
Abstract of “Bootstrapping Generalization in Neural Text-to-SQL Semantic Parsing Models” by

Nathaniel Weir, Sc.B., Brown University, May 2019.

The focus of this thesis is to introduce a novel method for bootstrapping the generalizable language

understanding of data-driven neural text-to-SQL translation models in unseen domains. Such models

are of high interest because of their high performance as the central component of Natural Language

Interfaces to Databases (NLIDBs). Current approaches rely on shallow, isolated supervised learning

techniques in which models overfit to simple patterns from small, manually curated datasets in order

to perform competitively on various text-to-SQL benchmarks. However, their learnt patterns are not

extensible and lead to models with poor generalization beyond the specific language shown in the

isolated training scenario. The models struggle to grasp the compositional nature of both natural

language and SQL, and thus cannot output novel SQL patterns nor abstract learnt patterns in order

to translate queries over databases in new domains. To address these shortcomings, we introduce

a new training pipeline that leverages template-based synthetic training data generation in order

to construct a more robust translation model without relying on manually-curated data in a target

domain. Through evaluation, we show that this synthetic data serves a variety of purposes in multiple

grounded scenarios, including an off-the-shelf single-domain case in which a target database schema

is available before the training step, and a more general, cross-domain case in which the schema is

not available until the translation step.

Bootstrapping Generalization in

Neural Text-to-SQL Semantic Parsing Models

by

Nathaniel Weir

Sc.B., Brown University, 2019

A Thesis submitted in partial fulfillment of the requirements for Honors

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2019

This thesis by Nathaniel Weir is accepted in its present form by

the Department of Computer Science as satisfying the research requirement

for the awardment of Honors.

Date
Ugur Cetintemel, Reader

(Dept. of Computer Science)

Date
Elie Bienenstock, Reader

(Dept. of Applied Mathematics)

iii

Acknowledgements

I would like to thank Ellie Pavlick, Ugur Cetintemel, and Carsten Binnig for their invaluable guidance

for the past couple years on these projects. I’d also like to thank P. Ajie Utama, who served as my

primary role model for NLP research and helped to shape the kinds of problems I find exciting and

worth pursuing.

iv

Contents

List of Tables vii

List of Figures viii

1 Introduction and Background 1

1.1 Motivation . 1

1.2 Contribution . 6

1.3 Related Work . 7

1.3.1 NLIDBs . 7

1.3.2 Towards Generalization . 9

1.4 Outline . 10

2 Synthetic Text-to-SQL Training Data Generation 11

2.1 Generation Process . 11

2.1.1 Template-based Example Instantiation . 12

2.1.2 SQL Coverage . 14

2.1.3 Training Data Augmentation . 15

2.2 Evaluation . 17

2.2.1 Training Our Model . 17

2.2.2 Benchmarks . 17

2.2.3 Other Systems Evaluated . 20

2.2.4 Results . 21

2.3 Discussion . 22

3 Bootstrapping Cross-Domain Learning 25

3.1 SyntaxSQLNet Overview . 25

3.2 Spider Benchmark Overview . 26

3.3 Evaluating Strategies for Leveraging Synthetic Data 27

3.3.1 Models . 27

3.3.2 Results & Discussion . 29

3.4 Augmenting the Full SyntaxSQL Pipeline . 30

v

3.4.1 Models . 30

3.4.2 Results and Discussion . 30

3.5 Evaluating Impact of Synthetic Data Magnitude . 32

3.5.1 Models . 33

3.5.2 Results & Discussion . 34

3.6 Evaluating Impact of Source Domain Magnitude . 35

3.6.1 Models . 35

3.6.2 Results & Discussion . 35

3.7 Evaluating Compositional SQL Generalization . 37

3.7.1 Advising Benchmark Overview . 38

3.7.2 Models . 38

3.7.3 Results & Discussion . 39

4 Conclusion 41

4.1 Summary of Contributions . 41

4.2 Future Directions . 42

Bibliography 43

vi

List of Tables

1.1 Example of Categorically Reforming a Simple NL Utterance into Semantically Equiv-

alent Phrases. 4

1.2 Illustration of Differing Levels of SQL Pattern Abstraction 5

2.1 Example of NL/SQL Templates with Instantiation 14

2.2 Accuracy Comparison Between Our Approach and Other Baselines on the Two Bench-

mark Datasets . 21

2.3 Accuracy Breakdown by Paraphrase Category for the Patients Benchmark 22

3.1 Spider Development Accuracy Comparison for Varying Training Paradigms in ‘Off-

the-Shelf’ Scenario . 29

3.2 Spider Development Accuracy Comparison for Augmented Training Pipeline 32

3.3 Frequencies of Error Types by SyntaxSQLNet on Spider Development With/Without

Synthetic Augmentation . 32

vii

List of Figures

1.1 Example NL Query with Unintuitive Corresponding SQL Syntax 2

1.2 Overview of NLIDB Architecture . 2

1.3 Overview of Synthetic Data Generation, Training and Inference Pipeline 6

2.1 Training Set Generation Process from ‘Building a Semantic Parser Overnight’ 12

2.2 Training Set Generation Process in Our Approach 13

2.3 Overview of Text-to-SQL Sequence-to-Sequence Architecture 18

2.4 Schema of Database from GeoQuery Benchmark . 19

3.1 Overview of SyntaxSQL Model . 26

3.2 Strategies Evaluated in Experiment 3.3 . 28

3.3 Augmentation of Training Pipeline in Experiment 3.4 31

3.4 Epoch Accuracy of COL Module Trained on Synthetic Data with Varying Magnitudes 34

3.5 Epoch Accuracy of COL Module Trained on Synthetic Data from Varying Source

Domains . 36

3.6 COL Module Prediction Accuracy Across Query and Question Splits on Advising

Benchmark . 39

viii

Chapter 1

Introduction and Background

1.1 Motivation

Structured query language (SQL), despite its expressiveness, may hinder users with little or no

technical exposure from exploring and making use of the data stored in an relational database.

In order to effectively leverage their data sets, users are required to have prior knowledge about

the schema of their database, such as entities and relations, as well as a working understanding of

the syntax and semantics of SQL. These requirements set a high bar for entry for democratized

data exploration and thus have triggered new efforts to develop alternative interfaces that allow

non-technical users to explore and interact with their data conveniently and effectively. Natural

Language Interfaces to Databases (NLIDBs) provide such a bridge across the expertise gap; they

allow users to express their intentions with all the expressiveness of a natural language utterance,

which is mapped directly to its corresponding, possibly non-trivially constructed, executable SQL

query by a translation model. Figure 1.1 shows an example of a hospital database question1 whose

corresponding SQL is not easily inferred, particularly given the relative simplicity of the natural

language. A medical professional who might want to query their hospital database in this way

would otherwise need the technical experience to use a standard database interface and compose a

complex SQL query, while an NLIDB would cut out the intermediary steps and allow the doctor to

explore the data without any such overhead.

The basic architecture of a NLIDB is quite straightforward: given a database and natural lan-

guage utterance, the NLIDB computes a SQL query that is executed against the database schema

so as to retrieve a table visualization. A general architecture is shown in Figure 1.2.

The task of translating natural language (NL) text into SQL has gained much traction in both

the database and NLP research communities. The former views it as an extension of the general task

of Neural Semantic Parsing (NSP), which entails the use of deep models to convert ad-hoc natural

language utterances into computationally tractable logical forms. In this scenario, SQL takes the

1In this work, we will use the term question to refer to a natural language utterance, while using the term query
to denote the corresponding SQL form.

1

2

Figure 1.1: Example NL Query with Unintuitive Corresponding SQL Syntax

Figure 1.2: Overview of NLIDB Architecture

place of a typical logical form such as λ-calculus. Recent work has applied the de facto state-of-

the-art model for NSP tasks, a bi-LSTM sequence-to-sequence (seq2seq) neural network [38], to the

text-to-SQL task [37]. In this initial approach to neural text-to-SQL generation follows a typical

deep learning proof-of-concept pipeline: the authors construct a set of manually-written examples of

queries over a particular (single) database, split somewhat arbitrarily into train/validate/test sets,

and upon training the model is assumed to automatically induct the linguistic and semantic patterns

in both the source and target forms that will then be generalized onto the ‘unseen’ training set.

That seq2seq models drastically outperform previous statistical or rule-based approaches on this

particular task without requiring the overhead of e.g. feature engineering is indeed an important

accomplishment. However, successful performance in this supervised setting should not be conflated

with successfully ‘solving’ the text-to-SQL semantic parsing task for a variety of reasons, some of

which we will outline here as being the most important barriers keeping deep models from performing

effectively in off-the-shelf NLIDBs for commercial use.

Firstly, the most critical assumption in the supervised learning paradigm is in its descriptor–

that it is supervised. In other words, the model is assumed to have access to this well-curated

dataset that contains a diverse set of language utterances and comprehensively reflects the type

of linguistic patterns on which the model will eventually be ‘tested.’ Arbitrarily splitting up the

curated examples into train/test sets implies that the vocabularies and semantic phenomena seen

during train and evaluation times are essentially identical, as are the flavor of SQL queries that the

model might need to output. A model being tested on the query ‘what is the capital of Colorado?’

3

is quite likely to be successful if it has been previously trained on ‘what is the capital of California?’

and ‘what is the capital of Connecticut?’. This assumed availability of applicable training data

that sufficiently corresponds to the query patterns a model will have to translate online quickly

falls apart, particularly in the case of an NLIDB, which will need to translate ad-hoc queries over

whatever database its nontechnical user will be relying upon it to explore. Each new domain contains

new ontological information, new notions of ‘easy’ queries to translate, and new ways to contextually

ask for data. The overhead of crafting such examples– and writing the corresponding SQL–cannot

be put upon the system user; this is contradictory to the purpose of a system geared towards helping

nontechnical users.

The problems posed by diverse domains extend to the nature of the target databases themselves.

Not only can domains differ ontologically– i.e. the difference between translating queries over a

geographical versus a medical dataset–, but the database schemas are also variable within a particular

context. Database entities and relations are defined at the whim of the dataset curator, and different

schemata are possible given a particular ontology. For example, over one geographical schema, the

utterance ‘what is the capital of California?’ might map to the query SELECT state.capital

FROM state where state.state name = ‘california’, while over a second geographical schema

it might translate to SELECT capital.capital name FROM capital WHERE capital.state name

= ‘california’. The knowledge of the particular target schema must therefore be injected, either

into the collected training examples, or as we will see later, into the input of the neural network

itself.

A second, somewhat related critical assumption of the supervised learning scenario is that a

small, manually curated dataset over a single database will facilitate a model learning generalizable

representations of language. The tendency of neural networks–particularly those such as bi-LSTMs

with thousands of parameters– to overfit to limited training data portends a frustratingly brittle

translation model that falls apart upon exposure to unseen language patterns, even seemingly simple

ones or sequences that differ by only a word from those seen during training. The isolated nature of

the training pipeline– i.e. that the network starts the process with a fully randomly initialized de-

cision mechanism (barring the clever addition of e.g. fine tune-able, pre-trained word embeddings)–

combined with a shallow objective function (essentially ‘get these examples right and don’t care

about any others’) lead to the model having no guaranteed agency to truly understand the seman-

tics of language and instead relying on exploitable biases in the data. For example, during training

the model might be exposed to the word ‘how’ in the context of ‘how high is Mount Everest?’. If

during evaluation it is asked ‘how large is Alaska?’, there is little chance it will handle the query

effectively, regardless of whether it has seen other ways to ask for SELECT state.area FROM state

WHERE state.name = ‘alaska’. Moreover, it might see the utterance ‘how long is the mississippi

river?’ and, exploiting that ‘how’ has only ever been seen in the context of mountain height, ignore

any other semantic clues and output some SQL query that retrieves the height of Mount Mississippi.

From a philosophical NLP perspective, the network becoming brittle as a result of unnatural bias

in the training data is incredibly worrying because it contradicts the role of language as a natural,

4

SQL: SELECT COUNT(*) FROM patients WHERE diagnosis=flu

Canonical Utterance What is the count of patients where diagnosis is flu ?

Syntactic Reordering Of patients where diagnosis is flu, what is the count?

Morphological Modification What is the count of patients diagnosed with flu ?

Mixed-Category Modification What is the total sum of patients where diagnosis is being influenza ?

Implicitly Reference Database Element How many patients with flu are there ?

Semantically Equivalent Phrase Count flu-diagnosed patients

Table 1.1: Example of Categorically Reforming a Simple NL Utterance into Semantically Equivalent
Phrases.

abstractable form of communication. Attempting to induct deep models of semantics leads to a fail-

ure to incorporate the common sense and linguistic principles that humans easily and unconsciously

use to comprehend never-before-heard utterances.2 For a particular SQL query over some schema,

there are infinitely many ways to express a corresponding NL utterance, and all up to a high level

of complexity can be easily handled by a human listener. An example of the ways to rephrase even

simple a simple utterance is shown in Table 1.1. Even a simple typology of paraphrasing methods

leads to an explosion of possible utterance, exhibiting the infinite expressiveness of natural language

relative to SQL. There exists a need to incorporate robustness to such linguistic variety into neural

models. Such robustness ideally corresponds to building a representation of language more faithful

to human cognition, one that cannot be simply inducted from words in a single, isolated domain.

Humans learn the meanings of words alongside seeing them in a diverse array of contexts and usages;

hypothetically, a model that observes particular words in a similar way will construct more domain-

general representations of them, with the understanding that they serve semantic roles outside of

very particular, domain-specific patterns of questions.

For example, consider that in the queries ‘what river runs through California?’ and ‘which athlete

runs the 100-meter sprint?’, the word ‘runs’ describes two distinct types of entity relationships; one

might refer to a between-tables relationship (‘river’ and ‘state’ tables) while the other might refer to a

link between a table and a column (the ‘event’ column of a ‘runner’ table). A general representation

of ‘runs’ that acknowledges its multiple meanings and ontological roles as applied to novel database

schemata is required to handle both cases–ideally, such a representation can be induced by showing

‘run’ to the model in multiple contexts during training.

Finally, it is just as important for a text-to-SQL translation model to grasp the compositional

structure of its target language, SQL, as it is to do so for NL. SQL follows a specific syntax and

grammar that defines what does and does not comprise a well-formed, executable query. A purely

distributional, data driven supervised learner has no access to this structure, and as with the source

2There exists a large amount of work in the NLP community on exactly this problem, the search for ways to
incorporate linguistic and cognitive theory into the distributional semantics upon which neural networks rely
for language understanding. It is hotly debated whether such a learning paradigm, in which representations of
language are crammed into a ‘vector bottleneck’ from which the connectionist decision process is derived, has the
potential to ‘solve language’ to a sufficient extent. It is important to keep this debate in mind as we explore one
way to augment the typical, controversially simple learning pipeline so as to make incremental progress towards
this larger goal.

5

0. Full SQL Query SELECT Max(state.area) FROM state WHERE state.country = ‘usa’

1. Literals Anonymized SELECT Max(state.area) FROM state WHERE state.country = value

2. Literals + Entities Anonymized SELECT Max(table1.col1) FROM table1 WHERE table1.col2 = value

3. General SQL Pattern SELECT func(table1.col1) FROM table1 WHERE table1.col2 comp value

Table 1.2: Illustration of Differing Levels of SQL Pattern Abstraction

language, it is assumed that the model will derive this system from examples alone. Again, given a

naive training split of a couple thousand examples or fewer, this is a tall task. The famous semanticist

Gottlob Frege argued that extracting semantic meaning is akin to capturing a tree of logical forms

that explains interrelation and function between concepts. This is literally the case for SQL, where

meaning is directly convertible to a tree structure. Until recently, present-day neural semantic

parsing models specifically have not captured this spirit– they capture meaning only in the latent

patterns of data pieces; they are not forced to perceive a grammar or typography of functions upon

which they can understand any ad-hoc utterance or query pattern. Because they can not generalize

well to unseen domains, this lack of structured perception is inherently limiting the capacity of the

model. In contrast, non-deep, statistical semantic parsing models from previous decades are exposed

to grammatical structure and so can make less context-isolated decisions, though these decisions do

not have the ease nor computational complexity of data-driven approaches.

There remains a need to reincorporate such structure. When one abstracts away a level or two

of specificity by removing named database elements (i.e. in Figure 1.2), it becomes evident that

the small training set curated by one or a couple authors is bound to cover only a small subset of

SQL query patterns. Upon evaluation of supervised models, it becomes evident that a network is

incredibly unlikely to ever output a SQL pattern of level-2 abstraction that was not observed during

training, even if it is a simple recombination of seen patterns. If the model has seen queries (1a)

and (1b) during training, it is still very unlikely to ever output query (1c) despite the relatively

simple compositional operation required to construct it from the seen sequences. While the seq2seq

model is generative and thus outputs the ‘most likely sequence’ given the input utterance, in the

supervised paradigm the translation process is instead essentially one of classification, with possible

classes comprising only the level-2 abstractions observed during training, with the only generative

part of the procedure being the filling in of literals and entities.

(1a) SELECT * FROM state WHERE state.country = ‘usa’

(1b) SELECT Max(state.area) FROM state

(1c) SELECT Max(state.area) FROM state WHERE state.country = ‘usa’

The use of a modular, grammar-aware neural decoder by [44] as discussed in future sections is a

step towards reincorporating compositionality so as to avoid this drawback, as it leverages structure

that is known to exist so as to not need the black-box decision process of the neural net to induce

understanding of the structure on its own. However, patterns not available in the training set for a

6

Figure 1.3: Overview of Synthetic Data Generation, Training and Inference Pipeline

particular domain are still unlikely to be outputted, even with with awareness. As a result, there

remains a need to inject into the pipeline the possibility of outputting unseen patterns.

1.2 Contribution

The main contribution of this work addresses the issues stemming from the training data bottleneck

from a novel angle. We introduce a bootstrapping approach for training a neural NLIDB on any new

database schema in a domain-agnostic way with no reliance on manually-curated training examples.

Using a set of over 100 domain-independent seed templates, our technique generates vast amounts

of domain-specific training examples of natural language utterances paired with their corresponding

SQL queries. Each SQL pattern in the grammar of templates is matched with many distinct NL

patterns. These NL and SQL templates contain slots to be filled in by database elements, while the

NL templates also contain phrase slots to be filled in using a back-end English lexicon. The set of

SQL patterns covered includes aggregations, simple nested queries and column joins.

The set of templates is designed to define a set of universal SQL templates over which the trained

model will perform robustly to domain-general utterances and their linguistic variation. We further

add variety and domain specificity to the training data through a number of augmentation steps that

draw inspiration from various works in computer vision and machine translation, such as random

word dropout and automatic paraphrasing. The produced training data leads to a trained model

that is more robust to linguistic variation than its predecessors.

This synthesis of training data using the principle of distant (or weak) supervision [10, 11]3. The

basic idea of distant supervision is to leverage various heuristics and existing datasets to automati-

cally generate large (potentially noisy) training data instead of handcrafting it.

We initially present our translation model training framework as a working end-to-end system,

which requires minimal manual annotation effort by a user who is not well-versed in SQL–it only

3We do not distinguish between weak and distant supervision as the difference is subtle and both terms are often
used interchangeably in the literature.

7

requires schema elements to be paired with simple natural language utterances. An overview of a

full pipeline architecture is illustrated in Figure 1.3.

Our approach uniquely expands upon the typical supervised learning framework of previous

models. We argue that our use of extensive linguistically-aware templates to bootstrap training can

provide a comparable breadth of coverage as that of manually collected training data. Furthermore,

we argue that our techniques for augmenting the generated data further increase the linguistic

robustness and domain adaptability of any model trained wholly or partially on it.

We proceed to show that the generated data serves a variety of purposes beyond serving as

sufficient training data for an end-to-end translation model. The data can also be used to augment

the training pipeline of other translation models in separate scenarios than an off-the-shelf system

that plugs into an input schema and trains a new seq2seq model to translate queries over it. To

illustrate this, we inject the data into the pipeline of the work, SyntaxSQLNet [44], a general text-

to-SQL approach that is geared towards translating queries over multiple databases with a single

model.

SyntaxSQLNet is unique in that it can combine manually-curated training pairs from other, avail-

able domains and use them as a universal training set so as to generalize onto new target databases

without having to be retrained nor having to even see the target schema before translating questions

over them. We can formalize this difference via notation: the initial, off-the-shelf application con-

structs a new translation model with parameters θd using training queries only over given database

d, and then during translation it computes Translateθd(q) to generate the SQL query. This new sce-

nario entails the SyntaxSQLNet model training on queries over many database schemata to acquire

parameters θ, and then during translation computing Translateθ(d, q).

We demonstrate how adding synthetic data to this second scenario boosts the generalization of

the SyntaxSQLNet model onto new databases, as well as how it boosts the ability of the model to

grasp the compositionality of SQL in a single domain.

1.3 Related Work

1.3.1 NLIDBs

The task of synthesizing an SQL program from natural language text has been studied extensively

within both the NLP and database research communities since the late 1970s [32, 46]. A 1995 study

from [1] extensively discusses challenges that need to be address pertaining to NLIDBs; their list

includes linguistic coverage and database portability.

In the database community, notable NLIDBs such as NaLIR [24] define a rule-based system

over the syntactic structure of the NL utterance (i.e. using part-of-speech tags [35] or dependency

relations [24]). The latter also allows users to provide feedback to the system by correcting mappings

of utterance tokens to schema elements (table names, attributes or record values). Unfortunately,

these approaches are inherently limited in terms of linguistic coverage. The reliance on a finite set

of handcrafted rules and the output of off-the-shelf dependency parsers lead the systems to fail at

8

extrapolating its decision rules beyond a test set of linguistically and syntactically similar queries

in a single domain. In the case of [24], as shown in our results in Section 2.2.4, simple lexical or

syntactical changes to an otherwise easily translatable utterance are enough to incapacitate their

translator.

A different type of approach introduced by [36] leverages domain-specific ontological structures

entailing relationships and semantic roles of database elements in order to significantly outperform

its predecessors. The system first converts an input NL utterance into an intermediate query of the

ontological structure before converting the intermediate form into SQL. While its performance on

common benchmarks has yet to be matched, this approach requires extensive manual overhead to

craft a new ontology for a given database schema and thus is not realistic for off-the-shelf use.

Within the NLP community, this task is most commonly treated as a semantic parsing problem

– one where the goal is to model a mapping of natural language text to corresponding logical form,

in this case SQL. Earlier works such as [4, 3, 25, 48] employ variants of CCG parsers [9] to parse a

natural language utterance into an executable lambda calculus notation.

Recent success in employing neural network sequence-to-sequence modelling for syntactic con-

stituency parsing by [41] has spurred efforts in adapting the same solution for semantic parsing.

That is, they pose logical form synthesis as a neural machine translation task, adapting systems

for translating English to Czech or French to instead treat the logical form as the target foreign

language. In both settings, mapping to lambda calculus [23, 13] or directly to SQL [20, 15, 6],

the sequence-to-sequence architecture has shown highly competitive performance with statistical

approaches that rely heavily upon hand-crafted lexical features.

Sequence-to-sequence models consist of a large number of parameters that require vast amounts

of training examples. This poses a substantial challenge, as collecting diverse enough training data

comprising pairs of utterance and logical form or SQL requires expensive expert supervision. Iyer

et al. [20] attempts to deal with this data bottleneck by performing an online learning mechanism

in which the model alternates between training and making predictions. Human judges identify

incorrect predictions that need to be corrected by a crowdsourced worker with SQL expertise.

Alternatively, a solution more similar to ours is introduced by [42], whose approach produces

pairs of canonical utterances aligned with their corresponding logical forms using a seed lexicon.

They again use crowdsourcing, in this case to build a more diverse set of NL training examples

by paraphrasing the canonical utterances into more fluent sentences using syntactic alterations and

context specific predicates. While less efficient than an on-the-fly system, this form of crowd-sourced

annotation is much less costly than previous approaches, given worker’s SQL expertise is not required.

The main contribution of this work addresses the training data bottleneck from a slightly different

angle. We attempt to perform utterance generation in a technique completely detracted from any

manual annotation effort by a user who is not well-versed in SQL. Rather, the user need only be

familiar with the given new semantic domain in order to sufficiently annotate the new schema’s

elements with their natural language utterances.

9

1.3.2 Towards Generalization

Text-to-SQL benchmarks have only very recently been crafted to encourage models to address the

problems we enumerated above. A recent analysis of previous benchmarks [7] codifies the problems

of generalization and compositionality in NL-to-SQL translation. For each dataset previously used

for evaluating recent systems [29, 24, 37, 17], they compiled statistics measuring set redundancy–that

is, how many actual NL question patterns the set contains when database literals are removed4–

, as well as how complex the SQL query patterns covered by the set are. They stress the need

to evaluate approaches upon multiple domains with varying levels of redundancy and complexity,

citing the diverse methods and motivations of the NLP and databases communities when generating

the datasets. They also introduce new train/test splits for existing benchmarks in order to test

for compositional SQL generalization; all SQL patterns seen during evaluation are not available in

training, thus forcing models to recombine the patterns available to them. In their evaluation, no

models performed at all effectively on these new splits, with drops of up to 70% in accuracy on some

datasets.

The new benchmark, Spider [45], follows in this trend, expanding the domain of test datasets

into the hundreds (leveraging the manual labor of a dozen or so undergraduate annotators). The

high number of domains allows them to also introduce a test split over databases, thus testing over

diverse sets of queries of databases that haven’t been seen at all during training.

The curators of Spider also introduce the model, SyntaxSQLNet [44], that currently has state-

of-the-art performance on the new benchmark. It differs from previous models in that it encodes

information about a database as part of its input, thus allowing it to recognize new domains on the

fly. It follows the same encoder-decoder framework that most sequence-to-sequence models employ,

but uses a novel, modular decoder inspired by [34] that leverages the grammatical structure of SQL

to make explicit the decision process for outputting well-formed queries with attention to database

elements. However, this model achieves only 24.8% accuracy on the new benchmark. While this

is a massive improvement over previous systems (namely, because no other system is designed to

operate over multiple databases as input), there is still obviously extensive room for improvement.

We explore this model further in Section 3.1.

Similar to our approach, the training pipeline of [44] also leverages synthetic data generation.

Our approach differs from theirs in that they use a far less extensive set of query templates that only

cover single-table operations, while ours cover multi-table join queries. Their set of query templates

is also not geared towards boosting linguistic robustness and has a very limited variety of NL queries

that can be generated for each SQL pattern.

In the field of semantic parsing, progress has also been made towards the induction of extensible

representations by training in multiple domains. [19] show that neural semantic parsing models

trained on the text-to-λ-calculus task benefit from sharing parameters across multiple semantic

domains. Parsing accuracy is boosted in every single source domain, as well as in unseen target

4For example, ‘show the capital of California’ and ‘show the capital of Missouri’ follow the same question pattern
‘Show the capital of STATE’

10

domains. [14] build upon this multi-domain framework but experiment with a broader form of

transfer learning, where they have access to extensive labeled data in a somewhat related task

domain–in their case, syntactic parsing– and use it to increase training on the task with less available

data.

1.4 Outline

The rest of this work is outlined as follows.

Chapter 2 presents our work on generating a rich, linguistically robust training set over a target

database schema. We first describe the generation process (Section 2.1), in which examples covering

a wide set of SQL patterns are generated using over 100 template pairs of NL/SQL templates. We

then set up a series of evaluation experiments (Section 2.2). We evaluate a trained bidirectional

sequence-to-sequence model (described in Section 2.2.1) on a pair of benchmarks, the crafting of

the first of which we briefly describe (Section 2.2.2). We compare performance against other recent

systems and demonstrate that it can perform competitively with supervised learning models and

vastly outperform a well-known rule-based one. Finally, we discuss the strengths and weaknesses of

our approach (Section 2.3). This chapter covers work previously published in [39].

Chapter 3 presents our follow-up work on applying synthetic data generation to the pipeline of

recent cross-domain text-to-SQL model, SyntaxSQLNet. We first briefly describe the architecture

and training pipeline of the SyntaxSQLNet paper (Section 3.1), and then our different approaches

to injecting our data to the pipeline (Section 3.3). We then evaluating it on recent benchmarks

and demonstrate how our best approach enables both cross-domain generalization (Section 3.4).

We proceed with follow-up experiments on this setup to evaluate the impact on domain adaption

of training data magnitude (Section 3.5) and number of source domains (Section 3.6). Finally, we

evaluate the impact of synthetic data on compositional SQL generalization (Section 3.7).

Chapter 4 concludes with a summary of Chapters 2 and 3 and a general discussion of future

work.

Chapter 2

Synthetic Text-to-SQL Training

Data Generation

In the following, we first discuss the details of our data generation approach which consists of

two steps: data instantiation and data augmentation. Afterwards, we discuss how generation is

incorporated into training a model compare the model’s performance with recent approaches.

2.1 Generation Process

We describe our generation process by relating it to the approach of ‘Building a Semantic Parser

Overnight’ [42], who address the challenge of automatically curating a semantically and linguistically

diverse training set for querying a knowledge-base on the fly. It is currently nearly impossible to

follow some set of codified logical steps in order to produce fully-formed natural language, given

its infinite richness as discussed above. In order to address this, [42] separate their training set

generation into two distinct steps:

1. Logical Form and Canonical Utterance Generation, in which a domain-general gram-

mar containing logical form templates is used to repeatedly instantiate possible queries over

the knowledge base. For each instantiation, a corresponding ‘canonical utterance’ is gener-

ated using slotfilling with a ‘seed lexicon’ that maps knowledge base elements to NL words

and phrases. The canonical utterance very closely resembles the syntax of the target logical

sequence and would thus leave much to be desired were it used to train a semantic parser–

i.e. the parser would only ever be able to translate NL that very closely resembles the target

logical form.

2. Augmentation via Crowdsourced Paraphrasing, in which the canonical natural language

is given to a crowdsourced worker to be modified into a natural and more linguistically in-

teresting question. The resulting training set thus contains diverse and fully-formed natural

11

12

Figure 2.1: Training Set Generation Process from ‘Building a Semantic Parser Overnight’

language examples that will yield a much more robust translation model.

This pipeline is summarized in Figure 2.1, borrowed from [42]. This work demonstrates that

it is possible to learn to translate queries into logical forms in domains without any manually-

curated data, aside from the passive use of crowdsourcing, a hybrid artificial/manual resource. It

is functionality-driven, in that the curator defines the set of possible queries that can be produced

and then sets about creating robust translation over that set.

2.1.1 Template-based Example Instantiation

The separation between template-based slot-filling and augmentation for natural richness also ap-

pears in our generation approach, which is summarized in Figure 2.2. A major difference, however,

13

Figure 2.2: Training Set Generation Process in Our Approach

is that we attempt to incorporate some of the natural richness into the first step by generating a

much more substantial lexicon and set of templates that extends beyond ‘canonical’ NL that closely

resembles the target SQL.

To exemplify this, consider the following SQL template from our grammar:

SELECT {FUNC1} ({TABLE1}.{COL1}) FROM {TABLE1}

WHERE {TABLE1}.{COL2} {COMP} {TABLE1}.{COL2}.{LITERAL}

Each token surrounded by {}’s represents a slot to be filled by database entities or, in the case

of {FUNC1} and {COMP}, a sql-specific vocabulary term. The canonical NL translation that most

closely resembles this SQL template is

{commandToken} the {FUNC1} {TABLE1}.{COL1} {fromToken} {TABLE1}

{whereToken} {TABLE1}.{COL2} {COMP} {TABLE1}.{COL2}.{LITERAL}

where slots such as {commandToken} and {fromToken} are randomly filled in using an extensive

backend lexicon–for example:

{commandToken} => show|get|list|find|show me|get me|show me|display|exhibit

However, as opposed to the approach of [42], A SQL template is not associated with just a

single, canonical NL template. We categorically perform syntactic re-ordering to associate multiple

NL templates whose wording doesn’t necessarily align so nicely with the SQL. During generation,

many training examples are generated from each one of the NL seed templates. Example re-ordered

templates and corresponding NL instantiations are displayed in Table 2.1. This variety serves to

inject a sense of possible grammatical variation into the model’s understanding of NL queries. Note

that instantiation can result in noisy, less than grammatically-correct utterances, as well as utter-

ances that are unlikely to be asked by a naive user. However, we argue that perfect adherence to

grammatical constraints shouldn’t be the goal of a semantic parser– such utterances still have se-

mantic intent that corresponds to the target SQL query, and could easily be understood by a human

listener. Moreover, as discussed above, we believe the larger variety of contexts and instances in

which a NL word appears will make it less likely to be the object of artificial biases.

14

SQL Template: SELECT {FUNC1} ({TABLE1}.{COL1}) FROM {TABLE1} WHERE

{TABLE1}.{COL2} {COMP} {TABLE1}.{COL2}.{LITERAL}

Instantiated: SELECT Max(patients.age) FROM patients WHERE

patients.diagnosis = ‘flu’

Canonical NL Template: {commandToken} the {FUNC1} {TABLE1}.{COL1} {fromToken} {TABLE1}

{whereToken} {TABLE1}.{COL2} {COMP} {TABLE1}.{COL2}.{LITERAL}

Instantiated: Find the max age from patients where diagnosis equals flu

NL Template: {fromToken} {TABLE1} {whereToken} {TABLE1}.{COL2} {COMP}

{TABLE1}.{COL2}.{LITERAL}, {questionToken} the {FUNC1}

{TABLE1}.{COL1}

Instantiated: Out of patients whose diagnosis is flu, what is the highest age

NL Template: {commandToken} {fromToken} {TABLE1} {whereToken} {TABLE1}.{COL2}

{COMP2} {TABLE1}.{COL2}.{LITERAL} the {FUNC1} {TABLE1}.{COL1}

Instantiated: Display out of patients with diagnosis being flu the

highest-valued age

Table 2.1: Example of NL/SQL Templates with Instantiation

2.1.2 SQL Coverage

Like [42] we take a functionality-driven approach to the training pipeline. Our SQL templates define

a subset of all possible SQL patterns that can reliably be produced by our system. These include

group-by aggregations, column selects, nests, inner joins, and ‘macro’ operations such as argmax and

argmin. Many of these functionalities are templatized by automatically reforming simpler templates.

We describe a couple examples of automatic template extension here.

GROUP BY Statements: The SQL template from Table 2.1 is reformed into a group-by tem-

plate with simple prefixes and suffixes added to the SQL and NL seeds:

SELECT {COLagg}, {FUNC1} ({TABLE1}.{COL1}) FROM {TABLE1}

WHERE {TABLE1}.{COL2} {COMP} {TABLE1}.{COL2}.{LITERAL} GROUP BY {COLagg}

For each {COLagg}, {commandToken} the {FUNC1} {TABLE1}.{COL1} {fromToken} {TABLE1}

{whereToken} {TABLE1}.{COL2} {COMP} {TABLE1}.{COL2}.{LITERAL}

JOIN Statements: Similarly, join query templates can be inferred by letting {TABLE1} tokens

vary by number, thus allowing the table in the FROM clause differ than the table in the WHERE clause1:

SELECT {FUNC1} ({TABLE1}.{COL1}) FROM {TABLE1}, {TABLE2}

WHERE {TABLE2}.{COL2} {COMP} {TABLE2}.{COL2}.{LITERAL} AND

1Note that this simple example only allows for joins between tables that have a single-table join path; more
complicated join paths require more clauses to be substituted in, but are still templatizable.

15

{TABLE1}.JOIN_COL{TABLE2} = {TABLE2}.JOIN_COL{TABLE2}

{commandToken} the {FUNC1} {TABLE1}.{COL1} {fromToken} {TABLE1}

{whereToken} {TABLE2}.{COL2} {COMP} {TABLE2}.{COL2}.{LITERAL}

For clarity, this template pair produces instantiations such as:

SELECT Min(city.population) FROM city, state

WHERE city.state_name = state.state_name AND state.country = ‘usa’

Display the population from cities where country is usa

Nested ARGMIN/MAX Statements: An example of a templatizable nested ‘argmax’ query

is depicted in Figure 1.1. Such a query can be created by replacing or appending any WHERE clause

with a placeholder sequence representing an argmax; in this case, a macro taking in the tuple

(column to take min/max of $ source table (can be joined) $ any inner WHERE clauses)

to be replaced by complete SQL during a post-processing step. The result of applying this to our

initial example template is as follows:

SELECT {FUNC1} ({TABLE1}.{COL1}) FROM {TABLE1} WHERE

ARGMAX({TABLE1}.{COLf} $ {TABLE1} $)

{commandToken} the {FUNC1} {TABLE1}.{COL1} {fromToken} {TABLE1}

{whereToken} {TABLE1}.{COLf} is the {ARG1}.

For clarity, this template pair produces instantiations such as:

SELECT Min(patients.age) FROM patients WHERE

ARGMAX(patients.length_of_stay $ patients $)

Note that upon instantiation this query pattern can be either converted into the fully-formed SQL

query (as ARGMAX is not a keyword and would obviously cause an interpreter to crash), or can be

left as-is so that a seq2seq model learns to output ARGMAX’s instead of outputting the longer SQL

statement. Our implementation chooses the latter option.

It is also important to note that it is trivial to continue to add these templates to the back-end

grammar before generation. While the system is geared towards naive users, were a SQL-aware user

to want to increase the breadth of SQL coverage for their translation model, they could simply add

a template to cover it.

2.1.3 Training Data Augmentation

In order to make the query translation model further robust to linguistic variation, we apply the

following augmentation steps for each instantiated NL-SQL pair, each of which is performed fully

16

automatically without the use of crowdsourcing:

Automatic Paraphrasing: We augment the training set by duplicating NL-SQL pairs, but ran-

domly selecting words and sub-clauses of the NL query and paraphrasing them using the Paraphrase

Database (PPDB) [30] as a lexical resource. A simple example for this is:

Input NL Query:

Show the name of all patients with age 40

PPDB Output:

demonstrate, showcase, display, indicate, lay

Paraphrased NL Query:

display the names of all patients with age 40

PPDB is an automatically extracted database containing millions of paraphrases in 27 different

languages. PPDB provides over 220 million paraphrase pairs, consisting of 73 million phrasal and 8

million lexical paraphrases, as well as 140 million paraphrase patterns, which capture many meaning-

preserving syntactic transformations2. The paraphrases are extracted from bilingual parallel corpora

totalling over 100 million sentence pairs and over 2 billion English words.

In our automatic paraphrasing step, we use PPDB as an index that maps words/sub-phrases to

paraphrases and replace words/sub-phrases of the input NL query with available paraphrases. For

any given input to PPDB, there are often tens or hundreds of possible paraphrases available.

Random Word Removal: A possible challenge of input NL queries is missing or implicit infor-

mation. For example, a user might ask for patients with flu instead of patients diagnosed

with flu and thus the information about the referenced attribute might be missing in a user query.

Therefore, to make the translation more robust against missing information, we duplicate indi-

vidual NL-SQL pairs and select individual words/sub-clauses that are removed from the NL query.

This augmentation also serves to increase robustness to fragmented queries, an important quality

as mentioned above.

The above approaches parallel ones seen in computer vision, in which image training examples

are modified by changing pixel values or removing subsections so as to create a new example but

retain the essential visual information contained within– in our case, we perform noisy modifications

that ideally retain the semantics of the input phrase3.

Other Augmentations: We also apply additional techniques to increase linguistic variations

contained in the training set. One example is randomly sampling from available linguistic dictionaries

for comparative and superlative adjectives. That way, we can replace for example the general phrase

greater than in an input NL query by older than if the domain of the schema attribute is set to age.

2We do not implement the syntactic transformations (yet).

3It may be the case that the sementics are changed, as in the case where show patients with age not 40 becomes
show patients with age 40. However, we argue that this contrived example hinders the model less severely than
it helps to make the model less brittle to particular question patterns.

17

In the future, we plan on extending the augmentation phase; we have explored automated para-

phrasing via ‘language pivoting’ [27], in which an utterance is fed through a neural machine trans-

lation model into a foreign language, e.g. German, and then through a second model back into

English. We have also explored NL generation via backtranslation from SQL into NL– that is, to

generate a SQL instantiation and then feed it through either a rule-based ([22]) or neural model for

summarizing SQL queries using natural language.

2.2 Evaluation

2.2.1 Training Our Model

We use the standard architecture of a seq2seq model as described in [38] for machine translation

tasks. It comprises two recurrent neural networks (RNNs), an encoder and decoder. We use the

bidirectionality proposed by [2]. Both encoder and decoder consist of two layers of gated recurrent

units (GRUs) [8]. An overview of this setup is shown in Figure 2.3.

The dimensions of the hidden state vectors are set to 500, and we use GoogleNews word2vec

300-dimension pretrained word embeddings ([28]). We apply a dropout of .5 between the two GRU

layers as an attempt to avoid overfitting to the training corpus, which, though to a lesser extent

than many manually-curated sets, consists of a relatively small vocabulary (i.e., the backend lexicon,

SQL keywords, and schema annotation for the given database).

It is important to note the size of the training sets synthesized by our generator. Even for a

simple, single-table database with less than 10 columns, the space of possible NL/SQL pairs that

can be produced via recursive slot-filling is in the billions. For multiple-table queries, this size

increases a couple orders of magnitude. In order to make training have a realistic duration, we apply

probabilistic filtering to the recusrive algorithm. While the unfiltered algorithm fills a slot and

creates new recursive branches for every possible lexical item available, at high levels of recursion

we prune the branches by selecting fewer items from the candidates available in the lexicon. As a

result, we generate 1-2 million queries over a single-table schema and 3-4 million over a multi-table

one.

Given a set of synthetic training data generated from an input schema, we first apply stemming

and lemmatizing using the NLTK toolbox [26]. We follow a typical train/validation split of the

synthetic data, where the validation set is used for hyperparameter tuning. We use Adam [21] with

a learning rate of 0.0005 for 15 epochs.

2.2.2 Benchmarks

In order to compare our approach to other baselines, we use the GeoQuery benchmark, a well-

known semantic parsing benchmark adapted nl-to-sql task ([33], [18], [20]). For testing different

linguistic variants in a principled manner, we also curate a new benchmark that covers different

linguistic variations for the user NL input and maps it to an expected SQL output. The benchmark

18

Figure 2.3: Overview of Text-to-SQL Sequence-to-Sequence Architecture

is available online 4.

Here we give an overview of GeoQuery and then present the design of this new benchmark, the

Patients dataset.

GeoQuery Benchmark: The GeoQuery benchmark first introduced by Mooney [46] contains 880

queries over a database containing geographic information about the United States. The database

consists of 7 tables which represent geographical entities such as US states, cities, rivers and moun-

tains. The schema of this database is shown in Figure 2.4

The target logical form was initially written in the logic programming language Prolog. We use

the version converted to SQL ([33], [18], [20]) following the logical form data split from [47].

In addition to queries over individual tables, this benchmark includes more complex queries such

as joins, nested queries, and questions that are in general semantically harder than single-table

queries with and without aggregation.

For the sake of comparison, our approach was evaluated using the same 280-pair testing set as

[20], who used the other 600 for training and validation. To better understand the nature of the test

queries, we categorized a large amount of the testing set into various classes of queries:

• 44 queries using the SQL IN operator, generally for comparison of values across two or more

tables.

• 11 queries requiring aliases and the SQL as operator.

• 91 ‘argmin’ or ‘argmax’ queries such as get the state with the highest population. As

discussed above, the SQL form generally follows the pattern SELECT ... FROM {TABLE1}
WHERE {COL} = (SELECT max({COL}) FROM {TABLE2}).

4https://datamanagementlab.github.io/ParaphraseBench/

https://datamanagementlab.github.io/ParaphraseBench/

19

Figure 2.4: Schema of Database from GeoQuery Benchmark

• 11 two-table join requests of the form SELECT ...FROM {TABLE1},{TABLE2} WHERE ...

• 29 queries containing the SQL ‘GROUP BY’ operator.

[7] further provides statistics about the GeoQuery examples. Upon abstracting away database

literals from the SQL queries (abstraction level 1 from Figure 1.2), they find the dataset contains

246 unique query patterns, implying an average of 3.6 different NL questions map to the same level-1

abstracted query pattern. They also find 98 unique level-2 SQL patterns; while this implies that on

average 8.9 different NL question map to a single pattern, they find that 327 of the 880 NL queries

map to a single pattern; that a substantial fraction of the set maps to a single pattern is worrying, as it

suggests susceptibility to artificial bias in translation. With respect to SQL complexity, GeoQuery

examples contain an average nesting depth of 2.03, though the average number of unique table

references is only 1.1; this implies that in most nested queries, the inner and outer queries are over

the same table.

We describe these statistics as part of the argument that the GeoQuery train/test split (the

training and dev set of which is not used by our system) poses a rather simple challenge to semantic

parsers and reflects mcuh of the issues discussed in Section 1.1. Not only is 880 total examples not

sufficient to train a zero-shot language understanding model, but the benchmark in general provides

many opportunities for overfitting to artifacts. Because the same abstracted query and question

patterns appear often in each of the train, dev and test sets, the task is likely to become one of

pattern classification rather than true semantic parsing.

Patients Benchmark: The schema of our new benchmark models a medical database which

contains only one table comprised of hospital patients with attributes such as name, age, and disease.

20

We refer this dataset as the Patients benchmark. In total, the benchmark consists of 399 pairs of

NL-SQL queries. In an effort to test the linguistic robustness of the given translation model, queries

are grouped into one of the following categories depending on the linguistic variation that is used in

the NL query: canonical, syntactic paraphrases, morphological paraphrases, semantic paraphrases,

and lexical paraphrases as well as a set of queries with missing information. These categories are

formulated along the guidelines of paraphrase typologies discussed in [40] and [5].

While the NL queries in the canonical category represent a direct translation of their SQL

counterpart, the other categories are more challenging: syntactic paraphrases emphasize structural

variances, lexical paraphrases pose challenges such as synonymous words and phrases, semantic

paraphrases use changes in lexicalization patterns that maintain the same semantic meaning, mor-

phological paraphrases add affixes, apply stemming, etc., and the NL queries make implicit references

to concepts.

We show an example query for each of these paraphrase categories:

• Canonical: What is the average length of stay of patients where age is 80?

• Syntactic: Where age is 80, what is the average length of stay of patients?

• Morphological: What is the averaged length of stay of patients where age equaled

80?

• Lexical: What is the mean length of stay of patients where age is 80 years?

• Semantic: On average, how long do patients older than 80 stay?

• Missing Information: What is the average stay of patients who are 80?

2.2.3 Other Systems Evaluated

We analyze the performance of our approach compared to two other baselines: the rule-based NaLIR

[24], and a recent approach [20] that also uses a seq2seq, but in the supervised setting that relies

almost fully on manually-curated data.

Supervised seq2seq: As a first baseline we compare against the neural semantic parser intro-

duced by [20], which also uses a deep neural network for translating NL to SQL. However, [20]

inherently depends on manually annotated training data on each schema in addition to on-the-fly

user feedback. In order to bootstrap the training data creation, [20] provide a limited set of tem-

plates to generate some initial NL-SQL pairs. However, their results show that these templatized

examples do not contribute much to the overall accuracy of the model. We ran their model on the

GeoQuery benchmark only, as the Patients set does not provide a train/test split.

21

Patients GeoQuery

NaLIR [24] (w/o feedback) 15.60% 7.14%

NaLIR (w feedback) 21.42% N/A

Supervised seq2seq [20] N/A 83.9%

Our Approach (w/o augmentation) 74.80% 38.60%

Our Approach (full pipeline) 75.93% 55.40%

Table 2.2: Accuracy Comparison Between Our Approach and Other Baselines on the Two Bench-
mark Datasets

NaLIR: Upon its introduction in 2014 and until neural models were first applied to the problem,

NaLIR was considered the state-of-the-ART NLIDB. At the core of its database-agnostic framework

is a rule-based system which adjusts and refines a dependency parse tree into a query-tree, based

on the tree structure and the mapping between its nodes and the RDBMS elements. NaLIR relies

heavily on user feedback to refine word to SQL element/function mappings that determine the final

SQL string output. For comparison between our system and the other baseline, we run the NaLIR

implementation in the non-interactive as well as the interactive setting, where we provide perfect

feedback from users (i.e. users always make the correct choices if NaLIR asks for feedback). As seen

in our experiments, with interactive feedback we see only a slight increase in accuracy; the system

often failed in the initial translation step before giving the user the chance to provide feedback. For

example, evaluating NaLIR on the Patients benchmark with user feedback only caused 1 − 2 more

queries to be successfully translated in each paraphrasing category.

Seq2seq Baseline: Finally, in order to show the effectiveness of our augmentation step during

data generation, we evaluate each benchmark on two variants of our system: one using a model

trained on just the instantiated templates and without the automatic augmentations (this model is

referred to as w/o augmentation), and one using a model trained on the fully augmented training

data (referred to as full pipeline).

2.2.4 Results

We evaluated the performance of all NLIDB systems in terms of their accuracy, defined as the

number of natural language queries translated correctly over the total number of queries in the

test set. Correctness is determined by whether the yielded records from a query’s execution in the

RDBMS contain the information that is requested by the query intent. The correctness criteria is

relaxed by also considering execution results that consist of supersets of the requested columns to

be correct. We argue that in practice, users are still able to retrieve the desired information by

examining all columns of returned rows. Table 2.2 summarizes the accuracy measures of all NLIDB

systems on the two benchmark datasets using this correctness criterion.

It is immediately evident that our approach outperforms the other system that requires no manual

22

Naive Syntactic Lexical Morph. Semantic Missing Mixed

NaLIR (w/o feedback) 19.29% 28.07% 14.03% 17.54% 7.01% 5.77% 17.54%

NaLIR (w feedback) 21.05% 38.59% 14.03% 19.29% 7.01% 5.77% 22.80%

Our Approach (full pipeline) 96.49% 94.7% 75.43% 85.96% 57.89% 36.84% 84.20%

Table 2.3: Accuracy Breakdown by Paraphrase Category for the Patients Benchmark

effort to support a new database–NaLIR’s rule-based approach fails in many cases to produce a

direct translation (both with and without user interaction). We only evaluated NaLIR with user

involvement on the Patients benchmark due to the high manual evaluation effort of running more

than 300 queries and providing feedback for those queries. Furthermore, user feedback did not help

to significantly increase the accuracy of NaLIR on Patients.

Meanwhile, our approach is unsurprisingly outperformed on the GeoQuery benchmark by the

supervised model. We examine this discrepancy in the discussion.

Results broken down on each paraphrase category of the Patients benchmark are shown in Table

2.3. Regardless of feedback, the rule-based parser generally fails to handle even the relatively simple

queries in the benchmark.

2.3 Discussion

It is evident from our results that we can successfully bootstrap a neural text-to-SQL translation

model given just an input schema in a new domain, thus doing away with the need for manually-

curated examples to achieve at least a baseline performance. We expected that the supervised seq2seq

model would outperform our model because it has access to the specific natural language and SQL

patterns that appear during evaluation–i.e., the patterns in its train set align nearly perfectly with

the patterns in the test, while the patterns in our synthetic data do not align as well. This is mainly

the product of our templates not producing queries that are sufficiently domain-specific. The ways

in which our approach failed to correctly translate queries in the GeoQuery dataset help to describe

this misalignment.

Unseen SQL Pattern: If a SQL pattern appeared in evaluation that did not appear in our

synthetic data, our vanilla seq2seq had little to no hope of possibly outputting it. Such queries in

the GeoQuery set usually contained one or more level of nests for which we did not create templates.

For example, the question

what is the length of the river that flows through the most states?

corresponds to the query

SELECT DISTINCT river.length FROM river WHERE river.river name = (SELECT river name

FROM (SELECT river.river name, COUNT(1) AS cnt FROM river GROUP BY river.river name)

AS tmp1 WHERE tmp1.cnt = (SELECT MAX (cnt) FROM (SELECT river.river name, count(1) AS

cnt FROM river GROUP BY river.river name) AS tmp2)).

23

This SQL statement contains aliases (which are currently completely absent from our training

data) and multiple nests and is thus very difficult to templatize in a domain-general way with

corresponding natural language. That is not to say that a template is not impossible to add,

particularly if this type of query is of specific interest to a SQL-aware user.

Domain-Specific Language: If a question contains language that requires ontological inference,

it is difficult for our model to make such a decision. For example, the question How many people

live in Austin? requires the inference that ‘people live’ corresponds to the city population column

rather than a counting operation. The true SQL is

select city.population from city where city.city name=‘austin’;

while our model predicts

SELECT count(1) FROM city WHERE city.city name = ‘austin’

This type of natural language question is not easily covered by templatized training pairs– ‘how

many people’ corresponds to city.population because the latter is a numerical column referring

to a ‘city’ that can contain ‘people.’ Such ontological relationships are very specific and can depend

upon database schemata as well as contextual semantics. On the other hand, it is very easy for the

supervised seq2seq model to translate this query because the phrase ‘how many people’ appears 36

different times in the benchmark, and in each instance maps to the population column.

If a test example’s SQL pattern was included in our training set but was still translated incorrectly

by our model, in a majority of cases it fell under this category. Similar mistranslations occured with

the question how large is Alaska?, because the model can’t connect ‘large’-ness with state.area

versus other numerical columns such as state.population or state.density without contextual

information, and with the question San Antonio is in what?, where the model cannot select from

all possible entity relationships in the schema the true implied relationship between a city entity

and its linked state entity.

We now revisit the issues discussed in the motivation: we aim to bootstrap generalization into

unseen domains without relying on the manually-curated training data bottleneck. We aim to keep

models from learning artificial biases in limited data so as to construct ‘proper,’ cognitively- or

linguistically-inspired, and extensible representations of both natural language and SQL. Tied into

such extensibility is a notion of compositionality so as to gracefully handle unseen question and

query patterns.

Has synthetic training set generation addressed these issues? We believe that it addresses them

partially. The domain-agnostic nature of the generator inherently boosts generalization by provid-

ing any training items whatsoever when they are otherwise unavailable. Moreover, constructing a

training set of size multiple magnitudes larger than the manually-curated sets that is specifically

geared towards showing many different ways to ask for the same query patterns ideally encourages

a model to not rely on brittle, sequence-level biases.

However, we must consider the scope of information learned by the model. Because the model is

24

zero-shot– i.e. randomly initialized at the start of training, just like the supervised seq2seq–, the only

signals about language and semantic content available to be learned are contained within either the

patterns of the templates and lexicon of the generator, or in the noisy word relationships of the PPDB

paraphrasing augmentation. In a sense, there is no ‘generalization’ into the unseen text-to-SQL task

domain because the model has no seen text-to-SQL task domains from which to draw experience.

The generalization of our pipeline lies within the generation step, not the learning step. The model

is still isolated to a single training set in a single semantic domain, just as it was in the supervised

case. We have therefore not addressed the learning of language itself; we have dealt with the flaws of

isolated neural network training by softening their influence–avoiding overfitting to small data and

eliminated the overhead of training data curation– rather than reforming the learning process to

encourage generalizability. The ways in which our model continues to fail support this conclusion.

In Chapter 3, we deal with a model that has access to many ‘seen’ domains from which to draw

inference, not just a single one. Representations learned by the model are theoretically more general

and not only applicable in isolated cases. We explore how we can change the role of our synthetic

data; instead of it serving as the entire training set from which the model can learn, it can instead

take on the role of truly bootstrapping a more complete learning process.

Chapter 3

Bootstrapping Cross-Domain

Learning

In this chapter, we explore how pretraining on synthetic data generated over multiple available

databases boosts the performance of SyntaxSQLNet [44], a cross-domain model designed to translate

queries over unseen database schemata. We first briefly discuss the model used in their approach.

We then proceed with experiments first comparing differing ways to apply synthetic data to the

SyntaxSQLNet training pipeline, and then analyzing the best considered approach for its impact on

learning and generalization.

3.1 SyntaxSQLNet Overview

The most notable contributions of the SyntaxSQLNet model are:

1. That it takes as input the schema of the database along with the NL query to be parsed. This

allows it to use training data from multiple database domains rather than being consigned to

a single one, as was the case with the models of Chapter 2. Relatedly, it also allows the model

to generalize to unseen databases after training (which is the scenario on which its authors

evaluate it)

2. Its use of a SQL-specific version of syntax tree networks ([43, 34]). This architecture constrains

the decoding process to the grammar of SQL and isolates individual grammar-driven decision

points in separate modules. This allows the model to handle much more complex queries than

vanilla seq2seq models. It also explicitly injects the compositional structure of SQL directly

into the model.

SyntaxSQLNet encodes the query and schema using GloVe [31]. It then feeds these encoded

states, HQ and HCOL to the syntax-aware modular decoder. The decoder leverages the grammar of

SQL to iteratively decode the outputted SQL using different, individually trained decision networks

25

26

(a) Example Database and Question Input and De-
coding Process

(b) Grammar for Modular Decoding Process

Figure 3.1: Overview of SyntaxSQL Model

for each type of SQL token to be decoded– e.g. what/how many columns, what tables to select

from, etc. The decoder decides which modules to use at each step by storing and retrieving previous

outputs in a stack. Each module takes in the query, schema, and decoding history and acts as a

classifier, determining which of a finite set of SQL or schema tokens to output. The basic pipeline

is included in Figure 3.1, borrowed from [44]. Note that each color node corresponds to a different,

individually trained network with its own query, schema, and decoding history encoders. Models are

trained for up to 600 epochs with early stopping for development accuracy convergence. We refer

to the original work for more details.

3.2 Spider Benchmark Overview

The authors of SyntaxSQLNet also introduce a new benchmark, Spider [45], on which their model

sets state-of-the art performance. As opposed to previous benchmarks, where queries over a sin-

gle databases are split into train/dev/test sets, this dataset entails a database split, in which the

databases themselves are split into train/dev/test. Queries over a particular database only appear in

27

one set of the split. 20 databases are split into a 146/20/40 train/dev/test, with the test databases

and their queries not available publicly. Models are thus evaluated on their ability to generalize

across domains, leveraging knowledge from the seen databases in order to translate queries over

totally unseen databases without having before seen their schemata nor any NL/SQL queries of

them.

In Spider, accuracy is measured by exact match, with partial accuracies available for granular

analysis. Test queries are categorized by their degree of translation difficulty, based on the number

of SQL components each contains. That is, the more SQL keywords, nested subqueries, column

selections, aggregation etc, the higher the difficulty. Because the test set is not available publicly,

we treat the development set as the test set from which to draw accuracy metrics.

3.3 Evaluating Strategies for Leveraging Synthetic Data

We first present an initial experiment comparing ways to add our generated data from Chapter 2

to the training pipeline of this model. We use the training set generator to synthesize queries over

each database available in the Spider benchmark. In order to create realistic training duration, we

apply aggressive recursion filtering to generate only 4-12 thousand examples per database.

3.3.1 Models

We choose one of two paradigms to apply the data:

Pretrain on Synthetic Data We first pretrain a randomly-initialized SyntaxSQLNet instance

on the fake data (using the same training parameters as the regular pipeline) until development

convergence, and then train it normally on the Spider training set (akin to a regular instance of the

model pipeline).

Cotrain on both Synthetic and Spider Data We train a randomly-initialized SyntaxSQL-

Net instance on both the fake data and Spider training data simultaneously. In order to keep the

synthetic data, whose size dwarfs that of the Spider data, from dominating the training process, we

randomly sample a equivalent number of synthetic training pairs as there are Spider pairs.

As a baseline, we compare against the a model–referred to as Base–trained regularly with only

the Spider train data. As a second baseline, we also evaluate the pretrained SyntaxSQLNet model

before it is trained regularly on the Spider train set to produce the Pretrain model– we refer to

this version as Synthetic-Only. An overview of each of these pipelines is presented in Figure 3.2.

It is important to note that this initial experiment did not directly align with the original scenario

in which Spider intends to evaluate a model. While Spider evaluates the capacity to translate

queries over totally unseen schemata, this experiment evaluates a model in the same scenario as the

experiments from Chapter 2, in which the target schema is available at the time of data generation

28

(a) Base Pipeline

(b) Pretrain Pipeline

(c) Cotrain Pipeline

(d) Synthetic-Only Pipeline

Figure 3.2: Strategies Evaluated in Experiment 3.3

29

easy med hard extra all

count 250 440 174 170 1034

Base .360 .157 .195 .041 .193

Synthetic .137 .075 0 0 .068

Cotrain .388 .252 .207 .047 .244

Pretrain .460 .273 .264 .065 .282

Table 3.1: Spider Development Accuracy Comparison for Varying Training Paradigms in ‘Off-the-
Shelf’ Scenario

rather than being totally unseen. Accordingly, we generate synthetic data over all 166 train and

target (dev) databases, but only use Spider train data over the 146 train databases.

We refer to this manufactured scenario as the ‘off-the-shelf’ case, as it mimics the off-the-shelf

systems evaluated in Chapter 2. Thus, conclusions drawn from this experiment’s results must be

taken with a grain of salt, though, as will become evident, the pretraining paradigm seems to perform

significantly better.

3.3.2 Results & Discussion

Exact match query accuracy on the Spider development set is displayed in Table 3.1. While both

paradigms for leveraging synthetic data provide a performance boost, the Pretrain paradigm out-

performs all other versions across all query difficulties. Notably, it provides a 7% boost on hard-level

queries, of which the model trained on only synthetic data could translate none. This implies that

either cotraining on synthetic data makes it harder to learn more complicated SQL queries, or that

pretraining allows a model to learn more generalizable representations of harder queries. The former

conclusion is somewhat explained away by the marginal boost Cotrain provides over Base on hard

queries.

We thus hypothesize that the model uses the synthetic data over all domains as a scaffold

towards being able to generalize more complicated query patterns seen in the Spider training set.

The SQL queries contained within the synthetic data are relatively simple– as shown by the 0%

translation accuracy of the Synthetic model for all hard and extra-hard queries, plus its nearly-

zero performance on medium queries. Thus it is peculiar that the model improves substantially over

each of these harder categories–Pretrain outperforms Base by 12%, 7% and 2.5%, respectively in

these categories. Since the model is not seeing ANY difficult queries over development databases, it

must be the case that it learns how to identify and translate them by generalizing from the difficult

queries in the training set.

The fact that the Pretrain paradigm outperforms the Cotrain most substantially for hard

queries might also point to this hypothesis, since it is less useful to be showing fake, simple queries

while the model is simultaneously trying to comprehend more difficult, natural queries. We catered

30

the generator towards performing lingistically robustly only to the simple set of queries that it

generates–it seems that it is less useful to be enforcing this goal of robustness during the same

period where the goal is to understand more complicated queries from far less data. As a result, for

our following experiments, we will use models trained with the Pretrain paradigm.

3.4 Augmenting the Full SyntaxSQL Pipeline

Here we discuss our application of the Pretrain to the SyntaxSQLNet setup from [44] that achieves

state-of-the-art performance on the Spider benchmark1. Their best setup involves training on not

only the Spider train queries, but also on queries synthesized from their own templatized training

data generator. To construct this generator, they gathered the 50 most common abstraction level-22

patterns and coverted them into templates. They then generate training examples over the databases

from the WikiSQL dataset, a benchmark containing a very large number of single-table ‘databases’

scraped from Wikipedia. This augmentation serves to show the model a higher order of magnitude

amount of possible schemas to encode with its schema encoder, as well as increasing the number of

domains from which it learns to translate queries during training.

3.4.1 Models

We apply our own synthetic data generation to the WikiSQL tables as well, producing hundreds of

thousands of queries. We then pretrain a SyntaxSQLNet instance on our synthetic data comprising

queries over both the WikiSQL and Spider train databases before the regular training phase, in

which it mimics [44]’s state-of-the-art setup by training on the manually-curated Spider train queries

combined with their synthetic data over the WikiSQL databases.

We compare the resulting model against the original state-of-the-art model’s pipeline. These

pipelines are summarized in Figure 3.3.

3.4.2 Results and Discussion

The resulting change in exact query match accuracy is displayed in Table 3.2. Notably, our aug-

mented pipeline doubles the model’s accuracy on extra-hard queries.

We have thus demonstrated that pretraining on synthetic data from available domains boosts

a model’s ability to generalize into unseen domains, even if the target schema is unavailable until

translation time.

In Table 3.3, we follow the pattern of analysis of [7] to explore the types of errors made by

the model with and without the addition of our synthetic data. These error categories are divided

by whether the abstracted SQL pattern of an evaluated query has been seen during training. We

1Here and in proceeding sections we refer to the original Spider scenario, no longer the ‘off-the-shelf’ scenario we
manufactured for Section 3.3. This means that the Spider development databases are not shown to the model in
any training phase.

2Levels defined in Table 1.2.

31

(a) Original Training Pipeline from [44]

(b) Pipeline Augmented with Our Synthetic Data Generator

Figure 3.3: Augmentation of Training Pipeline in Experiment 3.4

32

easy med hard extra all

count 250 440 174 170 1034

Original SyntaxSQLNet Pipeline .445 .227 .231 .051 .248

Our Augmented Pipeline .472 .300 .252 .107 .299

Table 3.2: Spider Development Accuracy Comparison for Augmented Training Pipeline

Pattern Category Original Augmented

Correct gold seen 196 249

gold unseen 60 60

Incorrect gold seen, pred seen 402 382 (+10 synthetic)

gold seen, pred unseen 224 187 (-4 synthetic)

gold unseen, pred seen 107 106

gold unseen, pred unseen 45 40 (-6 synthetic)

Table 3.3: Frequencies of Error Types by SyntaxSQLNet on Spider Development With/Without
Synthetic Augmentation

first anonymized all queries in the training and test sets to their most general level of abstraction;

example patterns are displayed below:

SELECT COL FROM TABLE WHERE COL <= terminal AND COL = terminal ;

SELECT COUNT(*) , COL FROM TABLE GROUP BY COL ;

SELECT COL FROM TABLE WHERE COL = (SELECT MAX(COL) FROM TABLE) ;

We then categorized each pair by whether the gold pattern and predicted pattern were contained

within the training set.

The results in Table 3.3 reveal that the boost in performance provided by the augmented Syn-

taxSQLNet model are the result of higher performance on pairs where the gold query pattern emph-

has been seen during training. On the other hand, no boost in performance is show on pairs where

the query pattern has not been seen. This suggests that the synthetic data boosts the robustness

of the model towards seen query patterns, but does not improve the ability of the model to grasp

the compositional nature of SQL so as to recombine seen queries into novel patterns.

3.5 Evaluating Impact of Synthetic Data Magnitude

We briefly explore the impact of the amount of synthetic data available for pretraining on the ability

of syntaxSQLNet to learn patterns within the synthetic data and extrapolate them to Spider test

33

queries before the Spider training phase of our augmented training paradigm.

This experiments serves to answer multiple questions. The first is whether one needs to generate

less synthetic data in order to achieve the same rate of performance in the model. If an order of

magnitude less training data yields the same performance, then time and storage is saved during

training.

The second question is to what extent the synthetic data aligns with those in the more com-

plicated and diverse Spider test queries, or alternatively only facilitates successful performance on

Spider as a pretraining step in that it boosts the effectiveness of training on the Spider train queries.

In other words, we seek to determine to what extend the synthetic data actually serves as typical

‘training data’ for the Spider task, or whether it instead prepares the model to more effectively learn

from the manually-curated training data that more closely reflects the complexity and nature of

task.

In order to answer these questions, we measure the accuracy of the model on the Spider devel-

opment set, as well as a development set comprising synthetic queries over the Spider development

databases. Accuracy on the synthetic development set reveals the extent to which the patterns in

the fake data are learned during pretraining. Accuracy on the Spider development set reveals the

extent to which the model can translate the test queries before it is exposed to any Spider data,

thus revealing whether the synthetic data contains any true ‘training’ signal for the ultimate task.

Because each module of the SyntaxSQLNet tree-based decoding model is trained individually,

distinct training sets are constructed from the NL/SQL training set for each module. For each step

in which the module would be called in a correct decoding of each development NL/SQL pair, the

NL question and ground truth decoding history up to that step are taken as the input of a training

example for the module.

Because of this, it is difficult to evaluate full translation accuracy on a development set for each

epoch. Instead, we measure the accuracy of the COL decision module, which is the model responsible

for deciding the number and names of columns to be decoded whenever the stack-based decoding

process requires such a decision. We refer the reader to section 4 the original work [44] for a detailed

overview of this decision mechanism. We choose the COL module in particular because it is called

most often of all modules, and moreover it has the highest misprediction rate. Full mis-translations

of the NL/SQL examples are most likely to be caused by a mistake of this module.

3.5.1 Models

We take the COL training examples derived from the synthetic data generated over the Spider train

databases in Experiment 3.4, and take the COL development examples accordingly from the data

generated over the Spider development databases. We randomly subsample from the development

set to obtain train and development sets of size 1,445,000 and 2500, respectively.

We then train a model on the training set subsampled by a factor of each of 10, 100, and 1000

(i.e. train sizes of 145 thousand, 14.5 thousand and 1.45 thousand, respectively).

34

Figure 3.4: Epoch Accuracy of COL Module Trained on Synthetic Data with Varying Magnitudes

3.5.2 Results & Discussion

Preliminary results of evaluating these models on synthetic and Spider dev epoch accuracy are shown

in Figure 3.43. To calculate epoch accuracy, an example is marked correct if the model predicts both

the ground truth number and names of columns to be decoded.

We find that in the full, 600-epoch training duration, the models trained with .1% and 1% of the

synthetic data fail to sufficiently learn the patterns in both the fake, generated data and the real,

Spider data. The model trained with 10% of the synthetic data reaches the same level of accuracy as

the model trained on all of it, though it takes it almost exactly 10 times longer to do so (300 epochs

versus 30). This implies that these two models achieve the same development performance given

the same cumulative number of examples trained upon, and thus only 10% of the data is required

to approach the likely the limit of accuracy derivable from the synthetic pretraining.

With respect to the above question of whether the fake data facilitates performance on the real

test data from Spider, these results imply that it does not, or at least is far less effective than the

real Spider training data. It takes 30 epochs training on 1.45 million synthetic examples (i.e. 43.5

3Longer train sessions were cut short due to time constraints.

35

million cumulative examples) to achieve 34% accuracy on the real data, while it takes 86 epochs

training on 20 thousand real examples (i.e. 172 thousand cumulative examples) to achieve the same

accuracy without any injection of synthetic data during pre- or co-training.

These preliminary results do not yet lead us to conclude that pretraining data magnitude has

an impact of the learning rate of the model on the Spider train data. We plan to evaluate the

development accuracy of the above models during the regular training phase in order to address this

question.

3.6 Evaluating Impact of Source Domain Magnitude

We now address the hypothesis that access to more semantic domains allows a model to build more

general and extensible representations of words and query patterns. As discussed in Chapter 1,

previous work in Neural Semantic Parsing [19] found that sharing learned parameters from ‘seen’

semantic domains with a model parsing in an unseen domain is beneficial to model performance.

Here we investigate whether the same relationship is found with the synthetic pretraining data. We

hypothesize that access to more schemas during pretraining encourages the model to generalize more

capably to unseen ones during testing.

3.6.1 Models

To test this hypothesis, we pretrain models on different sets of available databases.

The first model, SpiderOnly, is pretrained on data generated over the 144 Spider train databases.

The second, WikiSQLOnly, is pretrained on data generated over the 18,585 WikiSQL databases.

Finally, Both is pretrained on data generated over the combined set.

We pretrain each model until synthetic development set convergence (using the same synthetic

development set over Spider development databases as in Experiment 3.4).

As with Experiment 3.5, for ease of evaluation we evaluate the epoch accuracy of the COL module

only, rather than the entire model. As two baselines, we compare the above models with NoPre-

train, a COL module trained without any pretraining on synthetic data, and FullPipeline, the

col module in our best model from Experiment 3.4 that is pretrained on both WikiSQL and Spi-

der databases, and then is trained with the extra data generated from WikiSQL databases by the

generator of the original SyntaxSQLNet work.

3.6.2 Results & Discussion

Resulting epoch accuracies are displayed in Figure 3.5. As evident by the three models of interest

performing essentially indistinguishably, the number of source domains from which the pretraining

data is generated has little to no impact on overall performance on the development set.

Notably, this is not the case during the regular training phase; the addition of data from WikiSQL

databases via the original work’s generator provides a noticable performance boost. This implies

36

Figure 3.5: Epoch Accuracy of COL Module Trained on Synthetic Data from Varying Source Do-
mains

37

that domain availability has much more importance during the regular phase of training, and does

not serve much of a purpose during the pretraining phase.

This does not support our hypothesis that it would, in fact, benefit the overall performance

to apply our generator to more databases for the pretraining step. However, it may support the

hypothesis discussed in Section 3.5 that the pretraining step serves a purpose very distinct from the

regular training step. This purpose is to prepare the model for cross-domain learning rather than to

serve as the source of the learning itself.

We plan to test this conclusion by further varying the number of source databases providing

queries during the regular training step rather than pretraining. It is important to note here that

the Spider train NL/SQL pairs seen during the regular training step are manually curated and

therefore more diverse on the NL side than any of the synthetic sets. This might lead to a larger

drop in performance if we remove Spider train database availability, if only because the available

queries provide the most natural and diverse signals to be learned. This issue again reflects the

fundamental difference between the richness entailed by manual curation and the relative simplicity

of templatized approaches such as ours. There may be no way to fully replace the role of fully

naturally-occurring training examples in bootstrapping these data-driven language understanding

models.

3.7 Evaluating Compositional SQL Generalization

Finally, we explore whether pretraining on our synthetic data boosts the ability of SyntaxSQLNet

to grasp the compositional structure of SQL and generalize to novel SQL patterns. We return

to the work of [7], whose analysis of text-to-SQL benchmarks concluded that training on these

small datasets with relatively few, particular SQL patterns that appear in both training and testing

sets–a paradigm they term the ‘question-based’ split– results in the task becoming classification

over seen patterns rather than true semantic parsing. Successful performance on these splits, they

argue, does not equate to sufficiently generalizable understandings of NL nor SQL. Accordingly, they

introduce new ‘query-based’ splits of the benchmarks that require compositional generalization of

SQL: queries seen during evaluation are specifically unseen during training. Seq2seq models have

thusfar performed very poorly on these splits, with drops in performance of up to 80% between the

‘question’- and ‘query’-based split of a benchmark.

We seek to test whether the addition of our pretraining step increases the performance of Syn-

taxSQLNet on a ‘query’-based split. We set up a scenario in which the network trains normally with

the full pipeline as discussed in Experiment 3.4, but with the training set of either the ‘question’ or

‘query’ split of a target domain injected into its regular training step. Thus, the model must gen-

eralize to output SQL patterns that are unseen within the target domain, and must rely on either

having seen the patterns in other domains, on recombining the patterns that it does see in the target

domain, or a combination of both methods.

38

3.7.1 Advising Benchmark Overview

We use the benchmark introduced by [7] to evaluate our model’s compositional generalization. It

consists of questions over a database of course information at the University of Michigan. It contains

4570 unique NL queries mapping to 211 unique entity-abstracted (abstraction level 1) SQL queries.

The SQL queries contain 174 patterns with literals and entities abstracted (level 2), as compared

with the GeoQuery benchmark’s total of 98. While it contains fewer nests per query, its patterns

are still quite a bit more complex, containing an average of 3.0 unique tables in each query instance

(compared to GeoQuery’s 1.1). It thus requires substantially more handling of the ontological

relationships modeled by the Database schema in order to compute complicated operations involving

many joins.

As well as because it is a more generally difficult schema to handle with more complicated queries,

we chose this benchmark because of the discrepancy in performance between the split types; no model

evaluated by [7] achieves more than a 8% accuracy on the query-based split, while they achieve up

to nearly 90% on the question-based split.

Some of the examples in the dataset are not included in the question-based split; we filter them

out of the query-based split for fairness of evaluation. Moreover, some of the query patterns in this

dataset cause the SQL parser used to train and evaluate SyntaxSQLNet to crash; we filter these

examples out as well. We end up with 2555 NL/SQL pairs, divided into a 1326/329/900 query-based

train/dev/test split and 1941/176/438 question-based split.

3.7.2 Models

We evaluate 4 different training pipelines, from each of which a first model is trained using the

query-based split, and a second is trained using the question-based split.

• First, as a baseline model Base, a randomly-initialized SyntaxSQL model is trained using only

the Advising training/dev data.

• Second, to isolate pretraining as a contributing factor, a randomly-initialized model is trained

on the Spider training/dev set4 with the Advising data mixed into it. We refer to this as

NoPretrain.

• Third, to isolate the Spider data as a contributing factor, a model is pretrained on our generated

data5 before regular training on only the Advising data (a la Base). We refer to this as

NoSpider.

• Finally, a model is pretrained on our generated data and then trained on the combined Spider

and Advising data. We refer to this as FullPipeline.

4This includes the WikiSQL synthetic queries generated by the SyntaxSQL authors.

5This includes data generated over the Spider train as well as WikiSQL databases.

39

(a) Query-Based Split (b) Question-Based Split

Figure 3.6: COL Module Prediction Accuracy Across Query and Question Splits on Advising Bench-
mark

3.7.3 Results & Discussion

Unfortunately, we found that a bug in the SQL parsing script required to evaluate our trained models

created an unidentified misalignment between queries and the object representation predicted by the

model. As a result, on all experiments, the models achieved 0% translation accuracy on both the

query and question splits. Due to time constrains, we could not identify the bug. However, we are

still able to examine the module-level accuracies of the models rather than relying on the parsing

script to output the full SQL predictions.

Here, we will display only the COL module, given (as discussed above) it is responsible for a

majority of translation errors by the model. We present train, development and test accuracy for

the COL module in Figure 3.6.

It is notable first that, as expected, there is a sizable drop-off in the query-based split on the

development and test sets that is not present in the question-based split. This is clearly a result of

the nature of the split; it is far more difficult to traslate to SQL patterns that are unseen. Note that

a 20% accuracy rate for a column module that is called multiple times during a decoding process

will likely result in incredibly low translation accuracy, even with the aforementioned parsing bug

fixed.

Secondly, note that the models are all essentially interchangeable (i.e. within a margin of statis-

tical insignificance) on the question-based split. This implies that on this split, it is not unlikely that

training from other domains is not contributing to the successful translation of Advising queries.

This is also not incredibly surprising; because the evaluation set highly reflects the language and

patterns learned in the training set, there is very little need to leverage cross-domain knowledge in

order to correctly perform the ‘pattern classification’ task that the question-based split entails.

Finally, the models are also essentially interchangeable on the development and test sets of the

query-based model. This leads us to conclude that neither pretraining nor cross-domain training

boost the compositional generalizability of SyntaxSQLNet. This is not to say that they may not

do so for other models. This particular model uses a modular decoder that constrains it to making

40

isolated classification decisions about next-token decoding. The modules have their own sets of

encoding parameters and make decisions independently of each other, apart from the sharing of a

common decoding history sequence (which each module still encodes individually). It remains to

be seen whether a more connectionist architecture– i.e. one that shares more parameters or does

away with the modular decoder, but can still translate queries across domains– might benefit from

incorporating synthetic pretraining or cross-domain training. In future experiments, we thus plan

to incorporate other flavors of seq2seq models on this task.

Chapter 4

Conclusion

The goal of this thesis has been to explore a novel strategy to address the flaws in the typical

training pipeline of data-driven, deep Neural Semantic Parsing models for text-to-SQL translation.

We identified how training models on manually-curated queries in an isolated, supervised approach to

learning creates brittle, domain-dependent translation models that rely on artificial biases inducted

from the limited data and thus cannot in good faith be considered ‘language understanding’ nor

‘semantic parsing’ models. We have attempted to craft an approach to semantic parsing that does

away with these flaws in manually-curated training sets and attempts to bootstrap a more general

model that might be encouraged to perform a more natural process of learning to parse natural

language.

4.1 Summary of Contributions

In Chapter 2, we introduced a method for taking target database schema as input and generating

a diverse set of millions of synthetic training examples from which to train a text-to-SQL trans-

lation model. This generation process can serve at the core of a domain-general, online pipeline

for translating queries in a Natural Language Interface for Databases (NLIDB). We discussed the

template-based approach to crafting the training set, which is geared toward linguistic robustness

over a substantial set of templatized SQL patterns.

We crafted a new benchmark, the Patients dataset, to evaluate a model’s linguistic robustness,

and showed that our approach using a simple seq2seq architecture yields a model that drastically

outperforms other systems on this new benchmark, as well as performing competitively with a

supervised seq2seq model on the seminal GeoQuery benchmark.

In Chapter 3, we demonstrated how synthetic data generation can be used not only to construct

zero-shot models over a single target schema, but can also serve to boost the performance of cross-

domain models that translate queries over many ad-hoc schemata. We discussed different strategies

for leveraging synthetic data, and then demonstrated how our best approach, that of pretraining

a model on our synthetic data before fine-tuning it on manually-curated examples from available

41

42

domains, yields a model that sets state-of-the-art performance on a recent benchmark for cross-

domain text-to-SQL translation.

We also explored how both the magnitude of synthetic data available during pretraining and also

the number of domains from which the data is generated impact domain generalization. Finally,

we tested whether synthetic data pretraining boosts the compositional generalization of the model.

While the final experiment yielded negative results, these experiments led us towards the conclusion

that synthetic pretraining serves a role in preparing a model to more effectively learn to generalize

during subsequent training steps.

4.2 Future Directions

As we have discussed, a key difficulty in leveraging synthetic data is that it fundamentally is not

as diverse nor as expressive as its manually-curated counterpart. However, we are exploring various

ways to bridge this gap. Possible strategies include neural paraphrase generation using language

pivoting ([27]) or backtranslation using SQL-to-NL summarization systems ([22]).

At a higher level of pipeline abstraction, we seek to de-isolate the learning model so that it can

more naturally learn representations of language that can generalize more easily into new domains.

Such representations can be learned via multi-task learning frameworks. We are exploring ways

to incorporate into our text-to-SQL model recent advances in language model pretraining ([12]),

an approach which has become the de facto standard for building state-of-the-art natural language

understanding models.

Finally, building off of the intuition that synthetic pretraining serves to condition models to

‘learn better’ from their training phase, we want to explore recent approaches to task meta-learning

([16]), in which models treat entire tasks as training examples for the meta-purpose of generalizing

more capably and efficiently to new domains.

Bibliography

[1] Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. Natural language interfaces to

databases - an introduction. Natural Language Engineering, 1:29–81, 1995.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. CoRR, abs/1409.0473, 2014.

[3] Islam Beltagy, Katrin Erk, and Raymond J. Mooney. Semantic parsing using distributional

semantics and probabilistic logic. In ACL, 2014.

[4] Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In ACL, 2014.

[5] Rahul Bhagat and Eduard H. Hovy. Squibs: What is a paraphrase? In ACL, 2013.

[6] Ruichu Cai, Boyan Xu, Zhenjie Zhang, Xiaoyan Yang, Zijian Li, and Zhihao Liang. An encoder-

decoder framework translating natural language to database queries. In IJCAI, 2018.

[7] Li Zhang Karthik Ramanathan Sesh Sadasivam Rui Zhang Catherine Finegan-Dollak, Jonathan

K. Kummerfeld and Dragomir Radev. Improving text-to-sql evaluation methodology. In Pro-

ceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 351–360, July 2018.

[8] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the

properties of neural machine translation: Encoder-decoder approaches. CoRR, abs/1409.1259,

2014.

[9] Stephen Clark and James R. Curran. Parsing the wsj using ccg and log-linear models. In ACL,

2004.

[10] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom M. Mitchell, Kamal

Nigam, and Seán Slattery. Learning to construct knowledge bases from the world wide web.

Artif. Intell., 118(1-2):69–113, 2000.

[11] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce Croft. Neural

ranking models with weak supervision. In Proceedings of the 40th International ACM SIGIR

Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan,

August 7-11, 2017, pages 65–74, 2017.

43

44

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[13] Li Dong and Mirella Lapata. Language to logical form with neural attention. CoRR,

abs/1601.01280, 2016.

[14] Xing Fan, Emilio Monti, Lambert Mathias, and Markus Dreyer. Transfer learning for neural

semantic parsing. In Rep4NLP@ACL, 2017.

[15] Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Xiang Lin, Karthik Ramanathan, Sesh

Sadasivam, Rui Zhang, and Dragomir R. Radev. Improving text-to-sql evaluation methodology.

CoRR, abs/1806.09029, 2018.

[16] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-

tation of deep networks. CoRR, abs/1703.03400, 2017.

[17] Alessandra Giordani and Alessandro Moschitti. Automatic generation and reranking of sql-

derived answers to nl questions. In Proceedings of the Second International Conference on

Trustworthy Eternal Systems via Evolving Software, Data and Knowledge, pages 59–76, 2012.

[18] Alessandra Giordani and Alessandro Moschitti. Translating questions to sql queries with gen-

erative parsers discriminatively reranked. In COLING, 2012.

[19] Jonathan Herzig and Jonathan Berant. Neural semantic parsing over multiple knowledge-bases.

In ACL, 2017.

[20] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer.

Learning a neural semantic parser from user feedback. In Proceedings of the 55th Annual Meeting

of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 -

August 4, Volume 1: Long Papers, pages 963–973, 2017.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May

7-9, 2015, Conference Track Proceedings, 2015.

[22] Andreas Kokkalis, Panagiotis Vagenas, Alexandros Zervakis, Alkis Simitsis, Georgia Koutrika,

and Yannis Ioannidis. Logos: a system for translating queries into narratives. In Proceedings

of the 2012 ACM SIGMOD International Conference on Management of Data, pages 673–676.

ACM, 2012.

[23] Mirella Lapata and Li Dong. Coarse-to-fine decoding for neural semantic parsing. In ACL,

pages 731–742, 2018.

[24] Fei Li and H. V. Jagadish. Constructing an interactive natural language interface for relational

databases. PVLDB, 8:73–84, 2014.

45

[25] Percy Liang, Michael I. Jordan, and Dan Klein. Learning dependency-based compositional

semantics. Computational Linguistics, 39:389–446, 2011.

[26] Edward Loper and Steven Bird. Nltk: The natural language toolkit. In In Proceedings of the

ACL Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing

and Computational Linguistics. Philadelphia: Association for Computational Linguistics, 2002.

[27] Jonathan Mallinson, Rico Sennrich, and Mirella Lapata. Paraphrasing revisited with neural

machine translation. In Proceedings of the 15th Conference of the European Chapter of the

Association for Computational Linguistics: Volume 1, Long Papers, pages 881–893, 2017.

[28] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed repre-

sentations of words and phrases and their compositionality. CoRR, abs/1310.4546, 2013.

[29] Isil Dillig Navid Yaghmazadeh, Yuepeng Wang and Thomas Dillig. Sqlizer: Query synthesis

from natural language. In International Conference on Object-Oriented Programming, Systems,

Languages, and Applications, ACM, pages 63:1–63:26, October 2017.

[30] Ellie Pavlick and Chris Callison-Burch. Simple PPDB: A paraphrase database for simplification.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,

ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 2: Short Papers, 2016.

[31] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for

word representation. In EMNLP, 2014.

[32] Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko, and Alexander Yates. Modern

natural language interfaces to databases: Composing statistical parsing with semantic tractabil-

ity. In Proceedings of the 20th international conference on Computational Linguistics, page 141.

Association for Computational Linguistics, 2004.

[33] Ana-Maria Popescu, Oren Etzioni, and Henry A. Kautz. Towards a theory of natural language

interfaces to databases. In IUI, 2003.

[34] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code genera-

tion and semantic parsing. In ACL, 2017.

[35] Rodolfo A. Pazos Rangel, Joaqúın Pérez Ortega, Juan Javier González Barbosa, Alexander F.

Gelbukh, Grigori Sidorov, and M. MyriamJ.Rodŕıguez. A domain independent natural language

interface to databases capable of processing complex queries. In MICAI, 2005.

[36] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq Minhas,

Ashish R. Mittal, and Fatma Özcan. Athena: An ontology-driven system for natural language

querying over relational data stores. Proc. VLDB Endow., 9(12):1209–1220, August 2016.

46

[37] Alvin Cheung Jayant Krishnamurthy Srinivasan Iyer, Ioannis Konstas and Luke Zettlemoyer.

Learning a neural semantic parser from user feedback. In Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages

963–973, 2017.

[38] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural

networks. In Proceedings of the 27th International Conference on Neural Information Processing

Systems, NIPS’14, pages 3104–3112, Cambridge, MA, USA, 2014. MIT Press.

[39] Prasetya Utama, Nathaniel Weir, Fuat Basik, Carsten Binnig, Ugur etintemel, Benjamin

Hättasch, Amir Ilkhechi, Shekar Ramaswamy, and Arif Usta. An end-to-end neural natural

language interface for databases. CoRR, abs/1804.00401, 2018.

[40] Marta Vila, Maria Antònia Mart́ı, and Horacio Rodŕıguez. Paraphrase concept and typology.

A linguistically based and computationally oriented approach. Procesamiento del Lenguaje

Natural, 46:83–90, 2011.

[41] Oriol Vinyals, Lukasz Kaiser, Terry K Koo, Slav Petrov, Ilya Sutskever, and Geoffrey E. Hinton.

Grammar as a foreign language. In NIPS, 2015.

[42] Yushi Wang, Jonathan Berant, and Percy Liang. Building a semantic parser overnight. In ACL,

2015.

[43] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code gener-

ation. CoRR, abs/1704.01696, 2017.

[44] Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and Dragomir R.

Radev. Syntaxsqlnet: Syntax tree networks for complex and cross-domaintext-to-sql task. In

EMNLP, 2018.

[45] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene

Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale

human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In

EMNLP, 2018.

[46] John M. Zelle and Raymond J. Mooney. Learning to parse database queries using inductive

logic programming. In AAAI/IAAI, Vol. 2, 1996.

[47] Luke S. Zettlemoyer and Michael Collins. Learning to map sentences to logical form: Structured

classification with probabilistic categorial grammars. In UAI, 2005.

[48] Luke S. Zettlemoyer and Michael Collins. Online learning of relaxed ccg grammars for parsing

to logical form. In EMNLP-CoNLL, 2007.

	List of Tables
	List of Figures
	Introduction and Background
	Motivation
	Contribution
	Related Work
	NLIDBs
	Towards Generalization

	Outline

	Synthetic Text-to-SQL Training Data Generation
	Generation Process
	Template-based Example Instantiation
	SQL Coverage
	Training Data Augmentation

	Evaluation
	Training Our Model
	Benchmarks
	Other Systems Evaluated
	Results

	Discussion

	Bootstrapping Cross-Domain Learning
	SyntaxSQLNet Overview
	Spider Benchmark Overview
	Evaluating Strategies for Leveraging Synthetic Data
	Models
	Results & Discussion

	Augmenting the Full SyntaxSQL Pipeline
	Models
	Results and Discussion

	Evaluating Impact of Synthetic Data Magnitude
	Models
	Results & Discussion

	Evaluating Impact of Source Domain Magnitude
	Models
	Results & Discussion

	Evaluating Compositional SQL Generalization
	Advising Benchmark Overview
	Models
	Results & Discussion

	Conclusion
	Summary of Contributions
	Future Directions

	Bibliography

