
New Lower Bounds on the Complexity of Provably
Anonymous Onion Routing

by

Miranda Christ

Submitted to the Department of Computer Science
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science and Mathematics

at

BROWN UNIVERSITY

May 2020

2

New Lower Bounds on the Complexity of Provably

Anonymous Onion Routing

by

Miranda Christ

Submitted to the Department of Computer Science
on May 22, 2020, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Computer Science and Mathematics

Abstract

In addition to falling under what some believe is a fundamental right to privacy,
anonymity is useful for a number of reasons. Imagine, for example, a whistleblower
wishing to remain anonymous for his or her safety. Furthermore, anonymity is an
essential building block for security systems, many of which assume anonymous chan-
nels. Onion routing provides a solution for anonymous communication, where mes-
sages are encrypted in layers and relayed via intermediate servers to their recipients.
The Trilemma Theorem gives a lower bound on the communication complexity re-
quired for anonymous onion routing. In this thesis, we prove tighter lower bounds
for an onion routing protocol with security parameter 𝜆 anonymous against a passive
adversary. First, a protocol anonymous against the passive adversary corrupting a
fraction 1

𝑓(𝜆)
of the servers has a round complexity of 𝜔

(︁
log 𝜆

log 𝑓(𝜆)

)︁
. Second, if the max-

imum number of onions processed at a node in a round is 𝛼, a protocol anonymous
against the passive adversary corrupting a constant fraction 1

𝑓(𝜆)
of the servers has a

round complexity of 𝜔
(︁

log 𝜆+log ℎ
log 𝑓(𝜆)

+ ℎ
)︁
, where ℎ = log((1−𝜅)𝑁)

log𝛼
.

Thesis Advisor: Eli Upfal
Title: Professor of Computer Science

Thesis Advisor: Megumi Ando
Title: Ph.D. Student

Thesis Reader: Jeffrey Hoffstein
Title: Professor of Mathematics

3

4

Acknowledgments

This thesis would not have been possible without the help of my advisors.

To Megumi, thank you for your mentorship, patience, and encouragement. Thank

you also for being so generous with your time while juggling your own thesis, among

other things!

To Professor Upfal, thank you for agreeing to advise my thesis and for your ex-

pertise and guidance throughout the process.

To Professor Hoffstein, thank you for your enthusiasm in agreeing to be my reader

and delving into onion routing.

To my friends and family, thank you for your support from near and far and for

making this experience all the more enjoyable.

5

6

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Contributions . 11

1.3 Motivating Examples . 11

1.3.1 Everyone sending to everyone 12

1.3.2 Single server . 13

1.3.3 Many servers . 14

1.4 Related Works . 15

2 Preliminaries 19

2.1 Modeling the Problem . 20

2.2 Definitions (anonymity) . 23

2.3 Definitions (efficiency measures) . 24

3 Results 25

3.1 Round Complexity . 25

3.2 Round complexity with server load constraint 28

3.2.1 Tightness . 32

4 Conclusion 35

4.1 Implications . 35

4.2 Future Work . 36

7

8

Chapter 1

Introduction

1.1 Motivation

The near ubiquity of online communication connects us to those across the world in

seconds, but with this convenience comes a cost to privacy, particularly anonymity

(concealing who is communicating with whom), as surveillance increases. In addition

to falling under what some believe is a fundamental right to privacy, anonymity is

useful for a number of reasons; imagine, for example, a whistleblower wishing to

remain anonymous for his or her safety. Furthermore, anonymity is an essential

building block for security systems, many of which assume anonymous channels.

More formally, a communication protocol is anonymous if an adversary in the

standard setting [Gol98] viewing all network traffic and corrupting a fraction of the

servers cannot distinguish between inputs; for example, an adversary should not be

able to determine whether Alice is talking to Bob, Alice is talking to Carol, or Alice

is talking to no one.

The most promising current solution for anonymity is onion routing [Cha81], in

which each message is bundled into a cryptographic onion with encrypted layers.

This onion is passed from the sender to the receiver via intermediate nodes who

decrypt along the way. Each intermediate node can decrypt only its layer of the

onion. When the onion reaches its final recipient, only one layer remains, which the

recipient can decrypt to reveal the message. Since an intermediate node knows only

9

the previous and next destinations of the onions it passes along, it cannot tell who each

onion’s original sender and ultimate recipient are. Furthermore, intermediate servers

can collect several onions before transmitting them to their next destinations, so the

network traffic reveals the set of servers these onions visit next, but not each individual

onion’s path. Onion routing is advantageous in that it is relatively simple, scalable

(it can accommodate many users), and fault-tolerant (its anonymity guarantees are

reasonable even if several message packets are dropped). Several systems used in

practice are slight variations of onion routing, including Tor [DMS04], used by the

Brave web browser 1.

However, Tor is known to be vulnerable to traffic correlation attacks, meaning it

is not provably secure [JWJ+13, SEF+17, WSJ+18].

Several provably secure protocols do exist, including Vuvuzela [vdHLZZ15], Sta-

dium [TGL+17], Atom [KCDF17], Π𝑝 and Π𝑎 [ALU18], and Πon [ALU20]. However,

these protocols lack efficiency in practice, leading to Tor’s prevalence despite its vul-

nerabilities. Most of these protocols are in the active adversary setting (defined in

S2.1), where the adversary can see all network traffic and alter the behavior of some

number of corrupted parties. There is also a lower bound in the active adversary

setting, stating that to obtain anonymity, the expected value of onion transmissions

per party must be 𝜔(log 𝜆), where 𝜆 is the security parameter [ALU20].

In this thesis, we consider the passive adversary setting, where the adversary

can view all the network traffic and view the actions performed by some number of

corrupted parties, but not alter the behavior of these parties. In this passive adversary

setting, the provably secure protocol Π𝑝 shows that for every 𝜖 > 0, anonymity is

achievable with Ω(log1+𝜖 𝜆) rounds and every party transmitting Ω(log1+𝜖 𝜆) onions

per round, where 𝜆 is the security parameter [ALU18]. Our lower bound presented in

Theorem 1 of this thesis shows that Π𝑝 is optimal for the passive adversary corrupting

a constant fraction of the parties.

There is an existing lower bound for the passive adversary setting, namely that

given in The Trilemma Theorem [DMMK18]. However, their result that each party

1https://support.brave.com/hc/en-us/articles/360018121491-What-is-a-Private-Window-with-Tor

10

https://support.brave.com/hc/en-us/articles/360018121491-What-is-a-Private-Window-with-Tor

needs to send one message packet is trivially true, leaving room for a tighter bound.

1.2 Contributions

In our first result in section 3.1, we prove a lower bound on the round complexity

required for anonymity against the passive adversary corrupting a fraction 1
𝑓(𝜆)

of the

parties, that 𝜔(log 𝜆
log 𝑓(𝜆)

) rounds are required for anonymity. We obtain this result by

bounding the probability that the adversary corrupts all servers in a given onion’s

routing path. In our second result in section 3.2, we extend this bound for a protocol

with a constrained server load, meaning for some 𝛼, only 𝛼 onions can meet at a

given server at the same time. To obtain this result, we first bound the number

of honest servers an onion must pass through to appear that it could have been

sent by any party; we then examine the number of rounds required for an onion

to pass through this many honest servers. In addition to achieving a tight bound

for the passive adversary corrupting a constant fraction of the parties, these results

contribute to a more complete set of lower bounds. These lower bounds are useful

not only for analyzing the anonymity guarantees provided by existing protocols but

also for guiding the design of new protocols.

1.3 Motivating Examples

We introduce several simple examples that should be illustrative of both why we need

onion routing and also the complexity associated with it.

Consider a scenario with some 𝑛 internet users, two of whom are Alice and Bob,

and an adversary Eve who is able to observe all network traffic. In other words, Eve

can see whenever a packet is sent from one server to another, though she cannot see

the contents of the packet. Alice wants to send a message to Bob, but she does not

want Eve to know that she is communicating with him. Ideally, Eve should not be

able to tell whether Alice is sending a message to Bob, Alice is sending a message

to some other user Carol, or Alice is sending no message at all. This inability to

11

distinguish between scenarios is called anonymity.

This task poses a challenge because if Alice sends her message to Bob directly,

even if she encrypts it, Eve will observe her packet traversing the link between their

servers and know that they are communicating. We present several simple solutions

to this problem with various advantages and drawbacks. Namely, they differ in round

complexity, server load, and onion cost. Broadly, round complexity is the number of

times each message packet is passed from server to server. Server load is the number

of packets each server processes in each round. Onion cost is the expected number of

packet transmissions across all servers during a run of the protocol.

1.3.1 Everyone sending to everyone

Assume in this example that the adversary is a network adversary, meaning it can

observe all network traffic but not the behavior of any of the parties. In other words,

all parties are honest. In this protocol, every party sends a message to every other

party in a single round. That is, in addition to Alice sending a message to Bob, she

sends a content-less dummy message to every other party. Additionally, every party

other than Alice sends a content-less message to every other party. These messages

are packaged in such a way that the adversary cannot tell which are content-less and

which is Alice’s true message to Bob.

Figure 1-1: Four users, each sending a message to every other user

To anyone observing the network traffic, every party appears to behave identically.

12

Not only can the adversary not determine who Alice is sending meaningful content

to, but she cannot even determine whether Alice (instead of Carol, for example) is

the party sending the meaningful message at all.

While this scheme requires no additional servers or rounds, its onion cost is quite

high. In order to securely transmit a single meaningful message from Alice to Bob,

each of the 𝑛 parties sends a packet to each of the other 𝑛 parties.

This example shows that given 𝑛 parties and a network adversary observing all

network traffic, anonymity is always achievable with a total of 𝑛2 onion transmissions,

even in a single round.

However, this protocol fails against the passive adversary, which can view the

actions of some fraction of the servers. If the adversary corrupts the red server, it

can see where any message arriving at the red server is coming from. This allows

the passive adversary to trace all of the red server’s messages back to their senders,

breaking anonymity.

1.3.2 Single server

In this protocol, we use a trusted third party 𝑆 to relay onions between the 𝑛 users,

preventing the attack described above, where the adversary corrupts a recipient. If

the adversary corrupts the red user in this example, it sees only that any message

arriving at the red server comes from 𝑆, instead of from the original sender. Recall

that Alice wishes to send a message to Bob. Alice instead sends this message to 𝑆,

and all other 𝑛 − 1 users send a content-less dummy (see section 2.1) message to 𝑆.

Once 𝑆 receives all of these packets, it then relays them so that Bob receives Alice’s

message and each other user receives exactly one message.

Eve sees a message packet travel from each user to 𝑆, then from 𝑆 to each user.

Observe that the traffic Eve sees is identical for each user, so this protocol reveals no

information about Alice and Bob.

The server load of this protocol is 𝑛, since 𝑆 receives packets from every user

simultaneously. The round complexity is 2, since each packet travels from its origin

to 𝑆 to its recipient.

13

Figure 1-2: Four users, each sending and receiving exactly one message via an inter-
mediate server

While this protocol works with a network adversary observing only the network

traffic, it fails in the passive adversary setting, where the adversary can corrupt the

central server and see the actions it performs. Since in this thesis we care about the

passive adversary setting, this protocol is not sufficient for our purposes.

1.3.3 Many servers

We can solve the above issue by using many central servers 𝑆1, 𝑆2, ... in sequence,

ensuring that at least one of them is not corrupted by Eve. Similar to in the above

example, each user sends a message to 𝑆1, which relays the messages to 𝑆2, until the

final server, which relays them to their respective destinations.

For example, if we want Eve to figure out that Alice is talking to Bob with

probability at most 1
𝑘
, and Eve corrupts 1

2
of the servers, we can safely use log2 𝑘

servers.

If Eve wants to trace a message packet from origin to recipient, she must corrupt

all servers through which it travels. If we use log2 𝑘 servers, the probability that she

corrupts all of them is 1
𝑘
.

While this protocol achieves the desired guarantees against the information leaked

to Eve, it has a high cost. Compared to the above example with a single server, the

round complexity is much higher (log2 𝑘, if we want Eve to learn nothing about Alice

14

Figure 1-3: Four users, each sending and receiving exactly one message via several
intermediate servers

and Bob with probability at least 1 − 1
𝑘
), and the server load is the same (𝑛).

1.4 Related Works

There are several known bounds on various cost metrics for onion routing in vari-

ous adversarial settings, including some of the cost metrics and adversarial settings

mentioned above.

The anonymity trilemma [DMMK18] presents bounds on the tradeoff between the

server load and round complexity of anonymous communication protocols. In their

setting, a run of the protocol involves one user sending a message to another user. This

message is routed between servers in communication rounds; each round, it visits one

server. The servers can additionally generate noise messages, which help muddle the

adversary’s view of the genuine message’s path through the system. If Carol receives

messages from Alice and Bob and passes them along to David and Fred, the adversary

cannot tell from the network traffic whether Carol passed Alice’s message to David or

Fred. However, these noise messages increase the number of transmissions the servers

must perform, and a natural question is how many of these additional transmissions

are necessary. The anonymity trilemma provides a lower bound for the server load

15

(the fraction of servers generating noise messages per round) and the number of

rounds required for anonymity. Their bound that is most relevant to this thesis is in

the passive adversarial setting, where the adversary can observe the traffic across all

network links and additionally observe but not control the actions performed by some

number 𝑐 of the servers. More specifically, for an adversary passively compromising

𝑐 of the parties in a protocol with security parameter 𝜆, number of rounds 𝑙, and

fraction 𝛽 ∈ [0, 1] of the parties sending noise messages per communication round,

they show that anonymity is impossible if, for 𝑐 < 𝑙,

2(𝑙 − 𝑐)𝛽 < 1 − 1

𝑝𝑜𝑙𝑦(𝜆)

or, for 𝑐 ≥ 𝑙 and 𝑙 ∈ 𝑂(1),

2𝛽𝑙 < 1 − 1

𝑝𝑜𝑙𝑦(𝜆)

where 𝑝𝑜𝑙𝑦(𝜆) denotes any polynomial in 𝜆.

Crucially, if the number of corrupted servers is at least the number of rounds,

their bound does not depend on 𝑐 at all. This leaves room for improvement, and we

provide a bound that in this case does depend on 𝑐. We wish to provide a tighter

bound on the relationship between server load and round complexity; in addition to

that, we give separate bounds on each.

Another relevant result is an upper bound in the passive adversarial setting, where

an adversary can control a constant fraction 𝜅 of the parties [ALU18]. Similarly to in

this thesis, they use the synchronous communication model and SimpleIO setting. A

protocol in the synchronous communication model operates in rounds, where in each

round all packets leave their origins simultaneously and arrive at their destinations

simultaneously. In the SimpleIO setting, all inputs to the protocol instruct each party

to send and receive exactly one message. This setting is fairly standard, and we use

it for that reason.

In this paper, the authors prove an upper bound on the number of rounds and

onion transmissions sufficient for anonymity by constructing a protocol Π𝑝. Their

construction is fairly simple; each onion is routed through 𝐿 servers before reaching

16

its final destination. These servers are chosen independently and uniformly at ran-

dom. When two honestly formed onions meet at an honest server, these onions get

mixed, and it becomes difficult to determine which incoming onion corresponds to the

outgoing onion. This mixing happens only at honest servers, since the adversary can

observe all actions performed by corrupted servers. Intuitively, the more onions each

server receives on a given round, the more difficult it becomes for the adversary to

determine its origin. Additionally, the more servers a given onion passes through, the

more honest servers it passes through. The authors show that anonymity is achiev-

able with Ω(log2 𝜆) rounds and every party transmitting Ω(log2 𝜆) onions per round.

For any 𝜖 > 0, their proof also holds with Ω(log1+𝜖 𝜆) rounds and every party trans-

mitting Ω(log1+𝜖 𝜆) onions per round. The authors also provide bounds for the active

adversarial setting, which are improved upon in their more recent paper.

Their most recent result is for the active adversarial setting. In this setting,

the adversary is able to view all network traffic, control a constant fraction of the

parties, and cause these parties to deviate from the protocol. That is, servers that

the adversary controls can drop onions as they please. This enables a new kind of

attack, where if Eve wishes to determine if Alice is sending a message to a corrupted

party Bob, Eve can drop all onions that could have originated from Alice at all servers

Eve controls, effectively blocking Alice’s onion from reaching Bob. Since Eve controls

Bob, Eve can see all messages received by Bob at the end of the protocol. If Bob does

not receive an expected message, Eve can infer that that message was likely from

Alice and dropped through the course of her attack. They introduce a protocol, Π◁▷

(pronounced Pi-butterfly), that detects when Eve conducts an attack of this nature

and aborts the protocol if so [ALU20]. Π◁▷ employs “merging onions” and “checkpoint

onions” to this effect. Merging onions ensure that even if the adversary strategically

drops onions, they cannot gain information by examining the number of onions each

party receives. Checkpoint onions serve as indicators for the honest parties of how

many onions remain in the system. Each round, the honest parties tally up the

number of checkpoint onions they receive and compare this count to the expected

number of checkpoint onions. If at any point an honest party determines via this

17

count of checkpoint onions that too few onions are in the system, an attack is likely

underway, and it sends signals to all other parties to abort the protocol. Once the

protocol has been aborted, Eve’s attack fails, as all traffic halts and many messages

intended for Bob, not just the message sent by Alice, do not reach him.

Via this protocol, Ando, Lysyanskaya, and Upfal prove an upper bound on the

complexity (here, we define this as number of message packets) sufficient for anonymity:

Π◁▷ achieves anonymity against an adversary actively corrupting any fraction 𝜅 < 1
2

of the parties, with each honest party transmitting 𝛾1 log𝑁 log3+𝛾2 𝜆 onions, where 𝑁

is the number of parties, 𝜆 is the security parameter, and 𝛾1, 𝛾2 are constants. They

also prove a near-tight lower bound, that in order to achieve anonymity against an

adversary actively corrupting a fraction 𝜅 of the parties, every party in the protocol

must transmit at least a logarithmic number of onions. In this sense, the authors’

construction Π◁▷ is near-optimal.

18

Chapter 2

Preliminaries

Onion encryption schemes draw inspiration from David Chaum’s concept of mix net-

works [Cha81]. In Chaum’s model, much like in our example 1.2.2, parties employ an

intermediate server to mix their messages, each sending an encrypted message packet

to this server, which then forwards it to its recipient. If party 𝐴 wants to send a

message 𝑚 to party 𝐵 via this mix network, it encrypts 𝑚 with 𝐵’s public key to

get 𝑚′, then encrypts (𝑚′, 𝐵) with the mixing server’s public key. 𝐴 must include 𝐵

so that the mixing server knows where to forward the message to. While this model

works well for one mixing server, it cannot be directly applied to onion routing, where

there are multiple mixing servers in sequence. Since the next recipient is included in

each packet, packet size depends on the number of mixing servers that packet will

visit. An adversary can then use packet size to determine how long a given packet

will remain in the system; the larger a packet, the longer it will remain.

Mixing networks also rely on the fact that all packets exiting a server look the

same; if their sizes differ, and these sizes are correlated with the sizes of the incoming

packets, the adversary can use this information to trace packets through the system.

We therefore need an encryption scheme where the sizes of packets are indistinguish-

able, regardless of the number of servers in their routing paths. This is exactly what

Camenisch and Lysyanskaya propose.

We consider onion routing protocols using onion encryption schemes as defined

by Camenisch and Lysyanskaya [CL05]. Their paper presents a cryptographic defi-

19

nition of an onion encryption scheme that guarantees security in Canetti’s universal

composability (UC) framework [Can01]. A challenge they tackle is preventing the

adversary from distinguishing onions by their sizes. Since each onion must specify

where each server in its routing path must send it next, it is natural that each onion’s

size would depend on the number of rounds for which it exists in the system. This

could allow the adversary to determine which onions were created earlier in the pro-

tocol run by looking at their sizes. Camenisch and Lysyanskaya describe a set of

algorithms that prevent this attack and achieve security. They formalize the three

algorithms, G, FormOnion, and ProcOnion. G, given a public parameter, generates

the public and private keys for each party. FormOnion, given the public parameter,

message, list of parties, and the parties’ public keys, generates a sequence of onion

layers in probabilistic polynomial time. ProcOnion “peels” an onion, taking as input

an onion, party, and that party’s secret key, and yielding as output the “peeled” onion

and its next destination. ProcOnion runs in deterministic polynomial time.

When we talk about an onion routing protocol in this thesis, we mean a communi-

cation protocol using Camenisch and Lysyanskaya’s set of algorithms G, FormOnion,

and ProcOnion.

2.1 Modeling the Problem

Onion routing protocol. We first define onion routing more formally. A cryp-

tographic onion is a message packet that is encrypted in layers, with a public key

corresponding to each layer. For example, if party 𝑃𝑖 wants to send a message 𝑚

to party 𝑃𝑗 via intermediate parties 𝑃1, ..., 𝑃𝑘, 𝑖 will create a cryptographic onion

by encrypting 𝑚 with the public key corresponding to 𝑃𝑘 to get 𝑜𝑘, then encrypting

𝑜𝑘 with the public key corresponding to 𝑃𝑘−1, etc. When the onion is transmitted,

each party will use its private key to decrypt the onion, “peeling” away the outermost

layer. When the onion reaches the recipient 𝑃𝑗, only the inner layer will remain. This

structure guarantees that only the final intended recipient can decrypt the original

message.

20

In this thesis, we assume the synchronous model of communication. Each onion

is received instantaneously once sent, meaning at a given round 𝑟, each party 𝑃𝑖 will

have already received all onions sent to it in round 𝑟 − 1.

By an onion routing protocol, we mean a protocol in which the parties use an

onion encryption scheme to form and process all message packets. We also consider

the protocol operating over some set of possible inputs Σ, as described below. We

denote such a protocol as Π(1𝜆,Σ).

Adversary Model. We define the three standard adversary models: the network

adversary, the passive adversary, and the active adversary. All adversaries can see

all network traffic during a run of the protocol; in fact, the network adversary can

observe exactly that and no more.

A passive adversary can also corrupt a fraction of the parties. When we say 𝒜

corrupts a party, we mean 𝒜 can see all actions that party performs but cannot

control the party to deviate from the protocol.

An active adversary can control a fraction of the parties. By this we mean 𝒜 can

control those parties freely, including deviating from the protocol.

We are primarily concerned with the passive adversary corrupting some fraction
1

𝑓(𝜆)
of the parties. Note that in this setting, we do not assume the existence of a

trusted third party, since the adversary can corrupt any of the parties with some

probability. Furthermore, since the passive adversary cannot alter the behavior of

the corrupted parties, they behave identically to the honest parties, and the protocol

cannot determine which parties are corrupted.

Inputs. We define the message space ℳ as the set of possible messages the partic-

ipants send. The length of messages in ℳ is polynomially bounded by 𝜆, and we

assume all messages are the same length.

Each party is represented by a unique integer value, and the set of all parties is

represented by [𝑁]. An input to a party is a set of message/recipient pairs {(𝑚, 𝑖)}

where each 𝑚 ∈ ℳ and 𝑖 ∈ [𝑁]. Each pair indicates a message and the party to

21

whom to send it.

A vector of inputs to the protocol is a vector 𝜎 = {𝑣1, ..., 𝑣𝑁} where each 𝑣𝑖 is an

input to party 𝑖.

We denote the set of all possible inputs to a protocol as Σ.

In this paper, we consider the SimpleIO setting, formally introduced in [ALU18].

By this, we mean that the set of inputs is constrained to those where each user is

instructed to send one message and each user expects to receive exactly one message.

This setting, or something even more stringent, is used by most provably secure pro-

tocols [vdHLZZ15, TGL+17, KCDF17].

Input equivalence. We say two inputs 𝜎1, 𝜎2 are equivalent with respect to an

adversary 𝒜 if:

1. For each corrupted party 𝑃𝑖, the input to 𝑃𝑖 in 𝜎1 is identical to the input to

𝑃𝑖 in 𝜎2.

2. Additionally, for each corrupted party 𝑃𝑖, the set of onions received by 𝑃𝑖 in 𝜎1

is identical to the set of onions received by 𝑃𝑖 in 𝜎2.

We introduce this notion of equivalence to define a reasonable notion of anonymity.

Note that the adversary can trivially distinguish between non-equivalent inputs, sim-

ply by examining the information learned from corrupted parties. Therefore, any

protocol can only hope to protect equivalent inputs, and it is only these inputs we

consider.

Dummy onion. We say that an onion is a dummy onion if it is formed by an

honest party, but it is not generated by running FormOnion on an input message.

Intuitively, dummy onions do not contain meaningful content and serve to muddle

the network traffic. We sometimes refer to onions created by running FormOnion on

an input message as genuine.

Views. We say the adversary 𝒜’s view associated with a run of the protocol Π

22

on input 𝜎 is all information 𝒜 sees associated with that run of protocol, denoted

by 𝑉 Π,𝒜(𝜎). For the passive adversary, this information includes traffic over all net-

work links, in addition to the states and computation of the corrupted servers. More

specifically, for each onion routed through a corrupted server, 𝒜 can see where the

onion previously came from and where it is sent to next. Additionally, for any onion

received by a corrupted server, the adversary can determine whether the message con-

tained in it is a dummy message or a genuine message. However, without additional

information, the adversary cannot discover that message’s origin.

2.2 Definitions (anonymity)

These definitions use the notions of input equivalence and views, defined in 2.1.

Definition 1. Statistical anonymity

We say an onion routing protocol Π(1𝜆,Σ) is statistically anonymous from an

adversary 𝒜 corrupting a fraction 0 ≤ 𝜅 < 1 of the parties if, for any equivalent

inputs 𝜎1, 𝜎2 ∈ Σ, 𝑉 Π,𝒜(𝜎1) is statistically indistinguishable from 𝑉 Π,𝒜(𝜎2).

We usually operate under a game-based anonymity definition, in which the adver-

sary is computationally bounded. For a precise definition, see [ALU20]. A more brief

description is provided here.

Definition 2. Game-based anonymity

Consider the following game consisting of an onion routing protocol Π and an

adversary 𝒜 with polynomially bounded computing power. 𝒜 picks any two inputs

𝜎1, 𝜎2 that are equivalent with respect to 𝒜. One of the two inputs is chosen uniformly

at random; let this be 𝜎𝑖. The protocol Π runs on this input 𝜎𝑖, and 𝒜 is able to see

the view of the protocol, 𝑉 Π,𝒜(𝜎𝑖). The adversary then guesses whether 𝜎𝑖 is equal

to 𝜎1 or 𝜎2. If the adversary guesses correctly, it wins.

An onion routing protocol Π is anonymous from an adversary 𝒜 if and only if 𝒜

wins this game with probability at most 1
2

+ 1
𝑓(𝜆)

, where 𝜆 is the security parameter

and 𝑓(𝜆) grows faster than any polynomial in 𝜆.

23

2.3 Definitions (efficiency measures)

Definition 3. Onion cost

We say the onion cost associated with a protocol is the expected value of the

total number of onion transmissions across all servers. We denote the onion cost of a

protocol Π with adversary 𝒜 as OCΠ,𝒜(Σ), where Σ is the set of all possible inputs.

The expectation is taken over the inputs in the input set, which are chosen uniformly

at random, and the randomness of the protocol.

Definition 4. Server load

The server load of a protocol given an input 𝜎 and adversary 𝒜 is the maximum

number of onions transmitted by a server in any round.

Definition 5. Round complexity

The round complexity of a protocol Π with input set Σ and adversary 𝒜 is the

average over all possible inputs of the number of rounds from the first onion being

transmitted to the last onion being received.

24

Chapter 3

Results

3.1 Round Complexity

Consider an onion routing protocol over 𝑁 parties with security parameter 𝜆 operating

in 𝑟 rounds, with a passive adversary 𝒜 corrupting a fraction 𝜅 = 1
𝑓(𝜆)

of the parties

for some function 𝑓 .

We consider only functions 𝑓(𝜆) that are generally increasing, since security is

defined with respect to adversaries who corrupt a constant fraction of the parties.

We wish to prove a lower bound on the number of rounds required for anonymity.

Recall that a protocol is not anonymous if the adversary can with non-negligible

advantage distinguish between any two inputs 𝜎0 and 𝜎1, whose inputs are identical

for corrupted parties. Note: the adversary can trivially distinguish between inputs

that differ for corrupted parties, so we cannot hope to achieve anonymity in these

cases and do not consider them.

Theorem 1. If an onion routing protocol with security parameter 𝜆 operating in

𝑟 rounds is anonymous from the passive adversary corrupting a fraction 1
𝑓(𝜆)

of the

parties, and for any input, every honest onion corresponding to a message in that

input has a non-negligible probability of being formed in the first round, 𝑟 must be

𝜔
(︁

log 𝜆
log 𝑓(𝜆)

)︁
.

Proof. Let 𝜎0 be an input under which party 𝑖 sends a message to party 𝑗 and 𝜎1 be an

25

input in which 𝑖 does not send a message to 𝑗. If 𝒜 can trace a non-dummy message

received by 𝑗 back to its original sender 𝑖, 𝒜 knows that the input must have been

𝜎0. Let 𝑜 be a genuine message-bearing onion originating at 𝑖 and received by 𝑗 in

𝜎0. If 𝑜 was created at round 1, and 𝒜 can trace back its path to its honest sender, 𝒜

will know that that sender must have created 𝑜, since there were no previous rounds.

If 𝒜 corrupts 𝑗, 𝒜 can tell whether any message 𝑗 receives is a dummy or genuine.

Therefore, if 𝒜 corrupts 𝑗, 𝒜 can determine which of the onions 𝑗 receives is 𝑜. If 𝒜

corrupts all the users that 𝑜 passes through, 𝒜 can determine that 𝑖 sent 𝑜 to 𝑗, and

𝒜 knows the input must have been 𝜎0. Therefore, if these events occur, the adversary

can distinguish between 𝜎0 and 𝜎1 with non-negligible advantage, and the protocol is

not anonymous. More precisely:

Let 𝐸1 be the event that 𝑜 is created in round 1 of 𝑟 rounds.

Let 𝐸2 be the event that 𝒜 corrupts all users 𝑜 passes through.

Let 𝐸3 be the event that 𝒜 corrupts 𝑗.

If all three of 𝐸1, 𝐸2, 𝐸3 occur, 𝒜 wins. Therefore, if 𝑃𝑟[𝐸1, 𝐸2, 𝐸3] is non-

negligible, the protocol is not anonymous. We give a bound on this probability below.

Since the adversary cannot alter the behavior of the corrupted parties, the corrupted

parties look identical to the honest parties, and the protocol can do no better than

choosing a routing path uniformly at random. The protocol minimizes the probabil-

ity of choosing a routing path consisting entirely of corrupted parties by choosing a

routing path without replacement. Note that the number of parties 𝑜 passes through

is at most 𝑟, since the protocol operates in only 𝑟 rounds. Therefore,

𝑃𝑟[𝐸2|𝐸1] ≤
(︀
corrupt users

𝑟

)︀(︀
total users

𝑟

)︀ =

(︀ 𝑁
𝑓(𝜆)
𝑟

)︀(︀
𝑁
𝑟

)︀
And, using the fact that 𝑛𝑘

𝑘𝑘
≤

(︀
𝑛
𝑘

)︀
< (𝑒𝑛)𝑘

𝑘𝑘
, we have:

(︀ 𝑁
𝑓(𝜆)
𝑟

)︀(︀
𝑁
𝑟

)︀ >

(︁
𝑁

𝑓(𝜆)

)︁𝑟

(𝑒𝑁)𝑟
=

(︂
1

𝑒𝑓(𝜆)

)︂𝑟

26

Recall that 𝐸3 is the event that 𝒜 corrupts 𝑗, which happens with probability 1
𝑓(𝜆)

.

Therefore:

𝑃𝑟[𝐸1, 𝐸2, 𝐸3] = 𝑃𝑟[𝐸3|𝐸1, 𝐸2] · 𝑃𝑟[𝐸2|𝐸1] · 𝑃𝑟[𝐸1]

= 𝑃𝑟[𝐸3] · 𝑃𝑟[𝐸2|𝐸1] · 𝑃𝑟[𝐸1]

=
1

𝑓(𝜆)
·
(︂

1

𝑒𝑓(𝜆)

)︂𝑟

· 𝑃𝑟[𝐸1]

𝑃𝑟[𝐸1], the probability that onion 𝑜 is created in the first round, is non-negligible

by assumption. Therefore, 𝑃𝑟[𝐸1, 𝐸2, 𝐸3] is non-negligible if and only if
(︁

1
𝑒𝑓(𝜆)

)︁𝑟

is

non-negligible (for now, we assume 1
𝑓(𝜆)

is non-negligible; otherwise, the adversary

should be equivalent to the network adversary).

Let 𝑟 = log 𝜆
log 𝑓(𝜆)

= log𝑓(𝜆) 𝜆 by change of base formula. Plugging in, we have:

(︂
1

𝑒𝑓(𝜆)

)︂𝑟

=
1

𝑒
log 𝜆

log 𝑓(𝜆)

· 1

𝑓(𝜆)log𝑓(𝜆) 𝜆

=
1

𝜆
1

log 𝑓(𝜆) · 𝜆
Notice that since 𝑓(𝜆) is increasing, there is some 𝑛 such that for all 𝜆 > 𝑛,

𝜆
1

log 𝑓(𝜆) < 𝜆. Therefore,

𝑃𝑟[𝐸2|𝐸1] ≥
1

𝜆
1

log 𝑓(𝜆) · 𝜆
= Ω

(︂
1

𝜆2

)︂
And since 𝑃𝑟[𝐸1] and 𝑃𝑟[𝐸3] are also non-negligible, the adversary can distinguish

between inputs with non-negligible probability, and the protocol is not anonymous.

Therefore, 𝜔
(︁

log 𝜆
log 𝑓(𝜆)

)︁
rounds are insufficient for anonymity from the passive adversary

corrupting a fraction 1
𝑓(𝜆)

of the parties.

Corollary 1. The same bound applies for a passive adversary that can observe net-

work traffic over only a constant fraction of links.

If all servers in a message’s routing path are corrupted, the adversary can deter-

mine the message’s origin without needing to see any of the network traffic. Therefore,

27

the above proof holds even if the adversary can see only a constant fraction, or even

none of the links.

3.2 Round complexity with server load constraint

Theorem 1 tells us that even if we choose the same routing path for all messages,

shuttling them through the same servers in sequence (like in example 1.2.3), we still

need 𝜔
(︁

log 𝜆
log 𝑓(𝜆)

)︁
rounds for anonymity. However, this approach is very inefficient,

requiring a server load of 𝑁 . It is then natural to ask what the round complexity

must be if the server load is constrained in some way. In this section, we prove a lower

bound on the round complexity required for anonymity for an onion routing protocol

with a server load of at most 𝛼. In other words, at most 𝛼 onions can meet at a

given server at a time. Here, we consider protocols choosing routing paths uniformly

at random with replacement and the passive adversary corrupting a constant fraction

of the parties.

We first introduce a lemma for anonymity against the less powerful network ad-

versary, which can view all network traffic but cannot corrupt any parties.

Lemma 1. If an onion routing protocol with maximum server load 𝛼 is anonymous

against a network adversary in the SimpleIO setting, every honest onion must be

routed through at least Ω
(︁

log𝑁
log𝛼

)︁
servers.

Proof. Recall that in the SimpleIO setting, each of the 𝑁 parties sends and receives

exactly one message. In order for a protocol to be anonymous against a network

adversary observing all network traffic, each honest onion 𝑜 must have a potential

path formed by the network traffic linking it back to every honest party, of which

there are (1− 𝜅)𝑁 . In other words, there must be some way to trace 𝑜 back to every

honest party in a way that is consistent with the network traffic. Otherwise, the

adversary can say with certainty that 𝑜 did not originate at some honest party, and

the protocol is not anonymous.

More formally, we define a network path 𝑃 𝑟 = (𝑛0, 𝑛1, ..., 𝑛𝑟) as a tuple of servers.

𝑃 𝑟 is a valid network path for a run of protocol Π if there is some 𝑘 such that for every

28

0 ≤ 𝑖 ≤ 𝑟 − 1, server 𝑛𝑖 transmits an onion to server 𝑛𝑖+1 in round 𝑘 + 𝑖. Intuitively,

if (𝑛0, 𝑛1, ..., 𝑛𝑟) is a valid network path, then an onion at server 𝑛𝑟 at round 𝑘 + 𝑟

could have originated at server 𝑛0 at round 𝑘.

Let 𝑜 be an honest onion. We define 𝑆𝑖(𝑜) as the set of servers from which

it appears 𝑜 could have originated, given the network traffic up to round 𝑖. More

formally,

𝑆𝑖(𝑜) = {𝑆𝑗 | ∃ 𝑃 𝑘 = (𝑛0, ..., 𝑛𝑘) s.t. 𝑛𝑘 = 𝑆}

where 𝑆 is the server to which 𝑜 is transmitted in round 𝑖, and 𝑃 𝑖 is a valid network

path.

We show by induction on 𝑖 that |𝑆𝑖(𝑜)| ≤
∑︀𝑖

𝑗=0 𝛼
𝑗, where 𝛼 is the server load. In

the first round, onion 𝑜 is transmitted from its origin to an intermediate server. At

this intermediate server, 𝑜 meets at most 𝛼− 1 other onions. There are then at most

𝛼− 1 network paths from those onions’ origins to the intermediate server, along with

the path 𝑜 itself followed. There is also the trivial path from the intermediate server

to itself. Therefore, |𝑆1(𝑜)| ≤ 𝛼− 1 + 1 + 1 = 𝛼1 + 1.

Assume as our inductive hypothesis that for a fixed and arbitrary 𝑘 ≥ 1, |𝑆𝑘(𝑜)| ≤∑︀𝑘
𝑗=0 𝛼

𝑗.

Consider the server 𝑆 where 𝑜 is at the end of round 𝑘+ 1. At this server, 𝑜 meets

at most 𝛼 − 1 other onions. For any of these other onions 𝑜′, |𝑆𝑘(𝑜′)| ≤
∑︀𝑘

𝑗=0 𝛼
𝑗 by

assumption. For 𝑜 itself, |𝑆𝑘(𝑜)| ≤
∑︀𝑘

𝑗=0 𝛼
𝑗 by assumption. There are at most as

many valid network paths to 𝑆 ending in round 𝑖 as there are valid network paths to

servers transmitting onions to 𝑆 in round 𝑖, plus the one trivial path from 𝑆 to itself.

Therefore, |𝑆𝑘+1(𝑜)| ≤ 1 + 𝛼
∑︀𝑘

𝑗=0 𝛼
𝑗 =

∑︀𝑘+1
𝑗=0 𝛼

𝑗.

We’ve thus shown that for all 𝑖 ≥ 1, |𝑆𝑖(𝑜)| ≤
∑︀𝑖

𝑗=0 𝛼
𝑗.

In order to be anonymous against the network adversary, there must be a network

path from the destination of 𝑜 to every server. Therefore, 𝑜 must be routed through

at least 𝑟 servers, where
∑︀𝑟

𝑗=0 𝛼
𝑗 ≥ 𝑁 . Solving for

𝑟∑︁
𝑗=0

𝛼𝑗 ≤ (𝑟 + 1)𝛼𝑟 = 𝑁

29

We have:

𝑟 log𝛼 + log(𝑟 + 1) = log𝑁

𝑟 = Ω

(︂
log𝑁

log𝛼

)︂

Corollary 2. If an onion routing protocol with maximum server load 𝛼 is anonymous

against a passive adversary corrupting a fraction 𝜅 of the servers in the SimpleIO

setting, every honest onion must be routed through at least Ω
(︁

log((1−𝜅)𝑁)
log𝛼

)︁
honest

servers.

Proof. We adapt Lemma 1 for our use here. The passive adversary can view all

network traffic, along with all actions corrupted servers perform. Therefore, if an

honest onion 𝑜 passes through a corrupted server at round 𝑖 + 1, the number of

possible origins of 𝑜 does not increase and |𝑆𝑖(𝑜)| = |𝑆𝑖+1(𝑜)|.

Since the adversary knows the inputs to corrupted parties, it is not distinguishing

if it can trace an onion back to a corrupted origin. Therefore, the set of onions from

which 𝑜 could have originated need only contain all honest servers, of which there are

(1 − 𝜅)𝑁 .

Therefore, each honest onion must pass through at least Ω
(︁

log((1−𝜅)𝑁)
log𝛼

)︁
honest

servers in order for the protocol to be anonymous.

We are now ready to prove the main result of this section.

Theorem 2. Let Π be an onion routing protocol with 𝑁 parties and maximum server

load 𝛼 operating in the SimpleIO setting, where the servers in each onion’s routing

path are chosen uniformly at random with replacement. If Π is anonymous against

the passive adversary corrupting a constant fraction 𝜅 = 1
𝑓(𝜆)

of the servers, the round

complexity of Π is

𝜔

(︂
log 𝜆 + log ℎ

log 𝑓(𝜆)
+ ℎ

)︂
where ℎ = log((1−𝜅)𝑁)

log𝛼
.

30

Proof. We show that if Π operates in 𝐿 = 𝑐(log 𝜆+log ℎ
log 𝑓(𝜆)

+ ℎ) rounds, where 𝑐 is some

constant, some honest onion passes through fewer than ℎ honest servers with non-

negligible probability. By Corollary 2, with overwhelming probability, each honest

onion must pass through at least ℎ honest servers in order for Π to be anonymous.

Let 𝑜 be a message bearing onion formed by an honest party. Let ℰ denote the

event that 𝑜 is routed through fewer than ℎ honest servers, where the servers in the

routing path are chosen uniformly at random with replacement. Summing over the

probability of 𝑜 being routed through exactly 𝑖 honest servers, for 𝑖 < ℎ, we have:

𝑃𝑟(ℰ) =
ℎ−1∑︁
𝑖=0

(︂
𝐿

𝑖

)︂
𝜅𝐿−𝑖(1 − 𝜅)𝑖

≥ ℎ𝜅𝐿−𝑖(1 − 𝜅)𝑖

Either 𝜅 or 1− 𝜅 is less than or equal to 1
2
; let this smaller value be 1

𝑘
. We then have

ℎ𝜅𝐿−𝑖(1 − 𝜅)𝑖 ≥ ℎ

𝑘𝐿

And plugging in 𝐿, we have

𝑃𝑟(ℰ) ≥ ℎ

𝑘𝐿
=

ℎ

𝑘𝑐(log 𝜆+log ℎ
log 𝑓(𝜆)

+ℎ)

=
ℎ

𝜆
𝑐 log 𝑘
log 𝑓(𝜆)ℎ

𝑐 log 𝑘
log 𝑓(𝜆) 𝑒𝑐ℎ log 𝑘

And, recalling that ℎ = log((1−𝜅)𝑁)
log𝛼

, and that 𝑐, 𝑓(𝜆), and 𝑘 are constants, for some

𝑐1, 𝑐2 this is equal to

ℎ

𝜆𝑐1ℎ𝑐1𝑒ℎ𝑐2
=

ℎ

𝜆𝑐1

(︁
log((1−𝜅)𝑁)

log𝛼

)︁𝑐1
((1 − 𝜅)𝑁)

𝑐2
log𝛼

≥ ℎ

𝜆𝑐1(log((1 − 𝜅)𝑁))𝑐1((1 − 𝜅)𝑁)𝑐2

31

=
log((1 − 𝜅)𝑁)

𝑝𝑜𝑙𝑦(𝜆) log𝛼

≥ 1

𝑝𝑜𝑙𝑦(𝜆)

for some polynomial 𝑝𝑜𝑙𝑦(𝜆). Note that for our purposes, we can assume the server

load 𝛼 is 𝑂(2𝜆), since if all packets can meet at a single honest server at the same

time, anonymity is easily achievable as illustrated in the motivating examples.

Therefore, if Π operates in 𝐿 = 𝑐(log 𝜆+log ℎ
log 𝑓(𝜆)

+ ℎ) rounds, onion 𝑜 passes through

fewer than ℎ honest servers with non-negligible probability. A passive adversary can

then distinguish between inputs and Π is not anonymous. Thus, Π must operate in

𝜔(log 𝜆+log ℎ
log 𝑓(𝜆)

+ ℎ) rounds.

Remark: In the proof of Theorem 2, we consider the servers in the routing path

as chosen uniformly at random with replacement, whereas in Theorem 1, we consider

them without replacement. This is because in Theorem 1, the protocol minimizes

the probability of the adversary corrupting all servers in a routing path by avoiding

repeating servers, since this maximizes the probability of passing through at least

one honest server. In the proof of Theorem 2, the protocol wants each onion to pass

through at least ℎ honest servers, instead of just 1 honest server. It then seems best

to choose the routing path with replacement, since otherwise each time we add an

honest server to the routing path, the probability of later choosing an honest server

decreases.

3.2.1 Tightness

We suspect that the bound in Theorem 3 is asymptotically tight for event ℰ as defined

above, though there might be another more likely event leading to the adversary

distinguishing between inputs.

Observe that if 𝑝(𝐿) is a function of 𝐿 representing an overestimate of 𝑃𝑟(ℰ),

where 𝑝(𝐿) ≥ 𝑃𝑟(ℰ) for all 𝐿, then if 𝑝(𝐿) is negligible, 𝑃𝑟(ℰ) must be negligible as

well. We show that for such a 𝑝(𝐿), our 𝐿* as given in Theorem 3 is the asymptotically

32

greatest 𝐿 such that 𝑝(𝐿) is non-negligible. Recall that

𝑃𝑟(ℰ) =
ℎ−1∑︁
𝑖=0

(︂
𝐿

𝑖

)︂
𝜅𝐿−𝑖(1 − 𝜅)𝑖

Since
(︀
𝐿
𝑖

)︀
≤ 𝐿𝑖, and 1 − 𝜅 ≤ 1,

ℎ−1∑︁
𝑖=0

(︂
𝐿

𝑖

)︂
𝜅𝐿−𝑖(1 − 𝜅)𝑖 ≤ ℎ𝐿ℎ𝜅𝐿−ℎ

And this will be our overestimate 𝑝(𝐿) = ℎ𝐿ℎ𝜅𝐿−ℎ. For some constant 𝑐, we need

𝑝(𝐿) ≥ 1
𝜆𝑐 . We can plug in and solve for 𝐿:

ℎ𝐿ℎ𝜅𝐿−ℎ ≥ 1

𝜆𝑐

log ℎ + ℎ log𝐿 + (𝐿− ℎ) log 𝜅 ≥ −𝑐 log 𝜆

𝐿 log 𝑓(𝜆) − ℎ log𝐿 ≤ log ℎ + 𝑐 log 𝜆 + ℎ log 𝑓(𝜆)

And the ℎ log𝐿 term becomes asymptotically small, so we have

𝐿 ≤ Θ

(︂
𝑐 log 𝜆 + log ℎ

log 𝑓(𝜆)
+ ℎ

)︂

Since 𝑝(𝐿) ≥ 𝑃𝑟(ℰ) for all 𝐿, and 𝐿 = Θ
(︁

𝑐 log 𝜆+log ℎ
log 𝑓(𝜆)

+ ℎ
)︁

is the asymptotically

greatest value of 𝐿 such that 𝑝(𝐿) is non-negligible, 𝐿* is tight for 𝑃𝑟(ℰ).

33

34

Chapter 4

Conclusion

4.1 Implications

Our results provide bounds on the round complexity required for anonymity against

the passive adversary. Notably, Theorem 1 shows that the protocol Π𝑝 is tight in

terms of round complexity [ALU18].

While we assume the SimpleIO setting, the attack we consider in the proof of

Theorem 1 involves only tracing a given onion back to its sender. This attack is not

unique to the SimpleIO setting, and with a bit more work this result should generalize

to more settings. In the proof of Theorem 2, we want a given onion to “look like”

it could have originated at any of the honest servers. We can likely adapt this to

other input settings, where instead we just need the onion to look like it could have

originated from some subset of the honest servers, where the subset depends on the

setting.

Our bounds apply not just to anonymity but also to differential privacy [DR14].

Informally, a protocol is differentially private if, for any neighboring inputs, the dis-

tributions of the adversary’s view given each of the inputs vary by a multiplicative

factor 𝜖 and an additive factor 𝛿, where 𝛿 is negligible in the security parameter. We

say two inputs are neighboring if the input to each party is the same except for one

message-recipient pair. For example, in the first input Alice sends to Bob, and in the

second input, Alice sends to Carol. In our proofs, we show that an adversary can

35

distinguish between inputs that differ by only one message-recipient pair. Therefore,

our bounds hold for differential privacy as well.

4.2 Future Work

First, we would like to generalize Theorem 2 to the adversary corrupting a non-

constant fraction of the servers and ideally tighten the bound as well. Though it

seems to be tight for the anonymity breaking event we consider, it is possible that we

could find a different anonymity breaking event that occurs with higher probability.

As noted earlier, we suspect that the protocol can do no better than choosing

routing paths uniformly at random without replacement when avoiding the attack

detailed in the proof of Theorem 1, and no better than choosing routing paths uni-

formly at random with replacement when avoiding the attack detailed in the proof

of Theorem 2. We hope to formalize this in the future and provide a proof of this

optimality, rather than relying on assumptions.

Additionally, we use the SimpleIO setting throughout this thesis, where each party

sends and receives exactly one message. We hope to extend our results more generally.

36

Bibliography

[ALU18] Megumi Ando, Anna Lysyanskaya, and Eli Upfal. Practical and provably
secure onion routing. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, ICALP 2018, volume 107 of
LIPIcs, pages 144:1–144:14. Schloss Dagstuhl, July 2018.

[ALU20] Megumi Ando, Anna Lysyanskaya, and Eli Upfal. On the complexity
of anonymous communication through public networks. Manuscript, in
submission, 2020.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42nd FOCS, pages 136–145. IEEE Computer
Society Press, October 2001.

[Cha81] David L Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[CL05] Jan Camenisch and Anna Lysyanskaya. A formal treatment of onion
routing. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 169–187. Springer, Heidelberg, August 2005.

[DMMK18] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket
Kate. Anonymity trilemma: Strong anonymity, low bandwidth over-
head, low latency - choose two. In 2018 IEEE Symposium on Security
and Privacy, pages 108–126. IEEE Computer Society Press, May 2018.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: the
second-generation onion router. In Proceedings of the 13th USENIX
Security Symposium, August 9-13, 2004, San Diego, CA, USA, pages
303–320, 2004.

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of dif-
ferential privacy. Foundations and Trends R○ in Theoretical Computer
Science, 9(3–4):211–407, 2014.

[Gol98] Oded Goldreich. Secure multi-party computation. Manuscript. Prelim-
inary version, 78, 1998.

37

[JWJ+13] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul F.
Syverson. Users get routed: traffic correlation on tor by realistic ad-
versaries. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 13, pages 337–348. ACM Press, November 2013.

[KCDF17] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford.
Atom: horizontally scaling strong anonymity. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October
28-31, 2017, pages 406–422, 2017.

[SEF+17] Yixin Sun, Anne Edmundson, Nick Feamster, Mung Chiang, and Pra-
teek Mittal. Counter-RAPTOR: Safeguarding tor against active routing
attacks. In 2017 IEEE Symposium on Security and Privacy, pages 977–
992. IEEE Computer Society Press, May 2017.

[TGL+17] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai
Zeldovich. Stadium: a distributed metadata-private messaging system.
In Proceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017, pages 423–440, 2017.

[vdHLZZ15] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich.
Vuvuzela: scalable private messaging resistant to traffic analysis. In
Proceedings of the 25th Symposium on Operating Systems Principles,
Monterey, CA, USA, October 4-7, 2015, pages 137–152, 2015.

[WSJ+18] Ryan Wails, Yixin Sun, Aaron Johnson, Mung Chiang, and Prateek
Mittal. Tempest: Temporal dynamics in anonymity systems. PoPETs,
2018(3):22–42, 2018.

38

	Introduction
	Motivation
	Contributions
	Motivating Examples
	Everyone sending to everyone
	Single server
	Many servers

	Related Works

	Preliminaries
	Modeling the Problem
	Definitions (anonymity)
	Definitions (efficiency measures)

	Results
	Round Complexity
	Round complexity with server load constraint
	Tightness

	Conclusion
	Implications
	Future Work

