
Mystery Functions

by Amy Huang

Computer Science Honors Thesis

Brown University, May 2020

Advisor

Tim Nelson

Brown University Computer Science

Reader

Shriram Krishnamurthi

Brown University Computer Science

In collaboration with

Rob Goldstone

Indiana University Psychological and Brain Sciences

Abstract

This thesis project investigates the process of theory formation through a study

design we call Mystery Functions. Previous works have investigated how people collect

and respond to data that they retrieve from a central “oracle” entity. Under this design

paradigm, participants are given the means to query an all-knowing source of truth for

data about some observed phenomenon with the goal of coming up with a theory that

totally explains it. The oracle answers all queries immediately and perfectly, giving

exactly the data asked for. To determine whether they have succeeded, participants

present their theory to the oracle, and the oracle tells them whether or not it’s correct.

We designed an activity after this model in which participants guess what a com-

putational function does. At first, the only pieces of information they know are the

number of inputs and the input and output types of the function; then, they are given

the means to ask for the corresponding output of any input and make a guess about

the function. The activity is implemented as a web application. We conducted a study

with 68 students from a psychology subject pool at Indiana University Bloomington,

and 80 students from a software engineering class at Brown University.

Our contributions are the dataset of inputs evaluated, quiz attempts made, and

labeled guesses about the functions, and our analysis. Though the quality of guesses

given by the two groups of students varies substantially, both groups exhibit similar

patterns, such as doing most of their data collection before making their first guess.

While collecting data, they made repetitive changes to past queries for data to generate

future queries.

1

Contents

1 Introduction 3

2 Study Design 4

2.1 Design Limitations . 13

2.2 Execution Limitations . 14

3 Functions Given 15

4 Subjects 16

5 Analysis 17

5.1 Guess Labeling . 18

5.2 Correctness Ratings . 22

5.3 Differences in Matched Pair Function Difficulty 24

5.4 Improvement Over Time . 25

5.5 Inputs Evaluated Before and After Quiz Attempts 25

5.6 Choosing Inputs . 25

6 Future Work: Mystery Predicates 28

7 Acknowledgements 28

2

May 28, 2020

1 Introduction

People form theories based on observations they make about their surroundings, and often

seek to systematically collect data and refine those theories. How people go about designing

and executing this data collection is of great interest in the fields of psychology and cognitive

science [2, 7].

One way to study the process of theory formation is to create an all-knowing source

of truth, or “oracle”, that subjects query for information. The oracle knows everything

about some phenomenon in the subjects’ environment and will answer any question about

it instantly and accurately. The subjects come up with a theory about what causes the

phenomenon by making queries of their choice. At any time, subjects can present their

theory to the oracle, and the oracle will respond whether it is correct. With this activity, we

can observe how people design experiments and react to the results.

In our project, the phenomenon to be understood is a computational function that takes

in data, performs computation, and returns the result. The subject’s goal is to find out what

the function is. They can only make queries of the following form: “What does this function

output for an input of X?”, where X is some well-formed input value. We call this activity

Mystery Functions, and implement it using a web application.

Past works focused narrowly on how people understood mathematical functions that took

in a single real number and output another [1,5], giving subjects initial data to analyze but

little ability to explore further [3, 6]. Subjects were repeatedly shown examples of input-

output pairs for several similar functions, and then demonstrated their comprehension by

guessing the outputs of a function that they’d never seen before, but was similar to those

3

presented.

It is shown that having agency over the data collection process may help people learn

better than passively being given the same data [4]. In our design, subjects can easily

design and execute plans for data collection, and choose freely when to switch between data

collection and venturing guesses about the phenomenon. Furthermore, we ask subjects to

explicitly articulate their guess about the phenomenon in their own words, allowing insight

into the conscious thought processes of theory formation.

2 Study Design

We now describe the workflow of a mystery functions session. Stepping through the actions

of a hypothetical subject named Hester, we describe the possible actions they can take at

each stage of interaction with the web application. For the purpose of demonstrating the

mystery functions workflow, the mystery function will be simple: given a list of integers, the

function returns the absolute value of the sum of its elements. The functions actually used

in the study are detailed later in Functions Given (Section 3).

Hester receives the URL for the study web application, and opens their web browser to

it. They are taken to the Instructions Screen.

They read the below description of Mystery Functions.

4

Hester is prompted to submit an ID that we will use to uniquely identify their session,

so that we can give them academic credit for it. The subject populations we drew from are

detailed further later in Subjects (Section 4).

Upon entering an ID, Hester arrives at the Evaluation Screen, where they can evaluate

inputs.

5

In the top left corner of the screen is a description of the function signature, and how

to format values of the input type as text. For lists of integers, there must be square

brackets indicating the beginning and end of the list and commas separating list elements.

In the bottom left corner, there is a tabbed window. The first tab is for evaluating inputs,

with a text box whose contents can be submitted by pressing Enter. The second tab is for

submitting guesses about what the function does. On the right side of the screen, a console

displays the input-output pairs of inputs evaluated. There is no limit to how many inputs

can be evaluated, nor how much time Hester has to complete the function.

6

Hester evaluates inputs [1, 1, 1], [-4, 8], and [0, 5, 11, 100] which produce the outputs

3, 4, and 116, respectively. The application logs each input evaluation, sending the user ID,

local browser time, the input, and the output to the web server.

Hester thinks that the the function outputs the sum over the input list, and decides to

submit a guess about the function. They navigate to the second tab on the window in the

bottom left corner, and write out “sum of list”.

7

Upon submitting, they are taken to the Quiz Screen.

3 questions are presented, one at a time, each of the same form: “Given this input, what

value would the mystery function return?”. For every quiz attempt, the quiz question inputs

remain the same and are presented in the same order.

8

The first input presented is [8, 3, 11]. The correct answer (the absolute value of the sum

of the list) is 22. Hester gets this question right.

The application logs the action, saving the ID and time again, as well as the input

presented, Hester’s submitted output, and the actual output corresponding to the input.

They are prompted to move to the next quiz question.

The next input presented is [-4, 1]. The correct answer is 3, but Hester answers -3.

9

The application shows two options now: Hester can either return to the Evaluation Screen

and resume evaluating inputs, or give up on guessing the current mystery function and move

on to the next one.

Hester chooses to go back to the Evaluation Screen, where the previous inputs evaluated

are still displayed. They evaluate [-3, -2] and [0, -1], and realize that the function is out-

putting the absolute value of the sum over the input list. They again submit a guess: “sum

of list if positive, if negative sum multiply by -1” and take the quiz.

10

This time, Hester successfully answers all of the quiz questions, and is taken to a page

revealing what the function is.

The application sends the last saved guess about the function to server as the final logged

action for this mystery function.

Had Hester been unable to complete the quiz and chosen to give up on this mystery

function, they would have arrived at this page as well.

11

Hester moves on to the next page, which is the Evaluation Screen for the next mystery

function.

Eventually, they complete all of the mystery functions, and finally reach a page that

indicates they are done with the study.

12

Unlike Hester, not all respondents completed every mystery function. However, as long

as the subject submitted a guess about the function, the data from that mystery function

session was used for analysis.

2.1 Design Limitations

We now describe the limitations of our study design that we recognize and accept as worth-

while tradeoffs given limited time and resources.

In the oracle model of studying theory formation described in the Introduction (Section

1), the oracle can give a definite answer to the participant as to whether their guess about

the phenomenon they seek to understand. Ideally, a participant in Mystery Functions is

able to ascertain whether or not their guess about the function is correct without fail. We

considered implementing this capability by having the students submit code that they think

does the same computation as the mystery function. The web application would evaluate

the submitted function on a set of inputs that we believe sufficiently cover the input domain.

If their function produces the same outputs as our mystery function in an acceptable time

limit, it would be deemed correct. Otherwise, it would be deemed incorrect. Alternatively,

we could simply reveal what proportion of test cases were passed for any given submission.

Having participants take the quiz and submit a written answer less reliably allows us to

know if the subject understands the function. If they do not answer all of the quiz questions

13

correctly, we can confidently say they don’t understand the function, since we picked the

quiz inputs to cover important areas of the input domain. However, it is not necessarily true

that they do understand the function if they answer all of the quiz questions successfully. It

is possible to guess what the output of the given input without actually understanding the

function, especially if there are few possible values for the output type (such as booleans).

We decided to take this approach anyway, because we wanted to conduct our study

with people without programming experience. As a result, our subjects are diverse in their

familiarity with computing and skill at the Mystery Functions activity, which we believe is

valuable for understanding theory formation at large.

2.2 Execution Limitations

We now describe improvements to our study execution that we wish we had made, as they

would have strengthened its validity and potential to uncover deeper insights into theory

formation.

First is the incomplete recording of guesses about functions. An improvement we could

have made on this Only the last guess that a subject submits for a function before moving

on to the next one is saved. Furthermore, we do not ask subjects to articulate how sure they

are about their guess. Saving all submitted guesses and confidence levels would have allowed

for deeper insight into why subjects chose certain inputs, and how they informed the final

theories they submitted.

Another area of improvement is inter-rater reliability. In order to ensure a high level of

consensus among raters of guesses, there needs to be a standardized rubric that is used to

determine what labels apply to each answer. The labels we used are listed in Guess Labeling

under Analysis (Section 5.1). In this project, a rubric was developed, but only one author

assigned labels and did the resulting analysis. Ideally, multiple authors would assign labels

and determine a high Cohen’s κ before analysis is carried out.

14

3 Functions Given

The mystery functions included were chosen to represent a wide range of possible functions,

and take on average 10 minutes each to complete for students to complete. They were

presented in random order. Participants were presented 5 mystery functions to complete,

but due to mistakes in data collection for 1 of the matched pairs, we decided not to use it for

analysis in this project; we will describe and present analysis for only the other 4 functions.

A preliminary trial study run was conducted on Amazon Mechanical Turk to gauge the

difficulty of two versions of a potential candidate function IsPalindrome. The first version

of IsPalindrome takes in a list of integers, and outputs a boolean: whether the input list is

palindromic or not. The second version takes in a string, and returns whether the string is

palindromic. Each version of IsPalindrome was assigned to 5 Turk workers with programming

experience. On both versions of the function, workers took 5 minutes or less to complete the

session, but fewer than half gave correct final guesses about the function. As a result, we

chose simpler functions for the study.

Below is a description of the functions used in the study.

• Average takes in a list of integers, and returns an integer that is the average of the

input list.

• Median takes in a list of integers, and returns an integer that is the median of numbers

in list. This is the middle number of sorted input list its length is odd; average of the

two middle numbers otherwise.

• SumParityBool takes in a list of integers, and returns the boolean value true if the

parity of list is 1; false otherwise.

• SumParityInt takes in a list of integers, and returns the parity of the sum of numbers

in list: the remainder of sum divided by 2.

• SumBetween takes in two integers, and returns the sum of integers between first and

second input integers, inclusive. If the inputs are equal, the result is that value; if the

first is larger, the result is 0.

15

• MultiplyAndHalve takes in an integer that we will call x. It outputs x·(x−1)
2

.

Below is a table displaying the inputs and corresponding outputs used for the quiz ques-

tions on each function. Each input output pair is denoted by the input value followed by an

arrow (→) and then its output value.

Quiz Input Output Pairs

Function
First Input

and Output

Second Input

and Output

Third Input

and Output

Median [1, 8, 24]→8 [8, 1, 24]→8 [1, 2, 3, 14]→2.5

Average [1, 8, 24]→11 [8, 1, 24]→11 [1, 2, 3, 14]→5

SumParityBool [333]→TRUE [-8, 3]→FALSE [1, 0, 1]→FALSE

SumParityInt [333]→1 [-8, 3]→1 [1, 0, 1]→0

Sum Between 2, 5→14 5, 2 → 0 -2, 3→ 3

Induced 11→55 9→36 6→15

Some of the functions come in matched pairs such that every subject was only shown

one of them. Upon visiting the web application URL, one of the matched pair functions

is chosen uniformly at random for that subject. We wanted to see if there would be a

significant difference in performance due to the pair’s differences. The first matched pair

is Average and Median, which perform similar but distinct calculations; the second is

SumParityBool and SumParityInt, which differ only in output type.

4 Subjects

Our participants came from two distinct sources. At Indiana University, students can receive

course credit by partipating in studies administered by the Department of Psychological and

Brain Sciences (PBS). Students enrolled in approved PBS courses are eligible to sign up for

the program, and must complete a number of 50 minute studies over the course of a semester.

The functions used for the mystery functions study were chosen to take approximately 10

minutes each so that the total time taken would be approximately 50 minutes to accom-

16

modate this constraint. 4.3% of participants majored in an explicitly computing-related

discipline in the Luddy School of Informatics, Computing, and Engineering.

At Brown University, Introduction to Software Engineering (CSCI 0320) students were

given the option of completing our study for extra credit. The course involves substantial

programming projects to be completed individually and also in pairs and teams of 3-4 stu-

dents. During the semester that our study was administered, most students in the course

took it as a requirement for the computer science major. Additionally, most of the students

were 2nd or 3rd year undergraduates.

We administered the Indiana University portion of the study in the fall semester of the

2019-2020 school year, and the Brown portion in the spring semester of the 2019-2020 school

year. From Indiana University, there were a total of 62 respondents who submitted a well-

formed guess about at least one of the functions that described an expression relating inputs

and outputs of the appropriate type; from Brown University there were 80.

5 Analysis

We analyzed the inputs evaluated, quiz attempts made, and written guesses submitted by

subjects for 4 out of 5 functions that they were presented during the study, as outlined in

Functions Given (Section 3). All percentage values in this section are rounded to the nearest

ones digit.

To simplify the analysis, we treated the two versions of the study at Indiana and Brown

University as the same. They are identical except for a small improvement made for the

Brown version. In the fall iteration of the study at Indiana University, subjects are able to

evaluate quiz inputs after they get a question wrong, thereby learning what the right answer

is. This makes it easy to game the quiz, making the quiz a less effective tool for seeing if a

subject understands the function. In the spring iteration of the study at Brown, we banned

subjects from evaluating inputs after seeing them during a quiz attempt. We felt that this

would force subjects to rely more on their ability to choose inputs and interpret feedback

than on getting hints from the quiz.

17

5.1 Guess Labeling

We developed a rubric for classifying the final using labels that fall into the following cate-

gories: well-formedness, correctness, general, and function specific.

The well-formedness labels describe whether the guess can be interpreted as a guess about

the function at all. Some guesses do not describe a function with the appropriate input and

output types, or even describe a concrete expression or pattern observed among input output

pairs.

Well-Formedness Labels

NONS Says something that can’t be interpreted as a function guess, like “3” or

“FALSE”

IDK Says “I don’t know” or similar and nothing else

NORM Describes an expression relating inputs and outputs of the correct type

Out of 168 total participants from both subject pools, 100% submitted a written answer

for the 1st function presented, 94% for the 2nd function, 90% for the 3rd, and 79% for the

4th. Not every answer could be interpreted as a guess about the function, describing an

expression relating inputs and outputs of the appropriate types. Out of all participants,

74% submitted a well-formed guess for the 1st function presented, 73% for the 2nd function,

69% for the 3rd, and 59% for the 4th.

The correctness labels are scores between 1 and 4 inclusive—4 being the highest.

Correctness Ratings

4 Completely or almost completely correct

3 Mostly correct

2 Somewhat correct

1 Not at all correct

The general labels describe properties of the guess that can appear across all functions,

such as whether it uses code-like syntax or pseudocode to describe the function.

18

General Labels

UNS Says something comprehensible and includes a statement of uncertainty, like

“I’m not sure”

NINP Names the function parameters

NFCN Names the function

NOUT Names the output

IO Lists at least one input/output pair as an example

CODE Uses code-like syntax or pseudocode

SET For functions that take in lists: uses the word “set” to refer to the collection

of items in the input

The function specific labels below characterize traits of the expression that the guess

describes that are specific to the function. Students not only described varying expressions,

but also articulated the same expressions in different ways.

Average Labels

A-WORD Used the word “average” or “mean”

A-CALC Describes calculation of average: sum divided by length of list

A-MED Describes the Median function instead

Median Labels

M-WORD Used the word ’median’

M-CALC Describes calculation of median: in sorted list, middle element if odd

length; average of two middle ones if even length

M-WRO Used word ’median’ incorrectly

M-AVG Describes the Average function instead

M-MID Used the word ’middle’ or ’midpoint’ or similar

19

SumParityBool Labels

SPB-TC Specifies condition needed for an output of TRUE completely correctly

SPB-TP Specifies condition needed for an output of TRUE partially correctly

SPB-TN Specifies condition needed for an output of TRUE not at all correctly

SPB-FC Specifies condition needed for an output of FALSE completely correctly

SPB-FP Specifies condition needed for an output of FALSE partially correctly

SPB-FN Specifies condition needed for an output of FALSE not at all correctly

SPB-VSUM Mentions the parity of the sum of the input list elements

SPB-VELEM Mentions the parity of the sum of one or only some of the list elements

SPB-VOTH Mentions the parity of some other value

SPB-PPAR Mentions the concept of parity using the word “parity”

SPB-PEO Mentions the concept of parity using the words “even” and “odd”

SPB-PMOD Mentions the concept of parity using the word “mod” or “modulo”

SPB-PREM Mentions the concept of parity using the word “remainder” or “division”

SumParityInt Labels

SPI-1C Specifies condition needed for an output of 1 completely correctly

SPI-1P Specifies condition needed for an output of 1 partially correctly

SPI-1N Specifies condition needed for an output of 1 not at all correctly

SPI-0C Specifies condition needed for an output of 0 completely correctly

SPI-0P Specifies condition needed for an output of 0 partially correctly

SPI-0N Specifies condition needed for an output of 0 not at all correctly

SPI-VSUM Mentions the parity of the sum of the input list elements

SPI-VELEM Mentions the parity of the sum of one or only some of the list elements

SPI-VOTH Mentions the parity of some other value

SPI-PPAR Mentions the concept of parity using the word “parity”

SPI-PEO Mentions the concept of parity using the words “even” and “odd”

SPI-PMOD Mentions the concept of parity using the word “mod” or “modulo”

SPI-PREM Mentions the concept of parity using the word “remainder” or “division”

20

SumBetween Labels

SB-PAT Describes pattern instead of an expression that can be evaluated

SB-RBASE Describes a recurrence relation with a base case

SB-ATH Describes a closed form arithmetic expression. Correct is ((A+B)(B-

A+1)/2) or equivalent

SB-WOR Describes a closed form expression in words

SB-ONE Expression describes a single sum. Correct is [A, B]

SB-TWO Expression describes 2 distinct sums. Correct is [1, B] - [1, A-1]

SB-SASC Describes sum; bounds are in ascending order, lower before higher

SB-SDSC Describes sum; bounds are in descending order, higher before lower

SB-SBOUND Describes sum; specifies whether bounds are inclusive or exclusive. Cor-

rect is both inclusive

SB-CON Describes sum with conventional interval notation, like [A, B]

SB-WORD Describes sum in words like “A to B” or “between A and B”

SB-SEQ Describes sum as a sum of sequence, like A + (A+1) + ... + (B-1) + B

21

MultiplyAndHalve Labels

MH-DNEG Gives different expressions for positive and negative inputs

MH-NEG Explicitly mentions negative inputs

MH-DIST Describes pattern of difference between outputs of consecutive inputs

MH-MULT Describes pattern of some value being multiplied by a factor that in-

creases with input values

MH-WORD Describes closed form expression in words

MH-ATH Describes primarily with equations or symbols

MH-T Mentions triangular numbers

MH-TN-1 Expression described as the (n-1)th triangular number

MH-TN Expression described as the nth triangular number

MH-SASC Describes sum; bounds are in ascending order, lower before higher

MH-SDSC Describes sum; bounds are in descending order, higher before lower

MH-SBOUND Describes sum; specifies whether bounds are inclusive or exclusive. Cor-

rect is both inclusive

MH-SWORD Describes sum in words like “A to B” or “between A and B”

MH-SDSEQ Describes sum as a sum of a sequence like: A + (A+1) + ... + (B-1) +

B

MH-SCON Describes sum with conventional interval notation, like [A, B]

MH-R1ST Describes recurrence relation of f(x) = f(x-1) + (x-1) or equivalent

MH-FIB Mentions the fibonacci sequence

MH-R2ND Describes recurrence relation of f(x) = f(x-1) + f(x-1) or equivalent

MH-RBASE Describes a recurrence relation with a base case

5.2 Correctness Ratings

Each function guess was given a correctness score between 1 to 4 inclusive, 4 being the

highest score. We acknowledge that because the rater of the guesses is also a Brown student,

there is potential for bias in the ratings given despite the standardized system for assigning

labels and scores.

22

Below are the proportions of students who received each correctness rating, by function

and subject pool. Each percentage value for a correctness rating should be interpreted as the

proportion of well-formed guesses per function and subject pool that received that particular

correctness rating. Each “Well-Formed Guesses” percentage value is the proportion of all

submitted guesses for that function and subject pool that were well-formed.

Average Function

Subject Pool
Not at all

correct

Somewhat

correct

Mostly

correct

Completely

correct

Well-Formed

Guesses

Indiana 12% 0% 15% 73% 63%

Brown 0% 7% 7% 87% 100%

Median Function

Subject Pool
Not at all

correct

Somewhat

correct

Mostly

correct

Completely

correct

Well-Formed

Guesses

Indiana 27% 15% 42% 15% 67%

Brown 2% 20% 7% 70% 98%

SumParityBool Function

Subject Pool
Not at all

correct

Somewhat

correct

Mostly

correct

Completely

correct

Well-Formed

Guesses

Indiana 32% 16% 37% 16% 58%

Brown 5% 5% 8% 82% 100%

SumParityInt Function

Subject Pool
Not at all

correct

Somewhat

correct

Mostly

correct

Completely

correct

Well-Formed

Guesses

Indiana 8% 25% 54% 13% 53%

Brown 0% 14% 3% 83% 97%

23

SumBetween Function

Subject Pool
Not at all

correct

Somewhat

correct

Mostly

correct

Completely

correct

Well-Formed

Guesses

Indiana 22% 58% 19% 0% 47%

Brown 3% 15% 25% 57% 91%

MultiplyAndHalve Function

Subject Pool
Not at all

correct

Somewhat

correct

Mostly

correct

Completely

correct

Well-Formed

Guesses

Indiana 49% 13% 21% 17% 57%

Brown 0% 8% 46% 45% 99%

5.3 Differences in Matched Pair Function Difficulty

We now discuss the difference in correctness ratings between the Average and Median func-

tions by subject pool. 87% of Brown students guessed Average completely correctly, while

only 70% guessed Median completely correctly. 73% of Indiana students guessed Average

completely correctly, while only 15% guessed Median completely correctly.

Furthermore, students more often mistook the Median function for the Average function

(as denoted by label M-AVG) than vice versa (as denoted by label A-MED). 7% of Brown

students mistook the Average function for the Median function, while 16% of them mistook

Median for Average. 4% of Indiana students mistook the Average function for the Median

function, while 23% of them mistook Median for Average.

We conclude that Median is harder to guess than Average.

We now discuss the difference in correctness ratings between the SumParityBool and

SumParityInt functions by subject pool. The proportions of students who guessed each

function completely correctly are similar: 16% of Indiana students for SumParityBool and

13% for SumParityInt; 82% of Brown students for SumParityBool and 83% for SumPar-

ityInt. However, more students in both populations gave not at all or somewhat correct

guesses for SumParityBool than SumParityInt. For example, only 8% of Indiana students

24

guessed SumParityInt completely incorrectly, while 32% guessed SumParityBool completely

incorrectly.

We conclude that SumParityBool is harder to guess than SumParityInt.

5.4 Improvement Over Time

Across all subjects, the average correctness score that a subject gets on a function doesn’t

appear to correlate with whether the subject saw the function earlier or later. The average

scores of those who completed two functions are 2.48 and 2.29; those who completed three

functions had average scores of 3.15, 2.90, and 3.08; those who completed all four had average

scores of 3.39, 3.25, 3.25, and 3.20. We do not see evidence of better performance on later

functions seen.

5.5 Inputs Evaluated Before and After Quiz Attempts

In both groups, subjects who scored the lowest and the highest—receiving scores 1 or 4—

made the fewest quiz attempts on average across all functions. 67% of Indiana students and

86% of Brown students only attempted the quiz once.

Indiana students who made multiple attempts evaluated 62% of all their inputs before

the first ever quiz attempt; for Brown students, 61%.

We conclude that subjects who submitted better quality guesses about functions were

not able to do so primarily because they made multiple quiz attempts and received more

feedback on the correctness of their guesses as well as ideas for what inputs to evaluate.

5.6 Choosing Inputs

To investigate how systematically subjects chose inputs to evaluate, we examined how similar

consecutive inputs evaluated were.

We chose to characterize the change between inputs evaluated in terms of the minimum

number and kind of edit operations needed to convert from one to the other. For lists of

integers, we define an edit operation as an insertion, deletion, or replacement of one of the

integers at a valid index of the 0-indexed list. For example, an insertion of 1 at index 0

25

of the empty list [] would result in [1]; a deletion at index 0 of [4, 3] results in [3], and a

replacement at index 1 of [2, 4] to 5 results in [2, 5].

For our analysis, we did not consider the list indices which edit operations were applied.

Instead, we considered any sequences of operations that contained the same numbers of

each kind of edit operation the same. This way, we can compare the similarity of minimum

operations groups between two pairs of consecutive inputs, even if the source inputs are

differing lengths. For example, changing [1, 2] to [1, 7, 3, 4] at minimum requires 2 insertions

and 1 replacement. Changing [2] to [8, 5, 6] requires at minimum 2 insertions 1 replacement

as well.

An important consequence of ignoring the indices of operations is that any two oper-

ations groups with 2 insertions and 1 replacement are considered equivalent, even if they

would result in different lists when applied to the same base list. For example, we consider

operations groups with the same number of each kind of operation but different orders of

application equivalent.

Also note that the minimum number and kind of edit operations is distinct from the

actual character by character changes that a subject makes to the text for a past input

evaluated to generate the next input to evaluate. We do not know what the actual changes

and order of changes to the input text box the subject actually makes—only the resulting

next input.

Under this definition of change between inputs, we define operation chains as sequences

of inputs for which any two consecutive inputs is connected by the same group of operations.

In other words, to generate that sequence of inputs, we would start with the first input

evaluated, and apply operations groups with the same number of each kind of edit operation

to each successive input until the last input has been generated. An operation chain of

length 1 consists of 1 input generated with an operations group that is not repeated again;

an operation chain of length 2 consists of 2 consecutive inputs, each generated by applying

the same operation group to its predecessor. We can think of the sequence of all inputs

evaluated by a subject for some function as a sequence of operation chains of varying length.

Below are the operation groups that make up 80% of operation chains across functions

with list of integer inputs.

26

Operation groups by

edit operation frequencies

Replace Insert Delete
Proportion of all chains

formed with this group

Average number of inputs

in operation chain

1 0 0 31% 1.43

0 1 0 18% 1.74

2 0 0 10% 2.35

1 1 0 5% 3.65

0 0 1 4% 1.94

1 0 1 3% 2.14

0 2 0 3% 1.55

3 0 0 3% 2.03

1 0 2 2% 1.60

The operations group for most chains usually does not consist of many operations total,

with 77% of of chains having groups with only 2 operations between consecutive inputs. The

overall average chain length is 1.98, meaning that on average there are about 2 repeated

operations groups in a row before the next input evaluated is created using a different

operation group.

Though the average chain length is low, the variation in chain lengths overall and between

consecutive chains is high. The average difference of the length of any chain from the average

chain length is 1.8, and the average difference between the lengths of consecutive input chains

is 2.4.

Furthermore, long and short operation chains are often interleaved. For every chain that

is more than 1 input long, there is a 78% that all adjacent chains are of length 1. Such

multiple length chains adjacent to only chains of length 1 are on average of length 4.5.

The conclusion we draw is that people tend to generate multiple inputs in a row using

a consistent methodology, as evidenced by the operation chains. Even though subjects may

not think about their methods of choosing inputs in terms of edit operations, we infer that

they employ systematic methods to choose inputs, since they tend to evaluate long sequences

27

of similar inputs.

6 Future Work: Mystery Predicates

In addition to the Brown and Indiana University studies, we also designed and administered

a study specifically for Brown students who took Logic for Systems (CSCI 1950Y), an upper

level computer science class that serves as an introduction to formal methods. Most students

are 2nd or 3rd year undergraduates.

Over the course of CSCI 1950Y, students learn to use model finders, which are tools to

find concrete structures that satisfy sets of constraints expressed as logical formulas. They are

used extensively in software and hardware verification, as well as program synthesis. Students

practice writing not only constraint predicates, but also concrete instances of structures.

As a result, it is feasible to have them guess Mystery Predicates that take in a concrete

structure, and output a single boolean value. The input concrete structure represents a

graph, consisting of a set named Node that contains uniquely named nodes, and a binary

relation named Edges of ordered pairs of nodes that represent edges. To construct an input

to evaluate one of our mystery predicates on, students specify what nodes exist in the Node

set, and what edges exist in the Edges binary relation.

Besides the change of input type, Mystery Predicates is identical to Mystery Functions:

the interfaces for input evaluation, guessing the predicate, and quiz attempts are the same.

We administered the mystery predicates study during the spring semester of the 2019-2020

school year, and have the resulting dataset; we did not analyze it over the course of this

project.

7 Acknowledgements

A huge thank you to my advisor Tim Nelson, reader Shriram Krishnamurthi, and collaborator

Rob Goldstone. It’s been such a privilege working with you all. I’ve learned a great deal

during this project, not only about conducting studies in this area of research, but also about

committing to pushing an idea out into the real world and staying excited about it day in

28

and day out.

References

[1] DeLosh, E. L., Busemeyer, J. R., and McDaniel, M. A. Extrapolation: the

sine qua non for abstraction in function learning. Journal of Experimental Psychology.

Learning, memory, and cognition 23, 4 (Jul 1997), 968–86.

[2] Juslin, P., Olsson, H., and Olsson, A.-C. Exemplar effects in categorization and

multiple-cue judgment. Journal of Experimental Psychology. General 132, 1 (Mar 2003),

133–56.

[3] Kalish, M. L., Lewandowsky, S., and Kruschke, J. K. Population of linear

experts: knowledge partitioning and function learning. Psychological Review 111, 4 (Oct

2004), 1072–1099.

[4] Markant, D. B., and Gureckis, T. M. Is it better to select or to receive? learning

via active and passive hypothesis testing. Journal of Experimental Psychology. General

143, 1 (Feb 2014), 94–122.

[5] McDaniel, M. A., and Busemeyer, J. R. The conceptual basis of function learning

and extrapolation: comparison of rule-based and associative-based models. Psychonomic

Bulletin and Review 12, 1 (Feb 2005), 24–42.

[6] Nelson, J. D., and Movellan, J. R. Active inference in concept learning. In

Advances in Neural Information Processing Systems 13, T. K. Leen, T. G. Dietterich,

and V. Tresp, Eds. MIT Press, 2001, pp. 45–51.

[7] Oaksford, M., and Chater, N. A rational analysis of the selection task as optimal

data selection. Psychological Review 101 (10 1994), 608–631.

29

	Introduction
	Study Design
	Design Limitations
	Execution Limitations

	Functions Given
	Subjects
	Analysis
	Guess Labeling
	Correctness Ratings
	Differences in Matched Pair Function Difficulty
	Improvement Over Time
	Inputs Evaluated Before and After Quiz Attempts
	Choosing Inputs

	Future Work: Mystery Predicates
	Acknowledgements

