LibFilter: Debloating Dynamically-Linked Libraries
through Binary Recompilation

Benjamin Shteinfeld
Brown University

Abstract

Both standard and newly written applications hardly ever im-
plement all functionality they use from scratch; rather they
rely on prewritten shared libraries, which implement useful
and reusable functionality, such as threading, common file/net-
working operations, and cryptographic primitives. Shared li-
braries are widely used because they decrease application
development time, reduce binary size by allowing for reuse
of code and make distribution of applications simpler. How-
ever, from a security perspective, they facilitate code reuse
attacks. Regardless of how many symbols an application uses
from a shared library, the library’s code is mapped into the
application’s address space in its entirety. This increases the
amount of code marked as executable and thus available in
the address space for a potential attacker to use in an exploit.

In this paper, we propose LibFilter: a system that, given
an x86-64 application, identifies unused functions in its
dynamically-linked libraries and erases them without access
to source code. This makes code-reuse attacks harder by re-
moving unused code from the address space. We implement
and test a prototype of this system and found that it can re-
duce the number of functions available in the address space by
76.5% in Coreutils and 52.7% in SQLite. LibFilter can also
work in conjunction with other hardening mechanisms such as
control-flow integrity, execute-only memory, and continuous
code re-randomization.

1 Introduction

With the widespread adoption of data execution prevention
(DEP), which prevents malicious data injected into the ad-
dress space from being executed, many modern exploits rely
on code-reuse attacks, such as return-oriented programming
(ROP) [8]. This technique typically involves gaining con-
trol of a code pointer such as a return address or function
pointer in order to redirect the control flow of the program
to a specific address. Through an analysis of program code,
an attacker can find short snippets of instructions ending in

ret, called gadgets, and chain them together to perform ar-
bitrary execution. This attack technique can be generalized
to jump-oriented and call-oriented programming (JOP/COP),
which use indirect jmp and call instructions to perform the
chaining of gadgets [9].

While ROP/JOP exploits are becoming increasingly popu-
lar, at the same time modern applications are getting larger
and relying on more libraries. For example, curl v7.52 has 35
dependencies, and Chromium v73.0 has 153 dependencies.
More and larger libraries lead to more code being mapped
into an application’s address space at run-time because shared
libraries are mapped in their entirety even if only a few func-
tions in them are actually called from the application. Larger
amounts of code in the address space facilitate code reuse
attacks because of the increase in the number of potential
gadgets an attacker can use to construct an exploit.

There have been a plethora of approaches trying to miti-
gate this problem: control flow integrity [1], destructive code
reads [10], continuous code rerandomization [11], and many
more. All of these approaches attempt to make it harder to find
and use existing ROP/JOP gadgets available in the address
space. Despite these attempts, they still leave many gadgets in
the attack space available for use by attackers. For example,
consider an application hardened with coarse-grained control
flow integrity. This restricts an attacker to using only call-
preceded gadgets, but against an application linked against
many shared libraries, they will be many call-preceded gad-
gets which will allow an attacker to construct an exploit.

This becomes the starting point for this project. Orthogo-
nally from all of these other defenses, our goal is to reduce
the number of gadgets available for an attacker to use. This
will make it more difficult for an attacker to find the gadgets
necessary to construct a successful ROP exploit. The key ob-
servation we make to safely reduce the number of gadgets
is that it is harmless from the application’s perspective to
remove code that is unreachable.

We perform static analysis on binaries and their shared
libraries using Egalito [6], a binary analysis and recompiler,
to construct a function call graph. We use this to find a set of



functions which are possibility reachable in the binary and all
its shared libraries. We compare this reachable set with the set
of all functions in all shared libraries. The difference contains
the set of functions which are unreachable and can thus be
removed. We create new versions of the shared libraries with
the unreachable functions replaced with one byte hlt instruc-
tions, which will cause a segmentation fault if executed. This
means that many ROP gadgets previously available for attack-
ers to use would now be detected and cause the application to
terminate.

Our contributions in this project are developing and testing
a prototype LibFilter system which reduces the number of
bytes in Coreutils by 37.2% and in SQLite by 29.7%. All
functionality tests pass after our debloating, which indicates
that we did not remove code that is actually used and are not
affecting the functionality of applications which we debloat.

2 Background and Related Work

2.1 Control Flow Integrity

Control Flow Integrity (CFI) was introduced as an attempt to
restrict code reuse attacks by preventing control flow hijack-
ing [1]. In most exploits, an attacker hijacks the control flow
of a vulnerable program by overwriting the value of a code
pointer, typically a function pointer or return address, to cause
the control flow of the program to begin executing either in-
jected or existing code. Because of this, CFI hardens control
flow transfers with checks to ensure that the destination of the
transfer is valid.

This is done through enforcement of the CFI safety prop-
erty. It states that execution flow in a program follows a prede-
fined set of paths which can be analyzed at compile time. This
set of paths is called a Control Flow Graph (CFG) and can be
determined by static analysis. Successful enforcement of the
property would prevent the control flow of the program from
executing along a path that was not intended, such as calling
arbitrary functions and jumping into the middle of functions.

Abadi et al. implement CFI by inserting instrumentation
in binaries before any indirect control flow transfer to check
that the jump corresponds to a valid edge in the CFG. During
the analysis phase, for every transfer, all possible destinations
must be calculated and given an ID which is embedded into
the binary text as prefetch instructions. Before every call
and ret instruction a check is performed to ensure the ex-
pected ID is at the destination. If one of these run-time ID
checks fails, a violation is triggered. These run-time checks
enforce that transfers of control only occur between edges in
the CFG.

Notably, the CFG is an over-approximation because all
indirect calls have edges to all address taken functions. An
exact representation of the CFG is an unsolvable problem,
and under-approximation could lead to breaking functionality.
Thus, even finer grained CFI will always leave attackers with

a window to hijack control flow using edges present in the
CFG [2-4].

2.2 Shared Library Debloating

Nibbler. With a similar motivation, Nibbler [5] attempts to
improve security by library thinning. Nibbler identifies un-
used code in shared libraries and removes it. Nibbler does
this by analyzing the Function Call Graph (FCG) of a bi-
nary and all its required libraries, and composes the FCGs
into an application-level FCG. Using this, all code that is not
reachable by the application need not be shipped with the
application. Thus, Nibbler chooses to replace all unreachable
code with the int3 instruction. This instruction will trap and
kill the process, meaning a mistake from an attacker will likely
be spotted. This instruction is also a single byte, meaning that
it can be used to fill up precisely the amount of space that
was once taken up by functions, and thus no code relocation
needs to take place. Additionally, a single byte instruction
does not introduce any new or misaligned gadgets that an
attacker could exploit.

By removing unused code, Nibbler reduces the number of
gadgets available in typical real-world binaries by 32%, in
SPEC CPU2006 by 52% and 64% in when CFI is present.

Piecewise. Piecewise Compilation and Loading [13] attempts
to debloat libraries using a compiler and loader based ap-
proach. Using the LLVM toolchain, this work creates a com-
piler pass which outputs call-graph information from the com-
piler into a new .dep ELF section. At load time, the FCG
information in the . dep section is used by their custom loader
to determine at run-time which functions in the library are
needed and which are not. The loader erases the functions
which it determines are not reachable by the binary. It erases
the code by invoking mprotect on the pages containing the
code to be erased to make it writeable/non-executable, over-
writes code with illegal instruction opcodes, and maps the
code pages back to executable. This approach is able to re-
move on average 79% of code from libraries used by Core-
utils.

This approach only requires libraries to be compiled and
stored once, whereas other approaches likely require multiple
versions of debloated libraries per binary. The main disadvan-
tages are the performance overhead of having to erase code
during load time, the need to recompile source code, and its
dependency on LLVM and thus mus1 instead of glibc.

2.3 Binary Recompilation

Many hardening techniques that operate on binaries require
accurate disassembly, symbol locations and internal code
references to safely and confidently implement the desired
hardening instrumentation. Many COTS stripped binaries are



believed to not have enough information to be able to suc-
cessfully identify all this information. In fact, there are works
attempting to add more information to binaries at the compiler
level to be able to help harden binaries [7].

Egalito [6] is a binary recompiling framework which claims
that modern binaries contain enough information to success-
fully identify all code references and safely rearrange code,
introducing little overhead. Egalito’s analysis gives the pro-
grammer access to a compiler-like intermediate representation
(IR) of binary which she can manipulate to implement generic
forms of hardening. For example, Egalito has been used to im-
plement function/data reordering, CFI, binary-level retpolines,
and continous code randomization. Importantly, Egalito is an
egalitarian defense as all hardening mechanisms developed
using Egalito can be applied to Egalito itself.

3 Design and Implementation

3.1 Call-graph Extraction

We use Egalito to implement our analysis to extract the appli-
cation’s FCG to determine the reachable set of functions in
all of its shared libraries. In this project, we built increasingly
accurate FCGs using a variety of analysis techniques.

Static FCG. The most basic FCG we can extract is a static
FCG. This includes all functions that are reachable from
the binary entry point and can be found by analyzing all
control flow transfer instructions such as calls and jmps in
the application. An edge exists between two functions if the
caller function contains such an instruction with the callee
function as a target. As seen in Figure 2, function calls to
shared libraries go through the procedure-linkage table (PLT)
which invokes the dynamic loader to place the address of
the library function in the global offset table (GOT). This
affects our static reachability analysis because the address
of the callee is only available at run-time. To handle this
case, we run a ResolvePLT pass in Egaltio, which inserts
links between the PLT stub function and the library function.
Using this technique we can determine the set of statically
reachable functions in the binary and all of its shared libraries.

Indirect FCG. The static FCG is an under-approximation
of the true set of reachable functions due to the problem of
function pointers. The issue arises when we try to determine
the target of an indirect function call, we do not know the exact
target(s) until run-time. Nearly every non-trivial program will
make use of function pointers, and any program that links
against 1ibc does. To address this, we construct an indirect
FCG, which adds edges to the static FCG. We use Egalito to
get all address taken (AT) functions (i.e., f = &func), and add
all AT functions as targets of all indirect function calls as seen
in Figure 3.

This approach results in an over-approximation of the FCG

libfred.so
Anit/.fini
Executable f foo
Anit/.fini
f bar
main
f libwaldo.so
00
.Anit/fini |
bar
w_ctor
w_foo
Reachable Set
Vacuum Set b
Erase Set e

— Control-Dependent Value
--- Data-Dependent Value

Figure 1: Overview of LibFilter approach. Given an applica-
tion and its shared libraries, LibFilter performs static analysis
to determine the set of reachable functions, the set of initial-
ization and destruction functions (vacuum), and the set of
functions to be erased. In the example shown, w_bar is not
reachable from the main binary and thus can safely be erased.
The solid lines represent links we determine through control
flow instructions, whereas the dotted lines represent links to
functions we determine are reachable via data (.init and
.fini arrays).

because there are edges in the graph which would never occur
in the actual run-time of the program. Unnecessary edges
and nodes in the FCG hinder our ability to erase as many
functions as safely possible. To address this, we implemented
an optimization based on AT function pruning used in Nibbler.
If a function is address taken only inside of a function which
is statically unreachable, then we know that address taken
function will never be the target of an indirect function call
and thus we can safely remove it (Figure 4).

This is only an optimization and still provides us with
an over-approximation of the real FCG, as determining the
actual FCG from static analysis of the binary is impossible.
It would be interesting to see how future work in this area
can allow us to safely further decrease the reachable set of
address taken functions. A potential heuristic to remove edges
is function signatures. For example, a function pointer of type
int (int, char*) will never dereference to a function



EXEC:

79a <foo >:
7ae: mov $0x1,%edi
—— 7b3: callq 880 <write@plt>

880 <write@plt >:
# jump to GOT entry for write ()

— 880: jmpq  *0x200992(%rip) ---
886: pushqg $0x0
# jump into dynamic loader
88b: jmpq 870

201000 .got.plt:

# initialized to 886
# dynamic loader places 7ff8a0
201218: 00 00 06 86 < "~~~ TTTooC

LIBC:

7ff8a0 <write >:
——> 7ff8a0: push %rl5 ¢-------------=

Figure 2: Flow of control of a call to libc’s write () from
an application. This requires calling the PLT stub which on
it’s first invocation will invoke the dynamic linker and place
the correct address into the GOT. On subsequent calls, the
PLT stub will jump directly to write (). Through Egalito’s
analysis we are able to determine control-flow links (solid
lines) from foo to write@plt to write and data-flow links
(dashed lines) from write@plt to .got.plt towrite.

with a signature of void (short, float). Implementing
more heuristics like this will reduce the over-approximation
of the FCG.

Vacuum FCG. The indirect FCG described in the section
above is an over-approximation of the FCG rooted from the
main binary’s entry point, _start, but it does not take into ac-
count functions used in program initialization. Before _start
is called (when the binary takes control of execution), the
loader must do a lot of work to set the application and its
libraries in the address space, for example set up relocations.
As part of this setup, the loader executes functions stored as
function pointers in the .init section of the binary and af-
ter the program terminates, it executes the function pointers
stored in the .fini section. Since these function pointers
are never explicitly address taken, they will not be picked up
using the indirect FCG. If we do not include them in our FCG,
they will be erased and as a result, erased binaries would crash

Figure 3: Construction of Indirect FCG. fred () andwaldo ()
are address taken functions. When bar () dereferences the fp
function pointer, its possible targets are fred () and waldo ().

Pate

= &fred;  (*fp)();

Figure 4: waldo () is only address taken inside baz () which
is unreachable from main (). Thus, waldo () cannot be a valid
target of the function pointer in bar (). This pruning reduces
the reachable set of functions, allowing for more functions to
be erased.

on startup.

For this issue, we developed a Vacuum FCG which en-
capsulates all of this analysis. In particular, we treat all the
function pointers in the .init and .fini sections as entries
points to the binary, so that later in our FCG analysis, we add
all of the transitive dependencies of these functions to our
reachable set, so that they are not erased.

3.2 Dynamic Loader Challenges

In this process, we discovered that 1d, the linux dynamic
loader, is tightly intertwined with glibc. In particular, during
the course of program startup, the dynamic loader invokes
seven functions inside of 1ibc which we do not capture in our
analysis. For this reason, as a workaround we had to hardcode
those functions inside of 1ibc as always in the reachable set
because the dynamic loader depends on them.

Another issue we ran into during the development of this
project is the order of symbol resolution of symbols with
the same name by the loader. When debloating SQLite, we
noticed that 1ibreadline made a call to read() and the
loader bound that symbol to the 1ibpthread implementation
of read (), while Egalito parsed that symbol and bound it to
the 1ibc implementation of read. This bug caused our frame-
work to incorrectly erase the libpthread implementation
of read () and caused a crash. As a workaround to this bug
in Egalito’s symbol resolution, we decided to always keep



read () in the reachable set of functions and have yet to en-
counter another case like this. This bug will soon be patched
in Egalito.

3.3 Erasing Code

Our Egalito analysis computes the reachable set of functions
per library and finds the difference between that and the set
of all functions in the library. This leaves us with a list of
functions and their sizes to erase for each library. We erase
functions by overwriting them with x86 h1t instructions. We
do this by using the readelf utility to convert virtual ad-
dresses of functions to their byte offset in the library ELF file
on disk. With this conversion, we can overwrite a function
with a single write () call.

There is a large benefit to using the h1t instruction to erase
functions. If this instruction is executed, perhaps during an
attacker’s exploit, the program will terminate, thus alerting the
client of an attack. The h1t instruction is only one-byte which
means it works for erasing functions of both odd and even
byte length, does not change the size of the binary, and does
not introduce any new gadgets along unaligned instruction
boundaries.

After we have made copies of an application’s libraries
and erased them, we indicate to the loader that the binary
should use the erased libraries by using the patchelf utility
to change the binary’s and all the libraries’ rpath to a direc-
tory with the newly erased ELF files. This allows us to move
the binary around and execute it from any directory without
the need for any environment variables. We found this to be
convenient when testing as passing along the required argu-
ments to the LD_PRELOAD environment variable to use the
erased libraries is not trivial and required a different solution
for each application with a different test framework.

3.4 IFUNCs

GNU libc introduces the concept of IFUNCs as a mecha-
nism for developers to provide multiple implementations of
a function, each one optimized for a particular system. The
IFUNC itself is a resolver function which at run-time deter-
mines which implementation to use. This creates a problem
for our analysis similar to that of the .init and .fini sec-
tions. Because the loader invokes all IFUNC resolvers at load
time, we consider all IFUNCs as valid entry points into the
library when constructing the FCG. As a result we are unable
to erase any IFUNCs or their transitive dependencies.
Potential future work could be to optimize this case. Be-
cause the loader executes all the resolver functions on startup,
we cannot remove any of those. Howeyver, if in our FCG anal-
ysis, we see that the IFUNC is never called, then we can safely
erase all implementations of that IFUNC and its transitive de-
pendencies. We found that 1ibc v2.27 exports 56 IFUNCs, but
that the average Coreutil binary only uses 7. If we see that an

Coreutils | SQLite
Average KB Erased 590 595
Average Byte % Erased 37.2% 29.7%
Average Functions Erased 1914 2165
Average % Function Erased | 76.5% 52.7%

Table 1: The amount of code and functions erased from the
address space of Coreutils applications and SQL.ite.

IFUNC is in fact called from our FCG, then we must keep all
implementations of that IFUNC. Even though only one of the
implementations will be called on the current machine, if we
erase the others, we will cause a crash on a different machine
which invokes another implementation.

3.5 Dynamically-Loaded Code

Code loaded dynamically through LD_PRELOAD or calls to
dlopen () and dlsym() create a problem in FCG analysis.
The code loaded at run-time could reference code from li-
braries which we erased because we determined it was un-
reachable. The safest solution would be to not erase applica-
tions which load code at run-time because there is no way to
get a complete analysis. In the cases that we know what is be-
ing loaded, we can augment our FCG analysis to include the
required dependencies. This was necessary to get the Core-
utils tests to pass, as there were a few test cases which dynam-
ically loaded code. An analysis in the Nibbler project showed
that 13.8% of Debian v9’s 25,256 packages use dlopen ()
and dlsym() to dynamically load code as run-time. This is a
known limitation of our approach.

In this project we found that 1ibc dynamically loads code
from several sub-libraries, called Network Security Services
(NSS) libraries. To avoid potentially erasing a function from
libc which one of these libraries could potentially need, we
add NSS libraries as dependencies to our application inside of
Egalito, so that it is able to include that code in the reachabilty
analysis. We take the same approach for 1ibpthread which
dynamically loads codes from 1ibgcc for stack unwinding
purposes.

4 Evaluation

We evaluate LibFilter on Linux x86-64: Coreutils (v8.30) and
SQLite (v3.27.2), using GNU libc (v2.27). We ran LibFilter
over all 107 binaries included in Coreutils and over SQLite.
For each binary, this process resulted in a set of newly de-
bloated libraries which erased unused functions. We ran all
the test suites in Coreutils and SQLite, all of which passed.



Library Coreutils (avg. of 107 binaries) SQLite

Functions Erased | Bytes Erased | Functions Erased | Bytes Erased
libc 1813 (77.7%) 567 KB (37.6%) 1623 (69.5%) 494 KB (32.8%)
libpthread 194 (56.5%) 33 KB (57.8%) 146 (42.4%) 19 KB (33.2%)
libdl 17 (40.5%) 3 KB (77.6%) 7 (16.7%) 1 KB (25.2%)
librt 64 (54.5%) 13 KB (95.4%) 65 (55.1%) 13 KB (96.2%)
libnss_compat 32 (59.5%) 18 KB (77.3%) 27 (50.0%) 15 KB (61.3%)
libnss_systemd 28 (18.4%) 5KB (3.3%) 28 (18.4%) 19KB (33.2%)
libgmp 413 (62.3%) 180 KB (47.5%) N/A N/A
libpcre 20 (31.3%) 7 KB (2.2%) N/A N/A
libselinux 223 (58.3%) 48 KB (51.5%) N/A N/A
libreadline N/A N/A 89 (12.9%) 9 KB (7.9%)
libtinfo N/A N/A 109 (43.8%) 17 KB (34.7%)
libz N/A N/A 71 (58.7%) 22 KB (28.1%)

Table 2: Functions and code removed per library in Coreutils and SQLite.

4.1 Debloating

Tables | and 2 summarize debloating results with LibFilter.
On average we are able to erase 590 KB of library code from
Coreutils binaries and 595 KB from SQLite. In both of these
cases, the majority of the erased code came from libc. In
Coreutils, we find that we can erase 37% of bytes in libc,
which corresponds to 77% of functions. We see the same
phenomenon in the SQLite case. We find that roughly 25%
of functions in 1ibc in general-use applications are needed
and make up 60-70% of the bytes in the .text section. This
suggests that critical parts of 1ibc used by all applications
can be identified and placed in their own library, apart from
all other functionality to help mitigate bloat.

Comparison with Nibbler. Nibbler decided to debloat a
set of libraries for all Coreutils binaries, which limited the
amount of which can be removed from each library because
if even one binary used a function in a library, it would be
left despite being unused in many other binaries. Nibbler
was able to erase 58.8% of functions and 32.9% of code of
libraries used by Coreutils. LibFilter debloats libraries per
binary, instead of a set of binaries, and as a result is able
to erase on average 76.5% of functions and 37.2% code
of libraries used by Coreutils. While this is not a direct
comparison because Nibbler debloats for a set of binaries,
we achieve very similar code removal rates. It takes Nibbler
2 hours to analyze and erase all Coreutils binaries, whereas
it takes LibFilter less than 20 minutes running on a Ubuntu
18.10 VM on a 4 core Macbook Pro with 8GB of RAM. This
demonstrates the power of Egalito’s analysis.

Comparison with Piecewise Debloating. Quach et al. re-
ports that for Coreutils, their mean function reduction is 79%.
LibFilter achieves a 76.5% reduction rate on the same metric.
The piecewise approach is able to remove more functions be-
cause of the additional information that the compiler has about

the usage of AT functions. Despite this, LibFilter is able to
achieve a similar reduction, which working exclusively from
the binary.

4.2 Memory Pressure

When using a vanilla library, it is only stored on disk once and
loaded into memory once, shared by all applications using it.
In Piecewise, only one version of a library is stored on disk
and at load time, sections are debloated by erasing unused
functions. The pages which include erased code to be copied
(COW) because they are modified and no longer shared be-
tween processes. Under this approach, two applications using
the same library running on the same machine would have the
same library code paged in twice. LibFilter suffers from the
same issue, as all binaries are debloated separately. However,
not all of libc is paged in when in use, only the working
set is, making this issue very difficult to measure accurately.
The loading step in Piecewise causes a 20x performance hit
in small applications such as Coreutils, as the erasing code
during load time take much longer than running the applica-
tion itself. LibFilter does not incur any load time performance
overhead because all debloating takes place offline.

A potential avenue to mitigate the additional memory pres-
sure that is created from loading the same libraries into mem-
ory is changing the way we erase functions from libraries. The
reason we erased functions by overwriting instructions with
hlts is for ease of implementation and ability to detect an
attack. Instead, we can remove unreachable code completely
from the library. To avoid gaps in the library, we would need
to move functions to be contiguous in memory, updating all
headers and relocations to be consistent. Egalito provides this
functionality when recompiling binaries, however it is not
stable enough yet to do so predictably. In the case of Core-
utils, on average, we would be able to compress 1ibc by 567
KB, or 141 4K pages. We would see this reduction for every



debloated application running which is linked against libc.

5 Conclusion

We presented LibFilter, a system utilizing Egalito to debloat
shared libraries. When applications use shared libraries, they
inadvertently add large amounts of code which can be used
for ROP gadgets into the address space. We have shown that
we can remove 37.2% of code from the address space of
the average Coreutils application as an orthogonal avenue
of defense against code reuse attacks. Debloated libraries do
not contain code that is not reachable from the binary, which
means our changes do not affect the functionality of programs.
We are able to achieve code reduction rates close to compiler
based approaches, indicating that source code is not strictly
necessary to implement good security guarantees.

Acknowledgments

I would like to thank Vasileios P. Kemerlis for sparking my
interest in computer security research, introducing me to the
field, guiding me through this project, and giving me constant
feedback and suggestions. Without you, I never would have
started this project.

I also want to thank Kent Williams-King for your constant
willingness to help me with debugging, testing, and imple-
menting this project. I learned more about systems from our
meetings than from many classes; your deep knowledge of
Unix systems never ceases to amaze me.

I want to thank my parents for always being there for me.
Thank you for everything you have sacrificed to bring me
to this country and for supporting me through Brown. I am
blessed and truly grateful to have such loving and amazing
parents like you.

Lastly, I want to thank Alyssa for always keeping me mo-
tivated and focused on this project. You were there for me
from start to finish. Thank you for encouraging me to pursue
this project, keeping me motivated, and always being eager
to listen to me ramble on about my research. Thank you for
surprising me and coming to my defense. I am so lucky to
have you in my life.

This project truly would not have been possible without all
of you.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-flow integrity. Proceedings of the 12th ACM
conference on Computer and communications security
(CCS), 2005.

[2] L. Davi, A. Sadeghi, D. Lehmann, and Fabian Mon-
rose. Stitching the Gadgets: On the Ineffectiveness of

Coarse-Grained Control-Flow Integrity Protection. 23rd
USENIX Security Symposium, 2014.

[3] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T.
Gross. Control-Flow Bending: On the Effectiveness of
Control-Flow Integrity. 24th USENIX Security Sympo-
sium, 2015.

[4] V. van der Veen, D. Andriesse, M. Stamatogiannakis, X.
Chen, H. Bos, and C. Giuffrdia. The Dynamics of Inno-
cent Flesh on the Bone: Code Reuse Ten Years Later.
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017.

[5] Anonymous submission. Nibbler: Shared Library De-
bloating without Recompilation. 2019.

[6] Anonymous submission. Egalito: Program Hardening
through Layout-Agnostic Binary Recompilation. 2019.

[71 H. Koo, Y. Chen, L. Lu, V. P. Kemerlis and M.
Polychronakis, Compiler-assisted Code Randomization.
IEEE Symposium on Security and Privacy, 2018.

[8] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eter-
nal war in memory. IEEE Symp. on Security and Privacy,
2013.

[9] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-
oriented programming: a new class of code-reuse attack.
Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security (CCS), 2011.

[10] A. Tang, S. Sethumadhavan, and S. Stolfo, Heisenbyte:
Thwarting memory disclosure attacks using destruc-
tive code reads. Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security.
ACM, 2015, pp. 256-267.

[11] D. Williams-King, G. Gobieski, K. Williams-King, J.P.
Blake, X. Yuan, P. Colp, M. Zheng, V.P. Kemerlis, J.
Yang, and W. Aiello. Shuffler: Fast and deployable con-
tinuous code rerandomization. USENIX Symposium on
Operating Systems Design and Implementation (2016).

[12] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for
copy and tamper resistant software. Proceedings of the
Ninth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ACM, 2000, p. 168-177.

[13] Anh Quach, Aravind Prakash, and Lok Yan. Debloating
Software through Piece-Wise Compilation and Loading.
Proceedings of the 27th USENIX Security Symposium.
869-886. 2018



	Introduction
	Background and Related Work
	Control Flow Integrity
	Shared Library Debloating
	Binary Recompilation

	Design and Implementation
	Call-graph Extraction
	Dynamic Loader Challenges
	Erasing Code
	IFUNCs
	Dynamically-Loaded Code

	Evaluation
	Debloating
	Memory Pressure

	Conclusion

