for determining and instrumenting the
CriticalMetrics for servicemesh systems. We build on the
observation that while the servicemesh diversifies the under-
lying service, it also brings significant uniformity across the
system. Specifically, many microservice deployments have
adopted microservice design patterns (Section 2.2), which
are in fact, more static and stable than the underlying ser-
vices. The static, shared nature of these components makes
them more amenable to offline analysis thereby reducing the
complexity and overhead of online techniques.
In this work, we take the first step towards this vision

by presenting a framework, ViperProbe, an adaptive eBPF
1



Honors Thesis, May 2020 Joshua Levin

Collect 
All Metrics

Determine
Important 

Subset

Performance 
Management 

Algorithm

Determine
Important 

Subset
Collect 
Metrics

Performance 
Management 

Algorithm

Online/Runtime Offline 

ViperProbe Workflow

Dominant Microservices Observability Workflow Today

Figure 1: Paradigms for Observability Today

metrics collection tool for microservices. ViperProbe’s eBPF
metrics provide deep visibility into system performance char-
acteristics, and ViperProbe collects and monitors metrics at
the service level. In this paper we only demonstrate a subset
of applications and leave the exploration of others for future
work. There are two challenges in realizing ViperProbe: first,
determining the CriticalMetrics is contingent on the spe-
cific combinations of microservices patterns, performance
algorithms, and workloads. Thus, given the same container
pattern but with different workloads or performance method-
ologies, we can expect different CriticalMetrics because the
different workloads will exercise the code in different ways,
and performance algorithms will interpret metrics differ-
ently.
Second, today, metrics collection is relatively rigid (Fig-

ure 1 Top); microservice frameworks usually collect all pos-
sible metrics, exposing them into an observability frame-
work, e.g., Grafana, and then the performance algorithms
determine the subset to use for analysis [25, 26, 38, 48, 70].
However, with our approach (Figure 1 Bottom), we plan to
collect only a subset of the metrics initially with dynamic
adjustments in real-time.

To tackle these challenges, ViperProbe builds on the flex-
ibility of eBPF to dynamically enable and sample metrics.
To the best of our knowledge, ViperProbe is the first scal-
able eBPF-based dynamic and adaptive microservice metrics
collection framework. ViperProbe includes an offline search
paradigm for analyzing patterns to determine the minimal
but effective set of metrics, i.e., CriticalMetrics, for enabling
runtime diagnosis of a service. ViperProbe uses the results
of the offline analysis, i.e., the CriticalMetrics, to determine
which metrics to activate initially. Additionally, ViperProbe
was also designed to support online techniques, though, we
leave the exploration of combined online and offline tech-
niques for future work.
Our evaluation shows ViperProbe has between 10-15%

CPU overhead running our entire set of implemented met-
rics. For latency overhead, our results show between 40-
60% latency overhead at the 50th percentile, with negligi-
ble tail overhead at higher percentiles. In addition, we use
ViperProbe to collect precise performance data which we

use to perform statistical analysis of Envoy’s performance
profile. Our results from Jaccard similarity tests and Kol-
mogorov–Smirnov tests indicate Envoy sidecars share per-
formance characteristics of both the attached service and
other Envoy sidecars. Lastly, in our experimental applica-
tion of ViperProbe for horizontal autoscaling, we found that
ViperProbe greatly reduced failure rates (median reduction of
67%, Figure-14) using a subset of CriticalMetrics determined
via k-Shape clustering.

2 BACKGROUND
In this section we present an overview of microservice and
servicemesh architectures, discuss their design components,
and outline observability challenges for them.

2.1 From Microservices to the Servicemesh
A microservice architecture is a loosely-coupled highly dis-
tributed system with individual, small services communicat-
ing through shared libraries or tooling. The microservice
design philosophy is centered around independent, light-
weight, and highly modular services. Several companies
(Amazon [53], Microsoft [55], Facebook [54], Twitter [39],
Lyft [54, 59], Uber [63], Netflix [40], Airbnb [41]) have adopted
microservice patterns primarily for the following benefits:
(1) Failure, resource, dependency, environment isolation
(2) Greater abstractionwith stricter APIs between services
(3) Independent scaling, development, deployment, and

replication of services
The result is a set of highly heterogeneous services run-

ning a polyglot of languages, with high velocity develop-
ment and deployment [42, 47, 52, 64]. To achieve the loose-
coupling and coordination, developers developed microser-
vice design patterns to simplify microservice development.
Unlike traditional code design patterns, which are guidelines
and rules for writing code, microservices patterns are in and
of themselves code components – in certain cases, the pat-
terns are services themselves, e.g., DB-patterns – Redis or
Postgres [21, 36].
The servicemesh describes frameworks [10, 13] and pat-

terns for microservice architectures which provide communi-
cation, discovery, security, traffic management, observability,
and replication.

2.2 Microservice and Servicemesh Design
Patterns

Here, we discuss common microservice design patterns and
their use. In Figure 2, we present a canonical servicemesh to
illustrate the role of design patterns in modern microservices.
The gray boxes are developer code, and the orange boxes are
microservice design patterns. These patterns are included

2



ViperProbe: Using eBPF Metrics to Improve Microservice Observability Honors Thesis, May 2020

Figure 2: Canonical Microservices de-
ployment

Figure 3: Days between Releases Figure 4: Example Application

in the servicemesh, but can also be deployed separately for
traditional microservice applications.

2.2.1 Gateway. Microservices don’t utilize Enterprise Ser-
vice Buses (ESB) as classic monolith architectures did [36].
Instead, often end-users communicate directly with services.
Gateways are used to provide uniform access and control to
these internal services without requiring separate teams to
implement ingress/egress themselves. Clients issue requests
to replicated Gateways who then pass those requests directly
to services. Gateways provide authentication (Open Policy
Agent), encryption (TLS, mTLS), traffic management, and ob-
servability for microservices [21]. Two popular Gateways are
Envoy [5] (configured to be front-edge) and Ambassador [1].

2.2.2 Sidecar/Proxy. The sidecar proxy pattern is a iso-
lated, co-located process that runs alongside each microser-
vice in the servicemesh [32]. The proxy redirects all external
network communication through it in order to provide seri-
alization, security, encryption, logging, configuration man-
agement, and service discovery [22]. By using proxies, inde-
pendent teams can develop their services using the POSIX
network stack and then deploy alongside the proxy. The
proxy then can communicate with other proxies, thus en-
abling inter-service communication. Netflix and Facebook
forgo the use of a separate process and instead use a shared
library which provides similar benefits and is generally more
efficient. The library approach, however, requires developing
the shared library for each language/framework in the ser-
vicemesh and thus is less general. A popular sidecar proxy,
developed by Lyft and used by Istio, is Envoy [5] and is the
primary proxy explored in this paper.

2.2.3 Operator. Operators [15] are a recent addition to
Kubernetes which enable developers to specify service con-
figurations which are then automatically managed by a Ku-
bernetes operator pod. Microservices are generally stateless
and thus traditionally use highly available data stores such as

Cassandra, MongoDb, Redis, Postgresql, and MySQL. Opera-
tor pods manage custom resource definitions (CRDs) of these
data stores in order deploy them as clusters and manage their
operational challenges. When deployed on a servicemesh,
these data stores often have Envoy or a similar proxy injected
by Kubernetes for communication with other services. As
these data stores are often unmodified, their performance
profiles on the servicemesh are similar to their offline, classic
profiles which have preexisting research.

2.2.4 Orchestration. The highly distributed and fragmented
design of microservices requires more thorough orchestra-
tion and choreography among services to implement features
like transactions, overload control, or versioning. Often the
orchestration pattern requires both a coordinator and shared
API among services, but it also can be implemented solely
via shared APIs which is referred to as choreography. We
share a few examples of orchestrator tools here.

Distributed Sagas: In classic transactional databases, a
Saga [49] was designed to break long running transactions
into smaller ACID compliant transactions. The technique
has been adapted by Twitter for its servicemesh to enable
ACID-like semantics for servicemesh requests which span
multiple independent services [59]. For Distributed Sagas, a
central coordinator service splits incoming requests into in-
dependent backend requests and applies Two-phase commit
like semantics with those requests in order to transact the
single request.

Versioning: At Uber, as a result of the high number of
dependencies between services and the high-speed, inde-
pendent development of those services, API consistency be-
tween services was challenging. Thus, they built DOSA [63],
a shared API, which enforces schema consistency between
services by having all services use a shared proxy. Unlike
Distributed Sagas, this example does not use a coordinator
but rather utilizes shared proxies in order to enforce API
consistentcy.

3



Honors Thesis, May 2020 Joshua Levin

OverloadControl:WeChat developed a tool DAGOR [74]
to perform load shedding when servers are overloaded. Like
DOSA, each microservice is co-located with a DAGOR agent
which adds metadata to inbound/outbound requests to com-
municate with upstream and downstream DAGOR agents
as services fail. Using the state information communicated
with other agents and shared business logic, DAGOR agents
shed lower priority load when servers are under heavy load.

Takeaway: Unlike developer code (i.e., gray boxes), the
patterns (i.e., orange boxes) aremore static andmore rigid. To
illustrate this point, in Figure 3, we present CDFs of the time
between releases for several patterns. We observe that while
the different patterns have different release frequencies, they
are often released every few weeks, which is radically differ-
ent from studies that show that developers push changes to
their microservice codebase multiple times a day [42, 52, 64].
This static and rigid codebase is more amendable to offline
analysis because of its more gradual updates. We also note
that some patterns, the Operator, in particular, already have
bodies of work. Thus, translating offline performance of
these patterns to the servicemesh is easier than that of their
underlying services. Lastly, we recognize the density of these
patterns, in particular the sidecar pattern, enables such of-
fline analysis to apply to large portion of deployed code.

2.3 Observability Challenges
The extreme loose-coupling, scale, and diversity of microser-
vices significantly complicates performance management. As
a result, there is a growing body of research on microservice
tracing [46, 57, 68], reliance testing [28, 51], and metric/log
debugging [26, 48, 70]. At the center of this discussion is the
concept of observability.

The core fundamental components of observability in dis-
tributed systems are tracing [11, 19, 46, 57, 68], metrics [25,
38, 48, 70], and logging [60]. The challenges for distributed
observability are collecting data at-scale and applying seman-
tics to the data that enables actionable inferences. At two
major servicemesh adopters, Netflix monitors more than 1.2
Billion [30] unique metrics and Uber monitors more than 700
Million [69]. The servicemesh introduces further challenges
for microservice observability, some of which we highlight
here:
(1) Increased diversity of the services increases the variety

of instrumentation and resulting metrics
(2) The extreme hyperscaling of microservices explodes

the volume of metrics, traces, and logs
(3) Complex request paths and routing (Figure-5 & Figure-

6) makes localizing, and qualifying "normal" perfor-
mance characteristics exponentially more challenging

Today, tracing is largely used for localization, which al-
lows DevOps (Developer-Operators) to narrow their focus to

a subset of metrics and logs to analyze. In this work, our main
focus lies in metrics — more specifically, making metrics col-
lection more dynamic and adaptive. The more common way
to tackle the microservice challenges is to sample the data.
Unfortunately, sampling leads to a loss of information and,
thus, DevOps may be unable to detect problems [54]. Given
this loss of information, when DevOps detect a problem,
they turn off sampling. In fact, many production-grade mon-
itoring systems provide a special “watershed” mode where
the DevOps can turn off sampling and collect unsampled
data [54].

Figure 5: Netflix [40] and Twitter [40] Architectures

Figure 6: Simplified Uber Call Graph [63]

2.4 Not All Metrics are Equal
Intuitively, the notion that a subset of metrics are more im-
portant than others is not a fundamentally new idea. How-
ever, most contemporary approaches [26, 48, 70], generally
capture all metrics and then determine the important subset
to analyze at runtime. A key often overlooked fact is that
the overheads of metrics collection is a function of the type,
number, and instrumentation for the collected metrics. In
the area of microservices, this is especially relevant. The
extreme diversity of services results in a polyglot of metric
tooling thereby increasing metric complexity. Thus, being

4



ViperProbe: Using eBPF Metrics to Improve Microservice Observability Honors Thesis, May 2020

able to narrow and limit the metrics collected to a subset can
be beneficial for performance. To illustrate this point, in Fig-
ure 4, we classify eBPF metrics collected by ViperProbe and
present their overheads. The key observation is that while
some metrics can be “always-on” due to their lightweight
nature, e.g., Disk-related metrics, other classes of metrics are
prohibitively expensive to constantly collect, e.g., network
or scheduling. In Section-3.1, we further discuss how not all
metrics are equally relevant to particular services beyond
their inherent overhead differences.

2.5 eBPF
Linux Berkley Packet Filters have undergone extensive im-
provements in the recent years (Linux Kernel 3.15+ and 4.15+)
bringing them to the forefront of kernel tracing and metric
collection. Linux’s extended Berkeley Packet Filter (eBPF)
feature enables developers to run small, static programs at-
tached to kernel functions (kprobes), kernel tracepoints, or
userspace functions (uprobes). Kprobes and tracepoints have
existed in the Linux kernel since the early 2000s, however,
recent advances made writing more complex programs eas-
ier and more practical. eBPF can be compiled by compilers
GCC and LLVM from classic C into bytecode which is then
injected into the kernel. Generated programs must pass eBPF
verification before being loaded. Verification enforces strict
constraints such as fixed stack size, reduced instruction set,
no floating point arithmetic, and no loops. Programs must be
verifiable in time and correctness as to not crash the kernel
or unnecessarily slow the kernel. Importantly, eBPF sup-
ports shared data structures between user and kernel space
in order to pass information between programs and user
processes. Facebook uses eBPF for TCP-Tuning, L-4 load bal-
ancing, and DDOS protection [67, 75]. More broadly, eBPF
has been applied in cloud computing for security [43, 45],
network optimization [37, 72], virtualization [23, 29], and
monitoring [9, 27, 44, 62].

3 DESIGN
Our vision for ViperProbe diverges from comparative tech-
niques [26, 48, 70] which capture all metrics, and rather,
focuses on determining the set of CriticalMetrics offline
coupled with online adaptation. With the changes outline
in Section-2.3 we argue the collection of all metrics is un-
scalable, unnecessary, and can be improved upon.
We eschew the blackbox approach to metric collection,

and instead moved to a graybox approach informed by offline
CriticalMetrics identification coupled with online techniques
and dynamic configuration. Specifically, we aim to develop
instrumentation which enables precise, uniform control of
metrics per-container or per-service. Then, using knowledge
about predefined and standardized design patterns inherent

to microservices, we tailor our metrics collection to eliminate
costly metrics and thus minimize overheads.

Thus, the challenges for realizing ViperProbe are develop-
ing:
(1) Algorithms and tools for offline analysis to determine

the CriticalMetrics
(2) A scalable metric collection framework for instrument-

ing offline analysis and online dynamic changes

Figure 7: ViperProbe

3.1 CriticalMetrics
As outlined in Section-2.3, the explosion in heterogeneity,
scale, and complexity of metrics makes the collection of all
metrics untenable. Intuitively, by reducing the breadth of
metrics and insteadmoving towards depth the associated per-
formance of management tasks also improve (Section-5.4.1).
Our discussion in Section-2.4 further motivates, however, not
all metrics share equal performance cost. As such, the goal
of CriticalMetrics identification is to balance achieving the
precision needed to optimally performance manage while
finding the minimal cost metrics.

There are two key challenges for identifying the Critical-
Metrics:
(1) A search algorithm for identifying metrics
(2) An offline framework for enabling this search algo-

rithm

3.1.1 Identifying CriticalMetrics. The algorithm for iden-
tifying the CriticalMetrics can be naive (e.g., brute-force
or domain-specific), statistical (clustering [70] or correla-
tions [26]), or based on machine learning (e.g., DeepLearn-
ing [48]). Other techniques [58, 73] use metrics provided by
the application, or framework (e.g., Kubernetes, OpenShift,
Istio) as their performance indicators. We leave a thorough
treatment of appropriate algorithms for future work. In our
current prototype described in Section 4, we use k-shape [61]

5



Honors Thesis, May 2020 Joshua Levin

System Data Application Data CriticalMetric Identification

Tool Goal Implementation Dynamic Implementation Dynamic Initial Metrics Algorithm Search Period

ViperProbe Instrument
CriticalMetrics eBPF Yes eBPF (uprobes) Yes Subset Unspecified Offline Initially +

Online Adjustment

Sieve [70] Identify
CriticalMetrics

OS Performance
Counters No Sysdig No Subset Clustering Offline

Seer [48] Root Cause for SLA
Violations

OS Performance
Counters No Distributed Tracing No All Deep learning Offline Training

Pythia (Vision) [26] Root Cause Analysis Unspecified Yes OSProfiler Yes High-level Traces Statistical Correlation Online

MicroRCA [73] Root Service
Analysis Kubernetes & Istio No Kubernetes & Istio No All Personalized Pagerank Offline Training

Loud [58] Faulty Service
Localization

iostat, sar, vmstat,
free, ps, ping No NMPv2c

(Application Specific) No All Graph Centrality Offline Training

Table 1: ViperProbe Comparison with Related Tools

clustering to perform offline analysis to determine the Criti-
calMetrics.

Results from Sieve [70] and Pythia [26] demonstrated their
tools were most effective when scoping to metrics more spe-
cific than traditional CPU utilization or request queue length.
It is intuitive that metrics tied to the specific critical path of
each service are more useful for managing those services. In
our application of ViperProbe in Section-5.4.1 we used runq
latency rather than CPU time to measure whether nodes
were overworked. Thus, we suggest that CriticalMetrics gen-
erally are not high-level and require search algorithms to
discover the more precise, effective metrics.

3.1.2 Offline Analysis Environment. The purpose of the of-
fline framework is to allow specific microservice patterns to
be tested and analyzed in isolation. In particular, this testing
framework should support both representative workloads
and microservices while allowing fast and efficient testing
of different scenarios. The framework also must support a
variety of measurements since different performance tasks
(e.g., scheduling, debugging) have unique goals. Although
the framework can be an emulator or simulator, these often
lack fidelity. Alternately, testing in production can introduce
effects for end users [24]. When running in production, test-
ing frameworks can introduce performance abnormalities
and this "observer effect" needs to be controlled [24]. In our
preliminary prototype, we test using a replica of full produc-
tion networks. Replicas avoid the challenges of simulators or
testing in production, but can be expensive and cumbersome
to replicate large production clusters. For ViperProbe, we
replicate production for example microservice deployments.

3.2 Dynamic Metrics Implementation
While dynamics and adaptiveness are at the core of most
recent efforts to enable efficient and scalable observability,
in practice, many of the existing [26, 48, 70] efforts treat met-
rics as blackboxes, containing millions of different metrics.

We find that this mismatch occurs because most monitoring
tools lack fine-grained control over sampling rate, metric col-
lection procedure, or behavior. Instead these alternative tools
focus on techniques for interpreting the deluge of metrics.
We rethink this approach, beginning with an examination of
contemporary tools for kernel-level monitoring.

Strace: [18] is a Linux utility which can be attached to
processes via Ptrace in order to provide diagnostic, debug-
ging, and performance insights. Strace is limited to a subset
of functionality like counts, and time-spent and natively only
supports a subset of system calls.

Ftrace: [20] was an early adapter of Linux kprobes, up-
robes, and tracepoints. However, unlike other tracing tools,
Ftrace is not programmable, and this severely limits the com-
plexity and logic of metrics you can generate. The Ftrace API
is primarily through the commandline, and is generally used
for spot-tracing rather than long-lived tracing.

Sysdig: [31] enables developers to apply tcpdump-like
semantics for intercepting system calls and delivering the
information to userspace. While developers can tune filters,
they have limited programmability and are not able to dy-
namically enable or sample the filters. As of 2018, sysdig
shifted to use eBPF to implement its system call redirection
process [35].

Dtrace: [34] was created for BSD systems and offers a sim-
ilar API to eBPF. It is programmable, and dynamic, sharing
many of the same tracepoints and depth of eBPF. However, it
uses its own D-language, which introduces a learning curve.

eBPF: provides the depth of FTrace with the expressive-
ness of DTrace while offering a familiar API, the C language.
Developers write small C programs which can be attached
to kprobes, uprobes, or tracepoints, effectively covering the
entire OS stack. eBPF also provides shared maps between
user and kernel space which enables real-time bi-directional
communication.
In our vision for ViperProbe, our goal is to discard the

blackbox approach to monitoring and generating metrics
6



ViperProbe: Using eBPF Metrics to Improve Microservice Observability Honors Thesis, May 2020

while providing flexibility, security, and usability. Given these
goals, eBPF is the most appropriate of the current metric col-
lection tools to provide depth and configurability. Existing
eBPF-based monitoring projects [2] do not directly focus on
long-term, adaptive monitoring. The dynamicity and con-
figurability we envision for ViperProbe are not inherent to
eBPF given its security and runtime constraints. Our efforts
in Section-4 highlight the challenges we found using eBPF
while instrumenting ViperProbe.

3.3 ViperProbe As a Part of Larger Work
In Table-1 we compare ViperProbe with similar microservice
performance analysis tools. We argue ViperProbe builds on
these works in a few capacities.
Only ViperProbe is built with the intention for dynamic

tuning ofmetrics. Otherworks likeMicroRCA [73], Loud [58],
and Seer [48] start with a fixed set of Key Performance In-
dicators (KPI) and analyze on that static selection. While
tools like Pythia [26] and Sieve [70] attempt to identify the
CriticalMetrics online or offline, neither perform both. With
ViperProbe we propose a new technique for offline analysis,
but at the same time, design the tool to enable dynamic on-
line adjustment. In this paper, we do not explore ViperProbe
for online analysis and instead focus on initial offline analy-
sis. However, we believe that ViperProbe’s support for both
offline and online analysis is unique and an area for future
work. Lastly, we believe that ViperProbe’s eBPF metrics pro-
vide deeper visibility than classic performance counters, and
are consistent across applications. Many of the tools in Table-
1 use application specific metrics or traces [48, 58, 70], while
ViperProbe’s implementation is agnostic to the application.
We believe ViperProbe is the first distributed eBPF-based
metric tool aimed at microservices.
We leave the identification algorithm for ViperProbe as

unspecified and leave that for future work as we use multi-
ple algorithms as part of our evaluation, highlighting Viper-
Probe’s flexibility.

4 IMPLEMENTATION
Our prototype of ViperProbe was built in python using IO-
Visor’s [2] BCC tools for instrumenting eBPF probes. We use
gRPC [7] for communication between the Controller and
Worker nodes, and then use Kafka as our data collection
agent. For our storage and visualization of the metric data,
we used Postgres [16] and Grafana [6]. We implemented the
metrics outlined in Table-2 for our prototype.

4.1 Orchestration
ViperProbe is tightly coupled with Kubernetes, relying on
the Kubernetes API for node discovery and pod deployment

information. The ViperProbe Controller loads a configura-
tion YAML provided offline by developers. The ViperProbe
Controller then sets a watch on the Kubernetes API for the
pod resource to track new, relocated, or terminated pods,
updating Worker configurations accordingly.

4.2 eBPF Metrics

Algorithm 1: General eBPF Metric
u32 pid_namespace = bpf_get_pdns();
config = get_config_xxx(pid_namespace)
if config and config->enabled and sample(config->rate)
then

value = ...
key = { bpf_log2l(value), pid_namespace }
stat_histogram.increment(key);

end

Through its kprobe, uprobe, and tracepoint functionality,
eBPF provides a robust API across the application, kernel,
and hardware stacks. However, eBPF has limited program
complexity, stack size, and fixed memory allocations, thus
making long-term dynamic metric collection challenging.
Existing work using eBPF for metrics [2] primarily focuses
on commandline tools designed without consideration for
system overhead or long-term use. For ViperProbe, we took
inspiration from those tools and adapted them to a new
model for ViperProbe providing dynamic control, sampling,
and long-term health. We show the general workflow for
our eBPF programs in Algorithm-1. A central challenge we
faced with eBPF was that independent metrics (i.e., cputime
and runq latency) commonly share critical functions (i.e.,
sched_switch). We designed our programs to use config pa-
rameters, discussed next, which controlled sampling and
filter by container.

Area Metrics Can Be Sampled
Schedule cputime (on/off) No
Schedule runqueue latency Yes
Memory cache ratio Yes
Memory kernel page fault Yes
Memory user page fault Yes
Memory tlb flushes Yes
Disk i/o size Yes
Disk i/o latency Yes

Network send bytes Yes
Network recv bytes Yes
Network tcp retransmissions Yes
Network tcp retransmissions (syn/ack) Yes
Network tcp drop Yes
Dns dns latency Yes

Table 2: ViperProbe Metrics7



Honors Thesis, May 2020 Joshua Levin

Figure 8: Kubernetes Node with ViperProbe

4.2.1 Container Centric Design. Per the vision of Viper-
Probe, we attach and attribute metrics per-container running
on each node (Figure-8). We implement this by tagging ker-
nel events by the current process ID namespace. By default,
Docker containers isolate their processes by setting the con-
tainer PID as the PID namespace. Thus, ViperProbe Workers
read out eBPF maps and translate PID namespaces to con-
tainer ID’s using /proc before pushing the data to Kafka.
Another challenge we faced with container-centric de-

sign was that eBPF programs are attached at the system (or
cgroup) level. Thus, a naive implementation of ViperProbe
would attach probes purely at the system level, effectively
eliminating performance gains of container filtering. Pro-
vided we could not attach eBPF programs at finer granu-
larity, our approach was to write config information into
eBPF maps. On invocation, ViperProbe eBPF programs read
a config, using the current PID namespace as the key, from
shared maps and then either return if disabled, sample if
sampled, or run normally (see Algorithm-1). This approach
enables selective monitoring per-container, but does incur
some additional overhead we discuss in Section-4.3. Viper-
Probe does not attach probes, however, if no local containers
are collecting a metric.

4.3 Sampling
Sampling intuitively is commonly used by observability tools
to reduce the volume of information, while preserving the
shape [11, 46, 57]. Sampling was the most challenging com-
ponent of ViperProbe to efficiently implement in eBPF. Here,
we present potential implementations, discuss our choice,
and then discuss future improvements for eBPF.

Naive: The naive solution for sampling in eBPF is to hard-
code sampling configurations into each eBPF program. Under
this model, eBPF probes would immediately return without
running any logic for a fixed percent of invocations. This
solution is static, but is easy to implement and efficient.

Pre-compiled: A potential improvement on the Naive
solution is to compile a number of sample-fixed versions of
the eBPF programs. To implement this version, ViperProbe
would load multiple copies of an eBPF program with dif-
ferent sampling rates hard coded in each version. The first
issue with this approach is that ViperProbe would have to
attach and detach eBPF probes frequently, potentially de-
grading performance. Second, this option (and the previous)
implements system-wide sampling, and does not support
container centric design discussed in Section-4.2.1. This so-
lution is more configurable and just as efficient as the naive
option, but is more complex to manage with continuous eBPF
program enabling/disabling.

ConfigMaps: Themethod which ViperProbe implements
(Figure-8) is writing sampling rates to the container config-
uration maps. Unlike the two previous options, this option
requires reading out the config for the current PID names-
pace, but enables both container centric design and sampling.
Further, this solution uses a single eBPF function and does
not require dynamic attachment, or rewriting of eBPF pro-
grams at runtime. Though, this method is less efficient due
to the additional cost of looking up the PID namespace in
the config maps, but is more flexible.

Dynamic-Compiled: This approach combines the Pre-
Compiled and Config Map ideas to dynamically build eBPF
programs. In this method, ViperProbe would embed the cur-
rent config map in eBPF programs and re-attach them at
runtime. This approach avoids looking up rates in eBPF
maps, but adds additional instructions and complexity to
the eBPF program itself. It also would result in many more
eBPF program attachments and detachments, which can be
costly operations. While we believe this would be faster than
ViperProbe’s Config Map, it adds significant management
complexity.

The central challenge which all these approaches attempt
to handle is that kprobes, uprobes, or tracepoints are always
invoked. This is because kprobes are implemented by insert-
ing a trap into the bytecode of kernel functions. As a result,
attaching a kprobe in a high-frequency path like tcp_send
or sched_switch can introduce severe overheads (Section-
4.4) regardless of the eBPF program speed. These sampling
procedures, outlined above, attempt to reduce the impact
by making many of these invocations quick. Yet, regardless
of these optimizations, attaching probes in high-frequency
paths is expensive. Thus, we propose that kprobe/tracepoint
native sampling be explored in order to enable efficient eBPF
in these high velocity areas.

4.4 eBPF Overheads
Generally, eBPF is regarded a lightweight, low overhead
tool for monitoring. While this holds true in industry where

8



ViperProbe: Using eBPF Metrics to Improve Microservice Observability Honors Thesis, May 2020

Facebook and Netflix currently run 4̃0 and 1̃0 eBPF programs
per server [50]. Running eBPF programs in the critical path
(scheduler, tcp) of services or on high frequency events (page
faults, scheduler) can result in considerable Response Latency
and CPU Utilization overheads. Our approach to limiting
overhead focuses on Sampling (Section- 4.3) and minimizing
the number of attached probes. Optimizing ViperProbe’s
eBPF programs is further discussed as future work in Section-
6.

5 EVALUATION
Our evaluation of ViperProbe considers several aspects of
the project. First in Section-5.1 we evaluate the overhead
introduced by running ViperProbe on a servicemesh. Then,
in Section-5.2 we evaluate the costs for particular metrics,
and evaluate the effectiveness of ViperProbe’s sampling. Our
discussion in Section-5.3 uses data from ViperProbe coupled
with statistical techniques to provide analysis on the behav-
ior and patterns of Envoy [5] sidecars used by Istio [10]. Last,
in Section-5.4 we apply ViperProbe for performance man-
agement use cases and compare it to baseline techniques.

Experimental Setup:All our experiments are performed
on Amazon EC2 with 1 master of 8 vCPU and 16Gb of mem-
ory and 5 nodes of 8 vCPUs and 16Gb of memory. We deploy
Google’s microservice Hipster Shop [3], using Locust [14]
to simulate load.

5.1 ViperProbe Overhead
We considered two particular aspects of ViperProbe when
evaluating the tool’s overhead. First, we looked at CPU uti-
lization while running ViperProbe to collect all metrics with
services under load. Second, we evaluated end-to-end latency
differences when ViperProbe was running and collecting all
metrics. We show the results (Figure-9 & Figure-10) of Hip-
ster Shop running with 1800 users and ViperProbe collecting
all metrics. We observe that Figure-10 indicates significant
latency impact around the 50th percentile, but diminishing,
negligible overheads at higher response percentiles. Our
explanation for this behavior is that for median response
times, ViperProbe probes contribute to slow and impact re-
sponse times, but for higher percentiles, the relative fixed
cost of these probes is dwarfed by external factors which
contributed to the response delay. Latency overhead is par-
ticularly sensitive to the application, and our experiments
found CPU overheads were more consistent. We attribute
the modest CPU overhead mostly to our implementation
running python, which is highly inefficient, and discuss al-
ternatives in Section-6. In our evaluation of sampling, we saw
a minimum of 3-5% CPU overhead across all metrics, which
we thus attribute to the system as written python. We believe

future work can reduce this significantly by switching to C
or C++.

Figure 9: CPU Figure 10: Latency

Figure 11: Sampling Median Overheads
(Solid lines show Response Latency, Dotted show CPU)

5.2 Sampling Overhead
For this experiment, we examined the performance of Viper-
Probe sampling, and present finer-grained overheads for a
subset of the metrics. Our experiment deployed the Hip-
ster Shop, simulating a load of 1800 users. We record the
median latency and CPU overheads in Figure-11. The fig-
ures indicate that generally sampling has a minimal effect
in reducing overhead. We view that this result confirms our
discussion in Section-5.2 on the challenges inherent to eBPF-
based sampling. Specifically, these results motivate future
work optimizing eBPF in high-velocity paths, including the
possibility of support for native sampling.

5.3 The Cost and Performance of Envoy
A prominent contribution of this work is the observation of
Microservice Design Patterns (Section-2.2). Here, we focus
on the most common pattern, the sidecar proxy pattern. Our
evaluation of this pattern begins by exploring the similarity
and differences between the performance of services and
their Envoy sidecars. Identifying performance similarities

9



Honors Thesis, May 2020 Joshua Levin

among services and sidecars highlights opportunities where
initial offline analysis can generalize across the servicemesh.
Consequently, areas of dissimilar performance can be tar-
geted with online techniques.

5.3.1 Jaccard on k-Shape Clusters. In this experiment we
performed k-Shape clustering for each service and sidecar
deployed on the servicemesh.We clustered 18 unique metrics
into 3 clusters and computed the Jaccard similarity between
clusters to identify similar clusters among services and side-
cars. The k-Shape clustering algorithm clusters metrics by
metric shape similarity. By evaluating the similarity of clus-
ters between services and sidecars, we can determine the
viability of applying offline analysis among services/sidecars
to reduce metric counts similar to Sieve [70]. We present a
few observations from the results of the experiment:
(1) The similarity between distinct services was low, un-

surprisingly, and thus implying the need for special-
ization.

(2) While Istio-injected sidecars performed similarly for
some metrics (i.e Disk) their behaviors varied among
other metrics (i.e. Runq and Network Bytes). Despite
providing the same aggregate functionality, the service
behavior impacts sidecar behavior further highlighting
the need for initial, specific offline analysis, coupled
with online monitoring, and dynamic tuning.

(3) A few unexpected services (i.e. Ad + Product, Fron-
tEnd + Shipping) clustered similarly. This clustering
indicates these services may share similar sets of Crit-
icalMetrics, although the thresholds and reasons may
be dissimilar. We also see this result as an opportu-
nity for future work to possibly colocate services with
similar metric profiles.

Metric Service-Sidecar (11 Total) Services (55 Total) Envoy (55 Total)
Runq 1 29 3

On CPU 0 8 0
Off CPU 2 35 21
Sent Bytes 0 5 24
Recv Bytes 0 10 15
Disk I/O Size 0 0 0

Disk I/O Latency 0 0 0

Table 3: K-S Test Results (# significant different)

5.3.2 Kolmogorov–Smirnov Tests. Next we looked to iden-
tify the similarity of single metrics across the servicemesh.
We performed two-sided Kolmogorov–Smirnov [12] tests on
the distributions of each metric, comparing services and side-
car. The Kolmogorov–Smirnov test evaluates whether two
distributions are drawn from the same reference distribution.
In our tests, a significant (P-Value < 0.05) result indicates the
distributions are not drawn from the same distribution. Two
sample Runq Latency distributions are show in Figure-12.
We present heatmaps of the P-Value tests in Figures-13, and

Figure 12: Example Runq Histograms

counts of significant results in Table-3. The heatmaps, specif-
ically the top-left and bottom-right quartiles, help visualize
the comparative frequency of significant results between
services vs. services and envoy vs. envoy.
From the significant results (Table-3) we present the fol-

lowing conclusions. Along the CPU performance axis (runq,
on, off time) service performance profiles diverge in 20-63%
of cases. While, Services only diverge in <20% of cases with
their co-located sidecars and sidecars only diverge in <38%
of comparisons with other sidecars. We view that this ap-
parent contradiction confirms that sidecar performance is
the result of both the service and Envoy itself. Thus, sidecars
share combined characteristics of both their co-located ser-
vices and other sidecars resulting in lower differences than
independent services.

On the Network axis, there as well are consistent patterns.
We observe that Services vary less than with CPU perfor-
mance and that Sidecars vary more. Though, we note there
were no instances where sidecars performed differently from
their co-located service. This is not entirely surprising to
us since sidecars themselves modify and communicate over
the network. Thus, this dimension presents as less similar
among Envoy instances, though still only 26-44% of sidecar
comparisons were significantly different.

The Disk dimensions is unsurprising as sidecars rarely use
the disk and our deployment did not include any disk-heavy
services. Further, disk events are much less frequent than
CPU or Network and thus are tougher to see significantly
different distributions.

10



ViperProbe: Using eBPF Metrics to Improve Microservice Observability Honors Thesis, May 2020

Runq Oncpu Offcpu SentBytes

Figure 13: K-S Test P-Value Heatmaps (Grey indicates duplicate or redundant test)

Together, we believe these results reinforce the following
conclusions:

(1) Independent services generally have unique perfor-
mance profiles.

(2) Rarely do services and their associated sidecar have
dissimilar performance profiles.

(3) Rarely do sidecar performance profiles vary (though
their accompanying services may).

5.4 Use Cases
5.4.1 Autoscaling. Next, we demonstrate the benefits of

the CriticalMetrics by applying them to horizontally au-
toscale services.

To do this, we compare generic Kubernetes autoscaling [8]
using 50% CPU and Memory utilization against a specialized
version of autoscaling based on our CriticalMetrics. The
specialized version sets thresholds on the metrics identified
as CriticalMetrics. To identify the CriticalMetrics, we employ
k-Shape [61] clustering for each service coupled with offline
analysis. We list the identified CriticalMetrics in Table-5.
In Table- 4 we present the results of autoscaling, we ob-

serve that ViperProbe results in fewer replicas in all services
except the recommendation services. For the recommenda-
tion service, we observe that ViperProbe allocates over 200%
more pods.

In analyzing the servicemesh application, we observe that
the recommendation service is a critical bottleneck which is
used by many other services (recommendations appear on
every page served). Thus, this is the service that should be
scaled and not the others (e.g., FrontEnd or Currency) which
are being over scaled by Kubernetes.

To illustrate this point, in Figure 14, we explore the number
of HTTP500 errors which arise when a request fails due to a
lack of resources. In particular, we focus on the request types
that leverage the Recommendation service. We note that
ViperProbe’s specialized metrics allows us to significantly
reduce the number of errors. We anticipate that with more

fine-tuned system, i.e., better thresholding, we can further
reduce these errors.
In these experiments, fine-grained, tailored metrics from

ViperProbe better predicted service failure and identified
crucial bottlenecks thus enabling preemptive scaling of the
appropriate services such as the Recommendation Service.

Figure 14: Autoscaling Request Failure Rates

Deployment ViperProbe Kubernetes
FrontEnd Service 4 20

Recommendation Service 13 5
Currency Service 6 20

Cart Service 1 1

Table 4: Scale Sizes

Container Metrics
Redis userfaults, runq

Currency Service userfaults, runq
Currency Proxy runq, sentbytes
Cart Service userfaults, runq
Cart Proxy runq, sentbytes

Recommendation Service userfaults, runq
Recommendation Proxy runq, sentbytes

FrontEnd Service runq, sentbytes
FrontEnd Proxy runq, sentbytes

Table 5: CriticalMetrics

11



Honors Thesis, May 2020 Joshua Levin

6 DISCUSSION
General Observability: Our work takes the first step to-
wards using “patterns” to inform and guide the use of metrics
in diagnosis tasks. We believe that similar insights can be
used for distributed tracing [11, 19, 46, 57, 68] where “design
patterns” can help to localize and improve techniques that
explore or analyze traces. Included in this observation is our
stress for the need for stronger unity among metrics, tracing,
and logs in servicemesh systems.

Broader Offline Analysis: In addition to code-oblivious
approaches to analyzing “patterns”, we envision that pro-
gramming languages can be applied to the patterns. In fact,
recent work [56] has demonstrated success in using language
techniques to analyze software that make up several of the
operator patterns.We are interested also in the inverse where
knowledge about the set of events from a pattern can be used
to limit the exploration for non-pattern code [33].

Effectiveness of Building on Patterns: Although pat-
terns only constitute a small fraction of the general deploy-
ment, their use in critical locations, e.g., sidecars, provide
us with a strong anchor point for placing constraints and
bounds on the potential behavior of other components. We
are interested in further understanding how the characteris-
tics of other patterns uniquely inform their behavior.

Scheduling Observability: Our work with ViperProbe
highlighted the challenges formonitoring co-located services
independently. We theorize that modern schedulers [66, 71]
could incorporate observability criteria when making place-
ment decisions. Provided constraints inherent to eBPF, co-
locating services which share little overlapping critical paths,
as is often done for service performance, can significantly al-
ter ViperProbe performance. Work in this area has generally
scheduled services with similar performance requirements
(e.g. CPU or Memory heavy) on separate nodes for perfor-
mance optimization. We are intrigued to see if work in this
area might improve observability performance.

Broader Applicability of ViperProbe: We view Viper-
Probe as part of a larger body of work aimed at improving
the depth, scope and precision of microservices performance-
oriented management. For example, ViperProbe can expand
the set of metrics used by existing systems [38, 48, 65] for
decision making. With some systems [65], ViperProbe will
allow for better microservices placement, for others [38, 48],
ViperProbe will improve the prediction accuracy of QoS vio-
lations and performance degradation. For other systems [26,
70], ViperProbe will expand the set of levels and configura-
bility of metrics being collected. We are eager to explore
additional ways that ViperProbe can be used to improve
existing microservice management frameworks.

eBPF super-(sorta)-powers: The growth and popularity
of eBPF has prompt many to view the framework as the

de-facto future of system monitoring. While we agree eBPF
is extraordinarily powerful, we caution this optimism given
the challenges that we faced. Given the limitations on how
broadly kprobes attach, it is challenging to limit overheads
for docker containers. Further, our tests showed sampling
inside eBPF programs had limited effect reducing overheads.
These challenges make deploying long-term, critical path,
eBPF-based monitoring expensive relative to other tools. We
believe that future work could explore this juxtaposition
between the co-location of services in microservices and the
system wide nature of eBPF.

More Efficient System Design: Our current prototype
of ViperProbe is based on Python, which introduces its own
significant overhead. We plan to explore implementations
in other languages such as Go or C++ which consume less
resources.

7 CONCLUSION
This paper presents ourwork onViperProbe and servicemesh
observability. Our work focuses on developing a more robust,
configurable metric engine for microservices. ViperProbe
is, to the best of our knowledge, the first and only eBPF-
based high performance monitoring tool specifically aimed
at the servicemesh. Through our work, we have highlighted
both the increased heterogeneity of services and uniformity
of the accompanying design patterns included with the ser-
vicemesh. Using offline analysis for these services and shared
software, ViperProbe produces low-level, highly informative
metrics per-service. We developed a general framework for
eBPF metrics and implemented a variety for our evaluation.
In our evaluation, we explored runtime trade offs for the
tool, explained challenges with eBPF performance, and pre-
sented use cases for the tool. With the increased adoption
and scale of the servicemesh, microservice-oriented tools
like ViperProbe offer practical solutions.

8 ACKNOWLEDGEMENTS
First I would like to thank Theophilus A. Benson for his con-
sistent advice, support, and guidance through this process.
Without him much of this work would not have been pos-
sible. I’d also like to extend thanks to Rodrigo Fonseca for
being my second reader through this process.
Additionally I also want acknowledge my many friends

in the Computer Science department (too many to list) who
listened to me endlessly discuss this project through its many
months of work. I’d also like to thank the Brown Computer
Science community who was wonderfully welcoming to me.
I will forever be grateful to have been able to learn to love
Computer Science here as a part of this community.

12



ViperProbe: Using eBPF Metrics to Improve Microservice Observability Honors Thesis, May 2020

Lastly, I must extend heartfelt thanks and gratitude to my
parents and brother for their consistent support and love
throughout this project and my time at Brown.

REFERENCES
[1] [n. d.]. Ambassador Edge Stack. ([n. d.]). https://www.getambassador.

io/.
[2] [n. d.]. BCC - Tools for BPF-based Linux. ([n. d.]). https://github.com/

iovisor/bcc.
[3] [n. d.]. Cloud-Native Microservices Demo. ([n. d.]). https://github.

com/GoogleCloudPlatform/microservices-demo.
[4] [n. d.]. Docker. ([n. d.]). https://www.docker.com/.
[5] [n. d.]. Envoy Proxy - Home. ([n. d.]). https://www.envoyproxy.io/.
[6] [n. d.]. Grafana. ([n. d.]). https://grafana.com/.
[7] [n. d.]. gRPC. ([n. d.]). https://grpc.io/.
[8] [n. d.]. Horizontal Pod Autoscaler. ([n. d.]). https://kubernetes.io/

docs/tasks/run-application/horizontal-pod-autoscale/.
[9] [n. d.]. Improving performance and reliability in Weave

Scope with eBPF. ([n. d.]). https://www.weave.works/blog/
improving-performance-reliability-weave-scope-ebpf/.

[10] [n. d.]. Istio. ([n. d.]). https://istio.io/.
[11] [n. d.]. Jaeger. ([n. d.]). https://www.jaegertracing.io/.
[12] [n. d.]. Kolmogorov-Smirnov Goodness-of-Fit Test. ([n. d.]). https:

//www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm.
[13] [n. d.]. Linkerd. ([n. d.]). https://linkerd.io/.
[14] [n. d.]. Locust. ([n. d.]). https://locust.io/.
[15] [n. d.]. Operator Hub. ([n. d.]). https://operatorhub.io/.
[16] [n. d.]. Postgres. ([n. d.]). https://www.postgresql.org/.
[17] [n. d.]. Production-Grade Container Orchestration. ([n. d.]). https:

//kubernetes.io/.
[18] [n. d.]. Strace - linux syscall tracer. ([n. d.]). https://strace.io/.
[19] [n. d.]. Zipkin. ([n. d.]). https://zipkin.io/.
[20] 2008. Ftrace - Function Tracer. (2008). https://www.kernel.org/doc/

Documentation/trace/ftrace.txt.
[21] 2020. Design patterns for microservices. (2020). https://docs.microsoft.

com/en-us/azure/architecture/microservices/design/patterns.
[22] 2020. Sidecar pattern. (2020). https://docs.microsoft.com/en-us/azure/

architecture/patterns/sidecar
[23] Nadav Amit and Michael Wei. 2018. The Design and Implementation

of Hyperupcalls. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18). USENIX Association, Boston, MA, 97–112. https://www.
usenix.org/conference/atc18/presentation/amit

[24] Dan Ardelean, Amer Diwan, and Chandra Erdman. 2018. Perfor-
mance Analysis of Cloud Applications. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). USENIX As-
sociation, Renton, WA, 405–417. https://www.usenix.org/conference/
nsdi18/presentation/ardelean

[25] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster, and Geoff
Outhred. 2016. Taking the Blame Game out of Data Centers Operations
with NetPoirot. In Proceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM ’16). Association for Computing Machinery, New York, NY,
USA, 440–453. https://doi.org/10.1145/2934872.2934884

[26] Emre Ates, Lily Sturmann, Mert Toslali, Orran Krieger, Richard Meg-
ginson, Ayse K. Coskun, and Raja R. Sambasivan. 2019. An Au-
tomated, Cross-Layer Instrumentation Framework for Diagnosing
Performance Problems in Distributed Applications. In Proceedings
of the ACM Symposium on Cloud Computing (SoCC ’19). Associa-
tion for Computing Machinery, New York, NY, USA, 165–170. https:
//doi.org/10.1145/3357223.3362704

[27] Ivan Babrou. [n. d.]. Debugging Linux issues with eBPF.
([n. d.]). https://www.usenix.org/sites/default/files/conference/

protected-files/lisa18_slides_babrou.pdf.
[28] Ali Basiri, Lorin Hochstein, Nora Jones, and Haley Tucker. 2019. Au-

tomating chaos experiments in production. CoRR abs/1905.04648
(2019). arXiv:1905.04648 http://arxiv.org/abs/1905.04648

[29] Ashish Bijlani and Umakishore Ramachandran. 2019. Extension Frame-
work for File Systems in User space. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). USENIX Association, Renton, WA, 121–
134. https://www.usenix.org/conference/atc19/presentation/bijlani

[30] Netflix Technology Blog. 2014. Introducing Atlas: Netflix’s Pri-
mary Telemetry Platform. (2014). https://netflixtechblog.com/
introducing-atlas-netflixs-primary-telemetry-platform-bd31f4d8ed9a.

[31] Gianluca Borello. 2015. System and Application Monitoring and Trou-
bleshooting with Sysdig. USENIX Association, Washington, D.C.

[32] Brendan Burns and David Oppenheimer. 2016. Design Patterns
for Container-based Distributed Systems. In 8th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 16). USENIX Associa-
tion, Denver, CO. https://www.usenix.org/conference/hotcloud16/
workshop-program/presentation/burns

[33] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and
Jennifer Rexford. 2012. A NICEWay to Test OpenFlow Applications. In
Presented as part of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12). USENIX, San Jose, CA, 127–
140. https://www.usenix.org/conference/nsdi12/technical-sessions/
presentation/canini

[34] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. 2004.
Dynamic Instrumentation of Production Systems. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference (ATEC ’04).
USENIX Association, USA, 2.

[35] Eric Carter. [n. d.]. Introducing container observability
with eBPF + Sysdig. ([n. d.]). https://sysdig.com/blog/
introducing-container-observability-with-ebpf-and-sysdig/.

[36] Tomas Cerny, Michael J. Donahoo, and Michal Trnka. 2018. Con-
textual Understanding of Microservice Architecture: Current and Fu-
ture Directions. SIGAPP Appl. Comput. Rev. 17, 4 (Jan. 2018), 29–45.
https://doi.org/10.1145/3183628.3183631

[37] Paul Chaignon, Kahina Lazri, Jérôme François, Thibault Delmas, and
Olivier Festor. 2018. Oko: Extending Open vSwitch with Stateful Filters.
1–13. https://doi.org/10.1145/3185467.3185496

[38] Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019. PAR-
TIES: QoS-Aware Resource Partitioning for Multiple Interactive Ser-
vices. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’19). Association for Computing Machinery, New York,
NY, USA, 107–120. https://doi.org/10.1145/3297858.3304005

[39] Jeremy Cloud. 2013. Decomposing Twitter. (2013). https:
//www.infoq.com/presentations/twitter-soa/?utm_source=infoq&
utm_medium=slideshare&utm_campaign=slidesharenewyork.

[40] Adrian Cockcroft. 2016. Evolution of Microservices.
(2016). https://www.slideshare.net/adriancockcroft/
evolution-of-microservices-craft-conference.

[41] TC Currie. [n. d.]. Airbnb’s 10 Takeaways from Mov-
ing to Microservices. ([n. d.]). https://thenewstack.io/
airbnbs-10-takeaways-moving-microservices/.

[42] Software Engineering Daily. [n. d.]. Facebook Release Engineering
with Chuck Rossi. ([n. d.]). https://softwareengineeringdaily.com/
2019/08/27/facebook-release-engineering-with-chuck-rossi/.

[43] Henri Maxime Demoulin, Isaac Pedisich, Nikos Vasilakis, Vincent Liu,
Boon Thau Loo, and Linh Thi Xuan Phan. 2019. Detecting Asym-
metric Application-layer Denial-of-Service Attacks In-Flight with
FineLame. In 2019 USENIX Annual Technical Conference (USENIX ATC
19). USENIX Association, Renton, WA, 693–708. https://www.usenix.
org/conference/atc19/presentation/demoulin

13

https://www.getambassador.io/
https://www.getambassador.io/
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://www.docker.com/
https://www.envoyproxy.io/
https://grafana.com/
https://grpc.io/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://www.weave.works/blog/improving-performance-reliability-weave-scope-ebpf/
https://www.weave.works/blog/improving-performance-reliability-weave-scope-ebpf/
https://istio.io/
https://www.jaegertracing.io/
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
https://linkerd.io/
https://locust.io/
https://operatorhub.io/
https://www.postgresql.org/
https://kubernetes.io/
https://kubernetes.io/
https://strace.io/
https://zipkin.io/
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://docs.microsoft.com/en-us/azure/architecture/microservices/design/patterns
https://docs.microsoft.com/en-us/azure/architecture/microservices/design/patterns
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://www.usenix.org/conference/atc18/presentation/amit
https://www.usenix.org/conference/atc18/presentation/amit
https://www.usenix.org/conference/nsdi18/presentation/ardelean
https://www.usenix.org/conference/nsdi18/presentation/ardelean
https://doi.org/10.1145/2934872.2934884
https://doi.org/10.1145/3357223.3362704
https://doi.org/10.1145/3357223.3362704
https://www.usenix.org/sites/default/files/conference/protected-files/lisa18_slides_babrou.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/lisa18_slides_babrou.pdf
http://arxiv.org/abs/1905.04648
http://arxiv.org/abs/1905.04648
https://www.usenix.org/conference/atc19/presentation/bijlani
https://netflixtechblog.com/introducing-atlas-netflixs-primary-telemetry-platform-bd31f4d8ed9a
https://netflixtechblog.com/introducing-atlas-netflixs-primary-telemetry-platform-bd31f4d8ed9a
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/canini
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/canini
https://sysdig.com/blog/introducing-container-observability-with-ebpf-and-sysdig/
https://sysdig.com/blog/introducing-container-observability-with-ebpf-and-sysdig/
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3185467.3185496
https://doi.org/10.1145/3297858.3304005
https://www.infoq.com/presentations/twitter-soa/?utm_source=infoq&utm_medium=slideshare&utm_campaign=slidesharenewyork
https://www.infoq.com/presentations/twitter-soa/?utm_source=infoq&utm_medium=slideshare&utm_campaign=slidesharenewyork
https://www.infoq.com/presentations/twitter-soa/?utm_source=infoq&utm_medium=slideshare&utm_campaign=slidesharenewyork
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://thenewstack.io/airbnbs-10-takeaways-moving-microservices/
https://thenewstack.io/airbnbs-10-takeaways-moving-microservices/
https://softwareengineeringdaily.com/2019/08/27/facebook-release-engineering-with-chuck-rossi/
https://softwareengineeringdaily.com/2019/08/27/facebook-release-engineering-with-chuck-rossi/
https://www.usenix.org/conference/atc19/presentation/demoulin
https://www.usenix.org/conference/atc19/presentation/demoulin


Honors Thesis, May 2020 Joshua Levin

[44] Luca Deri. [n. d.]. Monitoring Containerised Application Environments
with eBPF. ([n. d.]). https://www.ntop.org/wp-content/uploads/2019/
05/InfluxData_Webinar_2019.pdf.

[45] Luca Deri, Samuele Sabella, and Simone Mainardi. 2019. Combining
System Visibility and Security Using eBPF. In Proceedings of the Third
Italian Conference on Cyber Security, Pisa, Italy, February 13-15, 2019
(CEUR Workshop Proceedings), Pierpaolo Degano and Roberto Zunino
(Eds.), Vol. 2315. CEUR-WS.org. http://ceur-ws.org/Vol-2315/paper05.
pdf

[46] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion
Stoica. 2007. X-Trace: A Pervasive Network Tracing Framework. In
Proceedings of the 4th USENIX Conference on Networked Systems Design
& Implementation (NSDI’07). USENIX Association, USA, 20.

[47] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, and et al. 2019. An Open-Source Benchmark Suite for Mi-
croservices and Their Hardware-Software Implications for Cloud &
Edge Systems. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS ’19). Association for Computing Machinery,
New York, NY, USA, 3–18. https://doi.org/10.1145/3297858.3304013

[48] Yu Gan, Yanqi Zhang, Kelvin Hu, Yuan He, Meghna Pancholi, Dailun
Cheng, and Christina Delimitrou. 2019. Seer: Leveraging Big Data
to Navigate the Complexity of Performance Debugging in Cloud Mi-
croservices. In Proceedings of the Twenty Fourth International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS).

[49] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. In Proceedings
of the 1987 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’87). Association for Computing Machinery, New York,
NY, USA, 249–259. https://doi.org/10.1145/38713.38742

[50] Brendan Gregg. [n. d.]. UM2019 Extended BPF: A New Type of
Software. ([n. d.]). https://www.slideshare.net/brendangregg/
um2019-bpf-a-new-type-of-software.

[51] Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom, Michael Re-
iter, and Vyas Sekar. 2016. Gremlin: Systematic Resilience Testing of
Microservices. 57–66. https://doi.org/10.1109/ICDCS.2016.11

[52] Jez Humble. 2018. Continuous Delivery Sounds Great, but Will It Work
Here? Commun. ACM 61, 4 (March 2018), 34–39. https://doi.org/10.
1145/3173553

[53] Scott M. Fulton III. [n. d.]. What Led Amazon to its Own Mi-
croservices Architecture. ([n. d.]). https://thenewstack.io/
led-amazon-microservices-architecture/.

[54] Joab Jackson. [n. d.]. Debugging Microservices: Lessons from
Google, Facebook, Lyft. ([n. d.]). https://thenewstack.io/
debugging-microservices-lessons-from-google-facebook-lyft/.

[55] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan,
Todd Pfleiger, Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell,
Vipul Modi, Mansoor Mohsin, Ray Kong, Anmol Ahuja, Oana Pla-
ton, Alex Wun, Matthew Snider, Chacko Daniel, Dan Mastrian, Yang
Li, Aprameya Rao, Vaishnav Kidambi, Randy Wang, Abhishek Ram,
Sumukh Shivaprakash, Rajeet Nair, Alan Warwick, Bharat S. Narasim-
man, Meng Lin, Jeffrey Chen, Abhay Balkrishna Mhatre, Preetha Sub-
barayalu, Mert Coskun, and Indranil Gupta. 2018. Service Fabric:
A Distributed Platform for Building Microservices in the Cloud. In
Proceedings of the Thirteenth EuroSys Conference (EuroSys ’18). Associ-
ation for Computing Machinery, New York, NY, USA, Article Article
33, 15 pages. https://doi.org/10.1145/3190508.3190546

[56] Chang Lou, Peng Huang, and Scott Smith. 2020. Understanding, De-
tecting and Localizing Partial Failures in Large System Software. In
17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). USENIX Association, Santa Clara, CA, 559–574.

https://www.usenix.org/conference/nsdi20/presentation/lou
[57] JonathanMace, Ryan Roelke, and Rodrigo Fonseca. 2018. Pivot Tracing:

Dynamic Causal Monitoring for Distributed Systems. ACM Trans.
Comput. Syst. 35, 4, Article Article 11 (Dec. 2018), 28 pages. https:
//doi.org/10.1145/3208104

[58] Leonardo Mariani, Cristina Monni, Mauro Pezzè, Oliviero Riganelli,
and Rui Xin. 2018. Localizing Faults in Cloud Systems. 262–273. https:
//doi.org/10.1109/ICST.2018.00034

[59] Caitie McCaffrey. [n. d.]. Distributed Sagas: A Protocol for Coordi-
nating Microservices. ([n. d.]). https://www.youtube.com/watch?v=
0UTOLRTwOX0

[60] Adam Oliner, Archana Ganapathi, and Wei Xu. 2012. Advances and
Challenges in Log Analysis. Commun. ACM 55, 2 (Feb. 2012), 55–61.
https://doi.org/10.1145/2076450.2076466

[61] John Paparrizos and Luis Gravano. 2016. K-Shape: Efficient and Accu-
rate Clustering of Time Series. SIGMOD Rec. 45, 1 (June 2016), 69–76.
https://doi.org/10.1145/2949741.2949758

[62] Jonathan Perry. [n. d.]. Monitoring Service Architecture and Health
with BPF. ([n. d.]). https://www.youtube.com/watch?v=J2NWvh3lgJI.

[63] Matt Ranney. [n. d.]. What Comes after Microservices? ([n. d.]).
https://www.youtube.com/watch?v=UDC3kwkBvkA

[64] Chuck Rossi. [n. d.]. Rapid release at massive scale. ([n. d.]). https:
//engineering.fb.com/web/rapid-release-at-massive-scale/.

[65] Adalberto Sampaio Junior, Julia Rubin, Ivan Beschastnikh, and Nelson
Rosa. 2019. Improving microservice-based applications with runtime
placement adaptation. Journal of Internet Services and Applications 10
(12 2019). https://doi.org/10.1186/s13174-019-0104-0

[66] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John
Wilkes. 2013. Omega: Flexible, Scalable Schedulers for Large Compute
Clusters. In Proceedings of the 8th ACM European Conference on Com-
puter Systems (EuroSys ’13). Association for Computing Machinery,
New York, NY, USA, 351–364. https://doi.org/10.1145/2465351.2465386

[67] Nikita Shirokov and Ranjeeth Dasineni. 2018. Open-
sourcing Katran, a scalable network load balancer.
(2018). https://engineering.fb.com/open-source/
open-sourcing-katran-a-scalable-network-load-balancer/.

[68] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat
Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chan-
dan Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure. Technical Report. Google, Inc. https://research.google.
com/archive/papers/dapper-2010-1.pdf

[69] Shreyas Srivatsan. [n. d.]. Observability at Scale: Building Uber’s Alert-
ing Ecosystem. ([n. d.]). https://eng.uber.com/observability-at-scale/.

[70] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bha-
totia, Ruichuan Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer.
2017. Sieve: Actionable Insights fromMonitored Metrics in Distributed
Systems. In Proceedings of the 18th ACM/IFIP/USENIX Middleware Con-
ference (Middleware ’17). Association for Computing Machinery, New
York, NY, USA, 14–27. https://doi.org/10.1145/3135974.3135977

[71] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-Scale Cluster Man-
agement at Google with Borg. In Proceedings of the Tenth European
Conference on Computer Systems (EuroSys ’15). Association for Com-
puting Machinery, New York, NY, USA, Article Article 18, 17 pages.
https://doi.org/10.1145/2741948.2741964

[72] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico,
Elerson R. S. Santos, Eduardo P. M. Câmara Júnior, and Luiz F. M.
Vieira. 2020. Fast Packet Processing with EBPF and XDP: Concepts,
Code, Challenges, and Applications. ACM Comput. Surv. 53, 1, Article
Article 16 (Feb. 2020), 36 pages. https://doi.org/10.1145/3371038

[73] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. MicroRCA:
Root Cause Localization of Performance Issues in Microservices. In

14

https://www.ntop.org/wp-content/uploads/2019/05/InfluxData_Webinar_2019.pdf
https://www.ntop.org/wp-content/uploads/2019/05/InfluxData_Webinar_2019.pdf
http://ceur-ws.org/Vol-2315/paper05.pdf
http://ceur-ws.org/Vol-2315/paper05.pdf
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/38713.38742
https://www.slideshare.net/brendangregg/um2019-bpf-a-new-type-of-software
https://www.slideshare.net/brendangregg/um2019-bpf-a-new-type-of-software
https://doi.org/10.1109/ICDCS.2016.11
https://doi.org/10.1145/3173553
https://doi.org/10.1145/3173553
https://thenewstack.io/led-amazon-microservices-architecture/
https://thenewstack.io/led-amazon-microservices-architecture/
https://thenewstack.io/debugging-microservices-lessons-from-google-facebook-lyft/
https://thenewstack.io/debugging-microservices-lessons-from-google-facebook-lyft/
https://doi.org/10.1145/3190508.3190546
https://www.usenix.org/conference/nsdi20/presentation/lou
https://doi.org/10.1145/3208104
https://doi.org/10.1145/3208104
https://doi.org/10.1109/ICST.2018.00034
https://doi.org/10.1109/ICST.2018.00034
https://www.youtube.com/watch?v=0UTOLRTwOX0
https://www.youtube.com/watch?v=0UTOLRTwOX0
https://doi.org/10.1145/2076450.2076466
https://doi.org/10.1145/2949741.2949758
https://www.youtube.com/watch?v=J2NWvh3lgJI
https://www.youtube.com/watch?v=UDC3kwkBvkA
https://engineering.fb.com/web/rapid-release-at-massive-scale/
https://engineering.fb.com/web/rapid-release-at-massive-scale/
https://doi.org/10.1186/s13174-019-0104-0
https://doi.org/10.1145/2465351.2465386
https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://eng.uber.com/observability-at-scale/
https://doi.org/10.1145/3135974.3135977
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/3371038


ViperProbe: Using eBPF Metrics to Improve Microservice Observability Honors Thesis, May 2020

IEEE/IFIP Network Operations and Management Symposium (NOMS).
Budapest, Hungary. https://hal.inria.fr/hal-02441640

[74] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu,
Rui Gu, Beng Chin Ooi, and Junfeng Yang. 2018. Overload Control for
Scaling WeChat Microservices. Proceedings of the ACM Symposium on

Cloud Computing - SoCC ’18 (2018). https://doi.org/10.1145/3267809.
3267823

[75] Huapeng Zhou, Doug Porter, Ryan Tierney, and Nikita Shirokov. 2017.
Droplet: DDoS countermeasures powered by BPF + XDP. (2017). https:
//netdevconf.info/2.1/slides/apr6/zhou-netdev-xdp-2017.pdf

15

https://hal.inria.fr/hal-02441640
https://doi.org/10.1145/3267809.3267823
https://doi.org/10.1145/3267809.3267823
https://netdevconf.info/2.1/slides/apr6/zhou-netdev-xdp-2017.pdf
https://netdevconf.info/2.1/slides/apr6/zhou-netdev-xdp-2017.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 From Microservices to the Servicemesh
	2.2 Microservice and Servicemesh Design Patterns
	2.3 Observability Challenges
	2.4 Not All Metrics are Equal
	2.5 eBPF

	3 Design
	3.1 CriticalMetrics
	3.2 Dynamic Metrics Implementation
	3.3 ViperProbe As a Part of Larger Work

	4 Implementation
	4.1 Orchestration
	4.2 eBPF Metrics
	4.3 Sampling
	4.4 eBPF Overheads

	5 Evaluation
	5.1 ViperProbe Overhead
	5.2 Sampling Overhead
	5.3 The Cost and Performance of Envoy
	5.4 Use Cases

	6 Discussion
	7 Conclusion
	8 Acknowledgements
	References

