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Abstract

We present Custodes: a new approach to solving the complex issue of preventing
“p-hacking” in scientific studies. This novel protocol provides a concrete and publicly
auditable method for controlling false discoveries, and eliminates any potential for
data dredging on the part of researchers during the data analysis phase. Custodes
provides provable guarantees for the validity of each hypothesis test performed on
a dataset by using cryptographic techniques to certify outcomes of statistical tests.
Custodes achieves this using a decentralized authority and a tamper-proof ledger
which enables the auditing of the hypothesis testing process. We present a construc-
tion of Custodes which we implement and evaluate using both real and synthetic
datasets on common statistical tests, demonstrating the effectiveness and practicality
of Custodes in the real world. Furthermore, we propose an extension to Custodes
for rendering the results of statistical tests computed through Custodes differen-
tially private without introducing the need for a trusted party, and provide upper
bounds on the sensitivity of each test statistic.
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Chapter 1

Introduction

1.1 Introduction

“Data is the new oil” and as such, it is mined (i.e., gathered), shared, analyzed,

re-analyzed, and re-re-analyzed until it yields to more and more interesting insights.

With every exploration to find yet another insight, the chance of encountering a

random correlation increases. This phenomenon is formally known as the multiple

comparisons problem (MCP) and, if done in a systematic fashion, is often referred to

as “HARKing“ [51], “p-hacking” [40] or “data dredging”.

While a variety of statistical techniques exist to control the False Discovery Rate (FDR)

introduced by the MCP [24, 4], there is surprisingly almost no support to ensure that

analysts actually use them. Rather individual research groups rely on frequently

varying data analysis guidelines and trust in their group members to follow them.

Things get even worse when the same data is analyzed by several institutions or

teams. It is currently close to impossible to reliably employ statistical procedures,

such as the Bonferroni [24] method, that guard against p-hacking across collabora-

tors. It only requires one member to “misuse” the data (whether intentionally or not)

and detecting, let alone recovering, from such incidents is next to impossible. This

problem is perhaps amplified by three factors: 1) the pressure on PhD students and

PIs to publish [60], 2) “publication bias” [22] as papers with significant results are

more likely to be published, and 3) the increasing trend to share and make datasets
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publicly available for any researchers to use. It is therefore unsurprising that the

MCP is among the leading reasons why the scientific community is plagued by false

discoveries[3, 42, 45, 43].

To illustrate this problem further consider a publicly available dataset such as

MIMIC III [47]. This dataset contains de-identified health data associated with

≈ 40, 000 critical care patients. MIMIC III has already been used in various studies

[57, 36, 41] and it is probably one of the most (over)analyzed clinical datasets. As

such, any discovery made on MIMIC runs the risk of being a false discovery. Even

if a particular group of researchers follow a proper FDR protocol, there is no control

over what happens across different groups and tracking hypotheses at a global scale

poses many challenges. It is therefore hard to judge the validity of any insight derived

from such a dataset.

A solution to guarantee validity of insights commonly used in clinical trials -

preregistration of hypotheses [14] - falls short in these scenarios. The data is collected

upfront without knowing what kind of analysis will be done later on. Perhaps more

promising is the use of a hold-out dataset. The MIMIC authors can release only 30K

patient records as an exploration dataset (EDS) and hold back 10K as a validation

dataset (VDS). The EDS can then be used in arbitrary ways to find interesting

hypothesis. However, before any publication is made by a research group using the

dataset, all hypotheses must be tested for its statistical significance over the VDS.

Unfortunately, in order to use the VDS more than once, the same requirement as

before holds true: every hypothesis over the VDS has to be tracked and controlled

for. Furthermore, the data owner, the MIMIC authors in this case, need to provide

this hypothesis validation service. This is both a burden for the data owners as well

as a potential risk. Researchers need to trust the data owners to apply FDR control

procedures correctly and to objectively evaluate their hypotheses.

The above example illustrates the motivation behind Custodes. Our goal is to

create a system that guarantees the validity of statistical test outcomes and allows

readers (and/or reviewers) of publications to audit them for correctness. Using proven

cryptographic techniques to certify outcomes of statistical tests by a decentralized au-
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thority, we eliminate the risk of data-dredging (intentional and otherwise) on the part

of researchers or data owners. Custodes can be used in various settings, including

cases where the data is public and only the hold-out data is fed into Custodes (as

in the example above), in smaller settings where a few research groups collaborate on

combined data, or even within single teams where lab managers can opt to encrypt all

of their data and use Custodes as a way to prevent unintentional false-discoveries,

assign accountability and foster reproducibility.

data owner blockchain

p-valueCustodes

statistical
test

statistical
test

2a

1

researcher
researcher

p-value

3a

2b

3b

5

p-value

4 auditor

Figure 1-1: High level overview of Custodes.

1.2 Contributions

The primary contribution of this work is the Custodes framework. Figure 1-1

shows a high-level overview of the proposed system. (1) A data owner encrypts their

dataset (either the full dataset or just a hold-out) and submits it to Custodes: a

decentralized platform consisting of multiple nodes that are run by different entities

(e.g., universities or research groups). (2a and 3a) Researchers can post requests for

statistical tests to Custodes. (2b and 3b) Custodes securely computes these tests

using several cryptographic techniques, and stores the results (and transcript of the

computation) sequentially on a tamper-proof ledger (e.g., a Blockchain [59]). (4) One

of the researchers decides to publish their finding and includes a “certified p-value” in

their paper. (5) A reader or auditor of this publication can query the ledger, retrieve

all p-values of all the tests that have been run on this particular dataset and apply an
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incremental FDR control procedure a posteriori [69, 31] to validated the publication’s

finding.

Custodes prevents p-hacking by using encrypted data and by guaranteeing that

every statistical test is accounted for. It is, to the best of our knowledge, the first

cryptographically based solution to the problem of p-hacking with provable security

guarantees. Custodes is a framework which we instantiate based on additively ho-

momorphic encryption and multi-party computation protocols. Using those building

blocks, we implement three widely used hypothesis tests (Student’s t-test, Pearson

Correlation, and Chi-Squared, see § 3.4) in Custodes and evaluate its performance

with various configurations and dataset sizes.

1.3 System Overview

We model the scenario considered in the introduction as follows: a data owner wants

to release a dataset D, to a set of researchers, denoted {P1, . . . ,Pv}, for the purpose

of executing statistical tests. Note: D can be either a full dataset or a hold-out. We

aim to build a system that guarantees that all statistical tests over D are accounted

for and are executed and reported in a truthful manner. In other words, an FDR

control procedure is correctly applied for all statistical tests computed on D. If all

p-values resulting from tests computed on D are accounted for, then it is possible

to apply an FDR control procedure to determine which null-hypothesis should be

accepted (resp. rejected) to ensure the probability of a false rejection remains below

a threshold [69, 31, 4] (detailed in § 1.3). Moreover, the entire process must be

auditable: a publication can be vetted for having followed the correct FDR-control

procedure. At a high level, Custodes achieves these requirements by restricting the

exposure of the dataset D such that researchers are only able to test hypotheses on D

via the Custodes interface which stores all hypotheses and results in a tamper-proof,

auditable trace.

14



1.3.1 Design

Our design of Custodes is motivated by the following observations. The data owner

cannot release a dataset D to the researchers directly since it creates a possibility

for p-hacking and other forms of bias (e.g., parties can run tests privately and report

only favorable results without controlling for the FDR). Hence, D has to be released

such that only the output of the statistical tests performed on D is made available to

researchers. A näıve solution is to provide access to D through a stringent interface

which only returns the results of statistical tests. However, even such a solution is

not sufficient for enforcing correctness as it can be abused by parties querying the

interface until a favorable (i.e., significant) result is obtained while avoiding to report

the intermediate queries or adequately controlling for the FDR. Moreover, such a

solution has no way to audit the test computation making it impossible to “certify”

the validity of discoveries.

Custodes addresses this problem by using several cryptographic methods, specif-

ically, secure computation and a tamper-proof ledger which are discussed in detail in

the following chapters. At a high level, Custodes requires that a dataset D be en-

crypted by the data owner prior to being made available to researchers (or publicly

released). Researchers use the encrypted dataset, denoted JDK, to compute statisti-

cal tests using secure computations over the encrypted data with a mechanism for

revealing (decrypting) only the test statistic and simultaneously ensuring that the

FDR is controlled for. Custodes ensures that each revealed statistic is recorded on

a publicly accessible and secure ledger making each result of a statistical test public

and verifiable. This latter requirement ensures that 1) all statistical tests executed

on JDK are recorded in sequence and 2) makes it possible to certify that FDR control

procedures are applied correctly.

1.3.2 Security Goals

At a high level, Custodes aims to achieve the following security goals. We formalize

these properties in § 3.3.
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• Correctness. Statistical tests computed on JDK are correct, i.e, the p-value of

a test computed in Custodes is equivalent to the p-value computed through

standard statistical packages (e.g., SciPy [48]).

• Confidentiality. The only information revealed about D is the results of sta-

tistical tests executed through Custodes which ensures that the FDR is fully

controlled for and no hypothesis can be tested outside of Custodes’s interface

from “leaked” information about the contents of D.

• Access control. Statistical tests on D can be executed only by a set of ap-

proved researchers which ensures accountability in the hypothesis testing pro-

cedure.

• Verifiability. Every hypothesis test executed through Custodes has a cor-

responding certificate ψ that is publicly accessible and verifiable, even by a

third-party (e.g., reviewers, readers, organizations, etc.).

• Auditability. Given a certificate ψ, anyone can verify the correctness of

the hypothesis test computation associated with the certificate (i.e., determine

whether the null hypothesis should be accepted or rejected).

1.3.3 Security Model

Custodes provides provable guarantees to the five properties outlined in § 1.3.2

under the following threat model. The assumptions in the model are with respect to

the data owner, participants engaged in the protocol, and the network over which the

system is instantiated.

Data Owner. We assume that the data owner does not collude with the researchers

who run the statistical tests. This assumption is necessary given that a dishonest

owner would have unfettered access to the (unencrypted) dataset D and can thereby

trivially bypass any FDR control procedure set in place by Custodes.

Participants. We assume that all parties engaged in interactive computations are
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honest-but-curious, that is, they individually adhere to the correct protocol but are

interested in learning more about the underlying dataset so that they may circumvent

FDR control procedures, and may collude among themselves in attempt to achieve this

(i.e., to engage in p-hacking). To this end, we assume that at most t−1 out of v parties

may collude with each other in order to obtain more information about the dataset

or manipulate a test certificate. However, we assume that the set of colluding parties

is static (i.e., does not change during protocol execution). Researchers evaluating

statistical tests (which potentially includes one of the parties in the network), however,

are assumed to be malicious and may request malformed evaluations of statistical tests

circuits in an attempt to learn more about the underlying dataset. In other words,

while evaluations of arithmetic operations and other interactive computations in a

statistical test circuit are assumed to be secure (in the honest-but-curious setting), we

make no assumptions on the validity of the circuit itself which may deviate from a valid

statistical test. To this end, we assume that the evaluation of the circuit is performed

honestly but the circuit itself may be corrupted. However, malicious behavior is

exposed in the auditing phase where a malformed circuit makes the certification fail.

Finally, we require a secure public key infrastructure in place which allows to

identify individual parties (and researchers) by their public key and assume that

all messages exchanged during protocol execution are digitally signed with a party’s

identity. This requirement is easily satisfied using standard cryptographic primitives,

and as such, we omit details on the implementation of such a scheme.

Network. Custodes does not rely on a secure communication channel between

participants in the network and therefore tolerate the presence of a non-blocking

adversary controlling the network. However, we do not assume the presence of an

active network adversary (one that can actively block or drop packets) as that would

disrupt the availability of participants and the tamper-proof ledger. As such, this

model allows for messages exchanged between parties to be made publicly available

(e.g., by recording them on a public ledger) without compromising security of the

overall system.
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1.3.4 Controlling False Discoveries

An important step in realizing the construction of Custodes is understanding how

FDR control procedures are used in the data analysis phase.

In order to control for false discoveries it is necessary to know all p-values com-

puted over a dataset up to and including the current test. While standard procedures

such as Bonferroni [24] must be applied a posteriori of the data analysis (once all

hypotheses have been tested), in Custodes, we desire a method for controlling the

FDR in a streaming fashion, ideally without knowledge or restriction on future tests.

We use a common control procedure known as α-investing [31]. The α-investing

procedure is a standard choice for controlling false discoveries in practice when the

total number of hypotheses is unknown beforehand [69, 70]. We briefly describe the

procedure below and we refer the reader to [31, 69] for additional details to the ones

we provide as they are outside the scope of this work.

Formally, α-investing controls the marginal False Discovery Rate (mFDR) which

is defined as:

mFDR(i) =
E [V (i)]

E [R(i)] + 1

where i denotes the total number of tests which have been executed so far, V (i)

denotes the number of false discoveries, and R(i) denotes the total number of dis-

coveries (up to and including the ith hypotheses test controlled with the α-investing

procedure).

The testing procedure is said to control the mFDR at level α if mFDR(i) ≤

α [69]. Intuitively the α-investing procedure works by assigning to each hypothesis

test a budget αi from the initial “α-wealth”, w0 = α. If the p-value of the null

hypothesis being considered is above αi the null hypothesis is accepted and some

budget is lost, otherwise it is rejected and some testing budget is gained.

Consider the ith hypothesis, Hi, being tested. Hi is assigned an α-budget 0 < αi <

wi. If the p-value, pi, is below the threshold, i.e., pi < αi, then the null hypothesis

Hi is rejected and the testing procedure gains some ω < α increase in wealth (e.g.,

“return on investment”). On the other hand, if the null hypothesis Hi is accepted,
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then αi/(1 − αi) alpha wealth is deducted from the overall wealth. Formally, let wi

be the alpha wealth available for the ith hypothesis. Then, for the i+ 1st hypothesis,

wi+1 =

wi + ω if pi ≤ αi,

wi − αi

1−αi
if pi > αi

(1.1)

In Custodes, the initial α-wealth and budget allocated per test can be determined

by the data owner or set as a static constant. The importance of this procedure, when

it comes to this work, is that given all p-values computed on D up to the ith test,

it is easy to determine whether the hypothesis of the i+ 1st test should be accepted

(resp. rejected) based on the resulting p-value.

1.3.5 Certification of Hypotheses

The overarching goal of Custodes is to certify insights gained from data as valid.

Therefore, Custodes must provide a mechanism for certifying the outcomes of hy-

potheses testing procedures. Taking a birds-eye view, for every test that Custodes

executes, it produces a publicly available certificate ψ which is verifiable and unforge-

able. Formally, we define a certificate of a statistical test as a tuple (τ,Ppk, T , (t, p))

where τ is the test index (i.e., its order among all the tests that have been executed

so far on D), Ppk is the identifier of the researcher that requested the test (e.g., a

public key), T is the code of the statistical test function, and (t, p) is the result

of executing T (D) where t is the test-statistic and p is the p-value corresponding to

t. Given that each certificate contains both the test index τ and resulting p-value,

it is trivial to verify whether an FDR control procedure was applied when accept-

ing (resp. rejecting) a null-hypothesis using the procedure in § 1.3.4. Note that the

certificate by itself does not ensure that (t, p) = T (D), however, Custodes records

sufficient intermediate information for each test on a tamper-proof ledger that anyone

can verify whether it is indeed the case. We formalize and elaborate on these claims

in § 3.4.
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1.4 Contributions

• We present the first cryptographically based solution to the problem of p-

hacking. Our system provides provable certification for the validity of hypothe-

ses tests computed through Custodes.

• We show how Custodes achieves third-party auditable statistical insights

through a careful combination of tamper-proof ledgers, homomorphic encryp-

tion, and multi-party computation to solve the complex issue of false-discoveries

as a result of multiple-hypotheses testing in data analysis, especially in situa-

tions where researchers cannot be trusted to apply the FDR control procedures

correctly.

• We describe a construction for comping three common hypothesis tests (Stu-

dent’s t-test, Pearson Correlation test, and Chi-Squared test) in Custodes and

formally prove the security guarantees of our system under the specified threat

model.

• We present an extension to Custodes for evaluating statistical tests in a dif-

ferentially private manner without requiring a central authority and derive sen-

sitivity bounds on the three statistical tests described in this work.

• We implement and extensively evaluate Custodes in regard to its performance

and accuracy on both real-world and synthetic data to demonstrate the practi-

cality of the solution for addressing p-hacking in the real world.

1.5 Related Work

Much of the related work surrounding Custodes either focuses on private compu-

tations using homomorphic encryption or non-cryptographic methods for preventing

p-hacking such as methods for pre-registration of hypotheses. To our knowledge, there

has been no prior work using cryptographic techniques for certifying the validity of

statistical tests in an auditable way.
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Lauter et al. [54] and Zhang et al.[68] propose the use of homomorphic encryption

to compute statistical tests on encrypted genomic data. However, the constructions

are not intended for validating statistical testing procedures but rather for guarding

the privacy of patient data. Furthermore, Lauter et al. make several simplifications

such as not performing encrypted division (rather performing arithmetic division in

the clear), imposing assumptions on the data, etc., making their solution less general

compared to methods for computing statistical tests in Custodes.

Homomorphic encryption and multi-party computation techniques have been used

for outsourcing machine learning tasks of private data [65, 8, 66, 39]. Our work,

however, crucially relies on the decryption functionality being decentralized in order

to control and keep track of data exposure.

Several non-cryptographic techniques exist to guard against false discoveries in

statistical analysis. For example, there are several procedures that adjust p-values in

scenarios where multiple hypotheses are examined at once. These range from conser-

vative protocols that bound the family-wise error rate [24] to more relaxed procedures

that bound the ratio of false rejections among the rejected tests (false discovery rate,

FDR) [4] or the marginal FDR [69, 31]. When applied properly these techniques

prevent p-hacking in an idealized scenario. However, there is no guarantee that they

are applied correctly. A researcher can misuse these procedures, intentionally or oth-

erwise, and only apply them over a subset of all statistical tests being computed on a

given dataset. Furthermore, there is no way for external auditors to verify how these

methods were applied. Our work, on the other hand, leverage these techniques by

operating on encrypted data and tracking statistical tests in a tamper-proof ledger

which certifies the correctness of results in an auditable way.

Dwork et al. [27, 26] propose a method that constrains analyst’s access to a hold-

out dataset as follows. A trusted party keeps a hold-out dataset and answers up

to m hypotheses using a differentially private algorithm. Here, m depends on the

size of the hold-out data and the generalization error that one is willing to tolerate.

Hence, compared to our decentralized approach, this method assumes trust into a

single party that (1) does not release the dataset to the researchers and (2) does not
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answer more than m hypotheses queries.

Frankle et al. [32] propose a system for making governments accountable for secret

processes which uses a combination of a tamper-proof ledger and MPC to create a

publicly auditable ledger of surveillance requests issued to companies. While the pur-

pose of the system is unrelated to hypothesis testing, the techniques used in achieving

auditability are similar to ours and therefore of related interest.

Bogdanov et al. [6, 7] describe RMind which is a system for secure statistical

analysis using secret sharing and multi-party computation. While the computation

techniques are similar, the work focuses on computing statistical analysis using private

data and thus differs from our goal of validating hypotheses.

Finally, we note that preserving privacy of dataset values when releasing results

of statistical tests [33, 46] is orthogonal to the primary contribution of this work.

However, we do touch on techniques for achieving statistical test output privacy in

chapter 4.

22



Chapter 2

Preliminaries & Building Blocks

In this chapter we describe the necessary preliminaries and cryptographic building-

blocks for instantiating Custodes. The chapter covers existing cryptographic prim-

itives as well as new variants and extensions to existing work. The reader should

keep in mind that the purpose of these building blocks is to construct a system where

researchers can compute over an encrypted dataset in an auditable way. Table 2.1

summarizes the building blocks introduced in this chapter and their usage in the

system instantiation.

2.1 Tamper-proof Ledger

Custodes relies on a tamper-proof append-only ledger that we model as a Blockchain

abstraction, B. It records test runs against the dataset, each test result, order of

test execution, and the identity of the researcher requesting test executions. The

ledger can be maintained by a central authority (e.g., the data owner), by the parties

{P1, . . . ,Pv} themselves using a consensus protocol (e.g., Paxos [53]), or by inde-

pendent parties (e.g., using a public Blockchain based on a decentralized consensus

protocol such as Nakamoto consensus [59]). Similar to the ledger abstraction used

in [12], our main requirement is that the above abstraction be correct and always

available.
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Property Building block(s) Role in Custodes

Access Control Digital signatures &
threshold encryption.

Only approved researchers can re-
quest test computation and a
threshold majority of approved
parties can decrypt the data.

Hypothesis Tracking Threshold encryption,
multi-party
computation,
tamper-proof ledger.

Computation results can only be
revealed through a consensus of
parties in the system which record
every tested hypothesis at decryp-
tion time on a ledger.

Auditability Tamper-proof ledger A transcript of every statistical
test computation is recorded on
the ledger making them verifiable
and auditable by researchers and
third-parties.

Certification Tamper-proof ledger Sequence of statistical tests
recorded on the ledger make it
possible to apply the α-investing
procedure a posteriori which
serves as a certificate.

Table 2.1: Summary of cryptographic building blocks and their role in realizing the
main properties of Custodes.

2.2 Threshold Homomorphic Encryption

Homomorphic Encryption (HE) is a special form of encryption which enables the

evaluation of certain arithmetic operations over encrypted values without knowledge

of the secret key used to encrypt. Thus, HE schemes make it possible to evaluate

a subset of functions without revealing information on the inputs nor the output.

While several such schemes exist, in this work we use the additively homomorphic

encryption scheme known as Paillier [61]. The Paillier scheme enables the evaluation

linear arithmetic gates (i.e., addition, subtraction) but does not support non-linear

operations such as multiplication, out-of-the-box. We describe methods for extending

the functionality of Paillier later in this section. Custodes aims to distribute the

power of the data owner to a set of computing parties {P1, . . . ,Pv}. Thus, it is

necessary to distribute the power of decrypting the dataset (i.e., the secret key) to

the computing parties in such a way that no individual party can decrypt without
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consensus from a threshold number of parties. A threshold encryption scheme allows

the decryption of ciphertexts only when a threshold t of parties cooperate in the

decryption procedure. Specifically, no subset of parties smaller than the specified

threshold can learn any information, even if colluding among themselves [18]. In

essence, this allows Custodes to distribute the ability of the data owner to decrypt

the dataset to a set of parties provided that no more than t−1 of parties are corrupted

by the adversary.

2.2.1 Threshold-Paillier Scheme

We use the threshold variant of the Paillier scheme from [18]. The threshold variant

enables delegation of decryption to a set of parties {P1, . . . ,Pv} provided no more

than t out of v of them are malicious [18]. We make use of this fact later on when

describing the decryption of computed test statistics as well as in our security analysis.

Let {P1, . . . ,Pv} be a set of v parties where a threshold number t of them are

required to participate in order to decrypt (reveal) a ciphertext.

Paillier.KeyGen(k). Pick two k-bit primes, p and q such that p = 2p′ + 1 and

q = 2q′ + 1 where p′, q′ are Sophie Germain primes. Set n = pq, m = p′q′, λ =

lcm(p− 1, q − 1).

Pick an integer d such that d ≡ 1 (mod n2) and d ≡ 0 (mod m). 1 Set t such

that t ≤ v and construct the polynomial f(X) =
∑t−1

i=0 aiX
i (mod n2m) where ai for

i ≥ 1 is picked at random from the set {0, 1, . . . , n2m− 1}.

Set a0 = d and for i = 1 . . . v, ski = f(i) corresponding to the ith share of the

secret key sk = λ such that any subset of t secret key shares can be used to decrypt

a ciphertext. Set the public key pk = n.

Output (pk, sk1, . . . , skv)
2.

1[18] warns the reader that using d = λ (as per the original Paillier scheme) is not secure in the
threshold setting. Therefore, d must be chosen independently of λ.

2After running Paillier.KeyGen the dealer distributes the secret key shares such that only Pi

receives the share ski.
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Paillier.Enc(pk, z ∈ Zn). To encrypt a message x ∈ Zn, pick a random r ∈ Zn2

and compute the ciphertext c = (n+ 1)xrn
2

(mod n2). Output c.

Paillier.ThresDec(c ∈ Zn2 , {P1, . . . ,Pv}). To decrypt a ciphertext c, each player

Pi ∈ {P1, . . . ,Pv} uses the private secret key share ski to compute ci = c2∆ski where

∆ = v!. With the required t unique shares (c1, . . . , ct), the decryption can be com-

puted by taking the set C = {c1, . . . , ct} of t shares and combining them using La-

grange interpolation as follows:

c′ =
∏
i∈C

c
2λC0,i
i where λC0,i = ∆

∏
i′∈C\{i}

i

i′ − i
∈ Z

Note that c′ = c4∆2f(0) = c4∆2d. Since 4∆2d ≡ 0 (mod λ) and 4∆2d ≡ 4∆2d (mod n2),

we get that c′ = (n + 1)4∆2x where x is the plaintext we wish to extract. Therefore,

4∆2x can be (efficiently) obtained as described in the original Paillier which allows

us to recover x as follows:

m = L(c′ mod n2)(4∆2)−1 (mod n)

where L(u) = u−1
n

as specified in [61, 18]. Output m.

Paillier.EvalAdd(c1, c2 ∈ Zn2) . Addition of two encrypted values c1, c2 ∈ Zn2 is

computed as follows: pick a random r ∈ Zn2 and compute c′ = (c1c2)rn
2

(mod n2).

Observe that c1c2 = (n + 1)x1+x2(r′)n
2

for some r′ ∈ Zn2 hence the result is equiva-

lent to encrypting x1 + x2 using r′ for randomness and making the result a correct

encryption of x1 + x2. We note that the randomization step may be omitted when

deterministic computations are acceptable. Output c′.

Paillier.EvalMult(c ∈ Zn2, b ∈ Zn). Multiplication of a ciphertext c ∈ Zn2 by

a public constant b ∈ Zn is computed as follows: pick a random r ∈ Zn2 and compute

26



c′ = cbrn
2

(mod n2). Observe that cb = (n + 1)bx(r′)n
2

for some r′ ∈ Zn2 , hence the

result is a correct encryption of bx. Again, we emphasize that the randomization step

may be omitted when deterministic computations are acceptable. Output c′.

2.3 Performing Arithmetic Operations

Computing statistical tests requires the ability to evaluate arithmetic gates using

floating-point integers. However, given that the ciphertext space of Paillier is the ring

Zn, several non-trivial considerations must be made to smoothly port the statistical

test computations, as they would be done on plaintext, to the equivalent computation

in Zn. This requires thought on two fronts: (1) representing floating point values in

Zn and (2) dealing with negative values when encoding and computing in Zn.

2.3.1 Fixed-Point Encoding

Representation of real numbers in both Paillier and secret sharing schemes is a com-

mon problem given the message space consists of elements from Zn. Performing arith-

metic over real numbers is therefore non-trivial and requires either floating-point or

fixed-point encoding. While floating-point representation provides better precision, it

is also far less efficient compared to fixed-point representation, at least in the Secure

Multi Party Computation (MPC) context [71].

Encoding. Given a public fixed-point precision parameter f denoting bits of pre-

cision required per computation, we can approximate any real number a ∈ R as

a ≈ ba2fc2−f . We define fpf (a) = ba2fc to be the function encoding real numbers

into the corresponding fixed-point representation.

Linear Arithmetic. Addition (and subtraction) of two fixed-point numbers is trivial

and can be computed without interaction. Consider real numbers a, b ∈ R. Let x, y

be the fixed-point representations of a and b, respectively. Then x and y each have

f -bits of precision which implies (x+ y)/2f ≈f (a+ b) and hence addition of encoded

reals has f -bits of precision, as required.
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Multiplication. Multiplication of fixed-point numbers is more involved as we need

to scale down the result to have the correct f bits of precision. Consider real numbers

a, b ∈ R. Let x, y be the fixed-point representations of a and b, respectively. Observe

that xy2−2f ≈f ab which has 2f -bits of precision. Hence, we need to scale down

the product xy by a factor of 2f in order to obtain the correct precision for the

approximation of the product. This can be achieved interactively using the TruncPR

protocol (described in § 2.4) to obtain x̂y = (xy)/2f so that the resulting value x̂y

has f -bits of precision in the approximation of the product ab. It then follows that

x̂y2−f ≈f ab as desired.

Remark 2.3.1. In subsequent sections, we assume all encrypted and secret shared

values are fixed-point encoded reals represented as integers with a corresponding

scaling factor 2f , Hence, whenever we refer to “integers” or “values” the reader may

assume we are referring to fixed-point approximations of real numbers unless explicitly

stated otherwise.

2.3.2 Signed Encoding

We designate a range of length ω (e.g., ω = n) within Zn for the representation of

negative integers. More concretely we let the range [0, dω
2
e) represent the positive in-

tegers in the range [0, dω
2
e) and elements in the range [dω

2
e, ω) encode negative integers

in the range [−dω
2
e, 0). Note that the correctness of both addition and multiplication

is preserved with such encoding allowing for efficient representation and arithmetic

of signed integer values in Zn. Consider integers a, b ∈ (−ω
2
, ω

2
). We prove this in the

following theorem.

Theorem 2.3.1. Signed encoding is correct and preserves arithmetic operations in

Zn provided arithmetic operations do not overflow.

Proof. Clearly if a, b ∈ [0, ω
2
) then a (mod n) + b (mod n) = a + b (mod n), likewise

for multiplication.

• If a, b ∈ (−ω
2
, 0) (i.e., a and b are both negative integers), then a ≡ n −

|a| (mod n) and b ≡ n−|b| (mod n). Hence, a+b ≡ (n−|a|)+(n−|b|) (mod n) ≡
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n − (|a| + |b|) (mod n). Likewise we get ab ≡ (n − |a|)(n − |b|) (mod n) ≡

|ab| mod n ≡ ab (mod n) for multiplication.

• If a ∈ [0, ω
2
) and b ∈ (−ω

2
, 0) (i.e., a positive, b negative) then we get that

a + b ≡ a + (n − |b|) (mod n) ≡ a − |b| (mod n) which is correct given that

if a ≥ b we get a − |b| (mod n) and if a ≤ b then we get n − (|b| − a) mod n.

For multiplication we obtain ab ≡ a(n− |b|) (mod n) ≡ n− a|b| ≡ (mod n) as

needed. The case of a negative and b positive follows by symmetry.

2.4 Secure Multi-party Computation (MPC)

Computing statistical tests such as Student’s t-test, Pearson Correlation, and Chi-

Squared in Custodes requires the ability to evaluate addition, multiplication and

division gates on encrypted inputs without leaking information. While threshold-

Paillier can be used to evaluate linear arithmetic gates, it is necessary to invoke

interactive protocols to compute non-linear arithmetic gates (i.e., multiplication and

division). In this section we introduce the necessary definitions of security for MPC

protocols and cover the protocols used in efficiently computing statistical tests.

2.4.1 Universal Composability (UC)

UC is a framework for proving the security of MPC protocols [9, 55]. The UC

model formalizes an MPC environment where parties (modeled as interactive Turing-

machines) interact to perform a computation. The security of a protocol π is proven

by showing that any adversarial environment Z interacting with honest parties in the

execution of π is indistinguishable from an ideal functionality executing π. The im-

portance of this definition is that any protocol π which is UC-secure can be composed

with other UC-secure protocols without compromising the security of the composed

protocol. More formally, UC-security guarantees that an ideal execution of π in a
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malicious (in our case honest-but-curious) environment Z is indistinguishable to the

real execution of π in Z.

Remark 2.4.1. The UC composability framework is of importance to this work for

two reasons: (1) it guarantees that the protocol transcript posted to the tamper-

proof ledger does not reveal information about the encrypted inputs (i.e., the dataset

D) and (2) makes it possible to instantiate new and more complex protocol using

secure UC-secure sub-protocols without jeopardizing security. We utilize the latter

in instantiating the statistical test protocols which are composed exclusively of UC-

secure sub-protocols.

2.4.2 Statistical Security

We make extensive use of statistically secure MPC protocols introduced in [11, 10].

The advantage of using statistical security (as opposed to perfect) is that many ex-

isting protocols can be rendered far more efficient with only slightly more relaxed

notions of security.

Definition 2.4.1 (Statistical Security [11]). For any two random variables X and Y

with finite sample spaces U and V , respectively. The statistical distance between X

and Y is said to be statistically indistinguishable in the security parameter κ if:

∆(X, Y ) =
1

2

∑
w∈U∪V

|Pr[X = w]− Pr[Y = w]| ≤ negl(κ)

In the special case that ∆(X, Y ) = 0 we say the distributions variables are perfectly

indistinguishable or information-theoretically secure.

Remark 2.4.2. Since we use the Paillier encryption scheme as a building-block for

instantiating these protocols, the security of all MPC protocols (both statistically

secure and perfectly secure) is reduced to computational security since the hardness

of the Paillier cryptosystem is based on factorization.
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2.4.3 Evaluating Non-linear Arithmetic Gates

We used methods described in [11, 10, 18] to compute non-linear arithmetic gates

using interactive MPC protocols. We emphasize that while some of the protocols

used in this work were originally described for the secret-sharing schemes (i.e., [62]),

all protocols apply to a threshold-Paillier setting, even when active security is re-

quired [16].

Following notation in [17, 72], we denote a Paillier ciphertext c ∈ Zn2 as [c]. We

leave arithmetic additions, subtractions, and scalar multiplications (local computa-

tions) implicit since they can easily be inferred from context, i.e., [a] + [b], denotes

the addition of two Paillier encryptions and [a]c denotes the multiplication of an en-

crypted value by a public scalar. If a value is public, we let a + [b] represent the

addition of a “dummy” encryption, [a], of the publicly known quantity a with the

(secret) encryption [b].

Remark 2.4.3. In the complexity analysis of MPC protocols, the term invocation is

often used to describe the number of times a constant-round interactive sub-protocol

(e.g., Mult) is invoked during the execution of a protocol, this convention follows

existing MPC literature for providing an upper bound on the round complexity of a

given protocol. Round complexity almost entirely determines the run-time of MPC

protocols in practice [7] and therefore it is often desirable to invoke protocols which

require a constant number of interactive round.

2.5 MPC Protocols

We begin this section by describing existing protocols for evaluating certain arithmetic

operations efficiently using MPC. We then describe two derived protocols which we

require for computing statistical tests.
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Existing Protocols

Reveal([a]). Given an encryption [a], obtain a. This protocol requires 1 round and

no invocations and is realized by simply invoking the threshold-decryption protocol

described in § 2.2. Security of the protocol under the UC-framework is proven in [16].

Mult([a], [b]). Given encryptions [a] and [b], obtain the encryption [ab] in 1 round and

1 invocation. Details for instantiating this protocol are found in [16]. As we shall see,

multiplication is the fundamental protocol used as a building block for all non-linear

gate evaluation (e.g., division can be approximated by repeated multiplication).

PrefixOR([a1], . . . , [a`]). Given a vector of encrypted bits ([a1], . . . , [a`]) obtain en-

crypted vector ([b1], . . . , [b`]) of the prefix-OR operation, i.e., bi =
∨i
j=1 aj This proto-

col is described in [17, 72] and has a total complexity of 17 rounds and 20` invocations.

TruncPR([a], `,m). Given encryption [a] and an integer m, obtain the encryption

[ã] = [a/2m]. The protocol is fundamental to achieving secure fixed-point multiplica-

tion in Zn as it allows successive multiplications to be performed without “overflow”

modulo n. Details for instantiating the protocol are described in [11, 71]. The proto-

col is statistically secure and has a total complexity of 2 rounds and 2m sub-protocol

invocations.

BitDec([a]). Given encryption [a], obtain the encrypted bit vector ([a1], . . . , [a`])

representing the bit decomposition of a. We assume the convention of having the

most significant bit be [a1], in other words, a is decomposed in big-endian format.

The description of the protocol is provided in [17, 71] and has a total complexity of

114 rounds and 110` log2(`) + 118` invocations.

BitLT(([a1], . . . , [a`]), ([b`], . . . , [b`])). Given encrypted bit vector representations of a

and b, respectively, obtain the encrypted result of the comparison where c = a
?
< b

such that c ∈ {0, 1}. In combination with the BitDec protocol, this protocol can

be used to compare arbitrary encrypted values securely. The instantiation of the

protocol is describe in [17, 71] and requires 19 rounds and 22` invocations.
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FPDiv([a], [b], `, f). Given encryptions [a] and [b] obtain the encryption [a/b] with

f -bits of fixed-point precision. This protocol is based on the Goldschmidt method for

achieving integer division presented in [37]. The idea behind Goldschmidt’s method

is to obtain initial approximations to both the divisor and dividend and iteratively

compute quadratically converging approximations up to a desired precision. The MPC

version of the protocol is described in [11, 72], is statistically secure, and has a total

complexity of 3 log2(`) + 2 rounds and 1.5` log2(`) + 4` sub-protocol invocations.

Symmetric Boolean Functions. We note that any symmetric boolean function

F : {0, 1}k → {0, 1} can be computed in constant rounds using Lagrange interpolation

as described in [17]. While the protocol in [17] assumes a finite field of prime order,

the protocol remains correct and secure when used with Paillier [16]. The protocol

requires 5 rounds and 6k invocations.

2.5.1 Generating Random Bits

Generating random bits is necessary for securely instantiating TruncPR, however,

most existing protocols for generating shared random bits require secret sharing in

a field of prime order since the protocol assumes that computing the square root of

an element is feasible. As such, the protocols do not apply to the Paillier setting

since computing the square root of elements in the ring Zn requires knowing the

factorization of n (which would break the security of the scheme). To this extent, we

propose Protocol 1 as an alternative to generating encrypted random bits securely in

Zn by exploiting the ability to compute symmetric Boolean functions and compute⊕k
i=1[ai] on encrypted inputs ([a1], . . . , [ak]).

Correctness. Correctness follows from the fact that each bit bj is the xor of the bits

bij provided by party Pi for i = 1, . . . , v. Therefore, by assumption the input bits bij

are random and unknown to all parties, the final bit array will likewise be random

and unknown to any party.

Security. Security (in the honest-but-curious model) follows from the use of secure
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Protocol 1: ([b1], . . . , [bm])← RandBits(m)

Public Parameters: JDK, N , M , B, pk, v, t, κ, `, f
Result: Tuple of m encrypted random bits.

1 foreach i← 1, 2, . . . , v do parallel
2 ([bi,1], . . . , [bi,m])← BitVectorPi

(m); // Pi sends m encrypted bits.

3 foreach j ← 1, 2, . . . ,m do parallel
4 [bj]←

⊕v
i=1[bi,j] ; // symmetric boolean function eval

5 return ([b1], . . . , [bm]);

sub-protocols and the fact that no values are revealed. Moreover, since each bij is

random (and only known to one of the parties), the final result bj will be a random

bit unknown to all parties. This latter property follows directly from the secure XOR

evaluation.

Complexity. The protocol requires 2 rounds and m invocations of the symmetric

Boolean function evaluation to compute the xor.

2.5.2 Sign Extraction

We require the ability to extract the sign from an encrypted value. While intuitively

simple, this task is non-trivial given the nature of signed-encoding in Zn, discussed

in § 2.3.2. In order to securely extract the sign of an encrypted value, it is necessary

to perform an expensive bit decomposition operation followed by a comparison, both

of which are round intensive protocols. Fortunately, this protocol is only required

once per statistical test and can be avoided if the sign is deemed of no importance

for a given dataset. We present protocol 2 to extract the sign of an encrypted value.

Correctness. Observe that line 1 shifts a to the range [0, 2`+1]. Hence, if a ≤ 0 then

b ≥ 0. Line 2 converts b into a bitwise representation which is then used in line 4 to

compare with the threshold of 2`. If a ≤ 0 then b ≤ 2` hence the protocol is correct.

Security. Security follows from the use of secure and composable sub-protocols and

the fact that no values are revealed during protocol execution.
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Protocol 2: [s]← SignBit([a])

Public Parameters: JDK, N , M , B, pk, v, t, κ, `, f
Result: Obtain the sign bit of [a]. s ∈ {0, 1}, s = 1 iff a < 0.

1 [b]← [a] + 2`;
2 ([b1], . . . , [b`])← BitDec([b]);
3 c← BigEndian(2`); // big-endian representation of 2`

4 [s]← BitLT([b1], . . . , [b`]), c);
5 return [s];

Complexity. The protocol requires 2 rounds and 2 invocations. Note, however,

that the two invocations are round-intensive protocols which have significant (albeit

constant-round) overhead.

2.5.3 Computing Fixed-Point Square Roots

Finding efficient methods for computing fixed-point reciprocals and square roots in

MPC is still an open problem. The most efficient solutions found so far are based

on iterative methods with quadratic convergence (requiring a logarithmic number of

iterations in the precision parameter) but require an expensive normalization step to

bring the secret value into a specific range. The two most commonly used methods

are Newton-Raphson which are based on root-finding algorithms and Goldschmidt’s

method based on series approximations[30, 56]. In practice, Goldschmidt’s method

is more efficient compared to Newton-Raphson by requiring fewer sequential multi-

plications per round thus reducing the total round complexity of the protocol.

Goldschmidt’s method applies to computing division, reciprocals, square roots,

and square-root reciprocals and uses similar iterative techniques to achieve each one.

As we shall see in subsequent chapters, the statistical tests we describe require divid-

ing by the square root of an encrypted real number (approximated using fixed-point

representation, see § 2.3.1). While several works provide details for computing divi-

sion using Goldschmidt’s algorithm in MPC [10, 71], we are not aware of a body of

work describing computations of square-root and square-root reciprocals in the MPC
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context. To this end, we describe the necessary protocols for computing the reciprocal

of the square-root in MPC which we later use in the computations of statistical tests.

To achieve quadratic convergence, Goldschmidt’s method requires an initial ap-

proximation to the reciprocal of the square-root of the value a, i.e., Y0 ≈ 1/
√
a such

that 1/2 ≤ aY 2
0 ≤ 3/2. In standard uses of this algorithm (e.g., non-MPC contexts),

this initial approximation is achieved using look up tables [56]. However, given that

in our case a must be kept secret, computing the initial approximation requires more

finesse (and, unfortunately, more rounds).

We achieve this initial approximation by first decomposing a into its bit-wise

encrypted representation using the BitDec protocol and then isolating the MSB of a

in order to securely obtain the following initial approximation to the reciprocal of the

square root:

Y0 = 1.0/
√

2msb(a)+1 ≈ 1/
√
a

This initial approximation is achieved in MPC using Protocol 3. Once the approx-

imation is obtained (which is the most expensive step in computing the reciprocal of

the square root), we can easily compute quadratically converging iterative approxi-

mations using the following procedure [56]. Let b0 = a and z0 = Y0 then for each

subsequent iteration we set:

bi+1 = biY
2
i

Yi+1 = (3− bi+1)/2

zi+1 = ziYi+1

Following these rules we obtain the converging approximation zi+1 of the reciprocal

square root, i.e.,

lim
i→∞

aY 2
0 Y

2
1 . . . Y

2
i = 1 =⇒ Y0Y1 . . . Yi =

1√
a

If we set the number of iterations to θ, then we obtain the following approximation
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with a relative error εθ = ε2θ0 , where ε0 is the error in the initial approximation.

1√
a
≈ Y0Y1Y2 . . . Yθ−1

Since for our applications we require f bits of precision, we set θ = dlog2(f)e. Pro-

tocol 4 computes the reciprocal of the square root and closely follows the above

description.

Protocol 3: [â]← InitSqrt([a])

Public Parameters: JDK, N , M , B, pk, v, t, κ, `, f
Result: Initial approximation to the reciprocal of the square root of a.

1 ([b1], . . . , [b`])← BitDec([a], `);
2 ([c1], . . . , [c`])← PrefixOR([b1], . . . , [b`]);
3 [d`]← [c`]− [c`−1];

4 foreach i← 1, 2, . . . , `− 1 do parallel
5 [d`−i]← [c`−i]− [c`−i−1];

6 [e`]← [d`];

7 foreach i← 1, 2, . . . , `− 1 do

8 [e`−i]← [d`−i]fpf (1.0/
√

2i+1);

9 [â]←
∑̀
i=1

[ei]

10 return [â];

Correctness. Lines 3 to 5 isolate the MSB of a by computing the vector ([d1], . . . , [d`])

containing 0’s everywhere except at the MSB index which is an encryption of 1. Fi-

nally, lines 5 to 8 compute the approximation using the isolated MSB.

Security. Security follows from the use of secure sub-protocols and the fact that no

values are revealed during the execution of the protocol.

Complexity. The protocol requires 2 rounds and 2 invocations. Notice that the

complexity of the protocol is dominated by the BitDec protocol making it highly

inefficient in practice, even if the round complexity is constant.
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Protocol 4: [z]← FPSqrtRcpr([a])

Public Parameters: JDK, N , M , B, pk, v, t, κ, `, f
Result: Square root reciprocal 1.0/

√
a of a.

1 θ ← dlog2(f)e;
2 [y]← InitSqrt([a]);
3 [b]← [a];
4 [z]← [y]

5 foreach i← 1, 2 . . . θ do
6 [y2]← Mult([y][y]);
7 [y2]← TruncPR([y2], 2`, f);
8 [b]← Mult([b], [y2]);
9 [b]← TruncPR([b], 2`, f);

10 [y]← (3− b)fpf (0.5);

11 [z]← Mult([z], [y]);
12 [z]← TruncPR([z], 2`, f);

13 return [z]

Correctness. Line 1 computes the number of iterations necessary to achieve f -

bits of precision in the final result. Line 2 computes the initial approximation to

the reciprocal of the square root. Correctness follows from the description of the

algorithm.

Security. Security follows from the use of secure sub-protocols and that no secret

values are revealed during the execution of the protocol.

Complexity. The protocol requires O(θ) rounds and O(θ) invocations.

2.6 Practical Considerations

In practice, it may be desirable to perform more computationally intensive interactive

protocols such as SignBit, FPDiv, and FPSqrtRcpr using techniques for multi-party

computation over a linear secret sharing scheme (LSS) such as Shamir [62]. It has

been shown that general multi-party coputation can be instantiated over any LSS

scheme, even when active security is required [15]. By using LSS as the underlying

38



primitive, we can perform computations over a finite field Fp of prime order which

comes with several computational efficiency improvements (note: the number of in-

teractive rounds remains the same). The downside of this approach, however, is that

shares of secret values must be distributed to all v parties. Therefore, we only use

LSS for computing a fixed number of gates (e.g., division gates) which only require

two values (the inputs to the gate) to be shared with all parties rather than the full

dataset. Furthermore, this approach does not change the overall design of Custodes

but in some cases can improve the overall runtime of computations. Specifically, the

performance improvement is noticeable for protocols requiring a large number of mul-

tiplications since Paillier requires one modular exponentiation for every interactive

multiplication, while multiplication with LSS do not [15]. The question, of course,

becomes how to integrate secret sharing protocols with Paillier based computations

as it necessitates conversion between Paillier encryptions in the ring of integers Zn
to secret shares in a finite field Fp where shares of the secret values are distributed

among the parties. Moreover, this conversion must be achieved on the fly, without a

trusted dealer to distribute the shares prior to protocol execution.

We extend the method described in [21] for converting shares between fields.

First, we describe a fairly simple protocol for generating a secret shared random value

along with the Paillier encryption of the same value. This can be achieved using a

similar technique as for generating shared random values described in [17, 16]. Let

〈s〉 denote a secret share of the (secret) value s in the finite field Fp. Each party

Pi ∈ {P1, . . . ,Pv} generates a random ri ∈ [0, 2`+κ) (using methods for generating

shared random values [20]) and sends a tuple ([ri], 〈ri〉) to all other parties. Observe

that the tuple contains the equivalent random value in both the ring Zn and field

Fp (assuming that p > n), where the first random value is encrypted and the other

secret shared among the parties. The parties then locally compute [r] =
∑v

i=1[ri] and

〈r〉 =
∑v

i=1〈ri〉 to obtain a random value in Zn and in secret shared form such that

the final value remains random and unknown to all parties (in the honest-but-curious

security model though it can be made secure against active adversaries as well [21]).

We briefly summarize the two fundamental protocols for LSS based multi-party
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computation. We refer the reader to [5] for a full summary of LSS-based multi-party

computation techniques.

CreateShares(s). Generates a polynomial g with random coefficients from the field

Fp such that g(0) = s. Each party Pi obtains a share g(i) for i = 1 . . . v. Denote the

secret shares of s distributed among the parties P1 . . .Pv as 〈s〉 = g(0) = s.

Reveal(〈s〉). Receive a set of t unique shares from t (or more) parties. Reconstruct

the polynomial g by interpolating the secret shares and output the secret s = g(0).

Protocol 5 converts shares from Zn to the field Fp where p is some prime deter-

mined by either the parties or by the data owner at setup time.

Protocol 5: 〈a〉 ← ConvertToShare([a])

Public Parameters: JDK, N , M , B, pk, v, t, κ, `, f
Result: Secret shared value of 〈a〉.

1 ([r], 〈r〉)← RandIntFields(2`+ κ, n, p);
2 [â]← [a] + 2`; // shift to positive range

3 b← Reveal([â] + [r]);
4 〈c〉 ← CreateShares(b); // distribute shares to all parties

5 〈â〉 ← 〈c〉 − 〈r〉;
6 〈a〉 ← 〈â〉 − 2` ; // restore sign

7 return 〈a〉;

Correctness. Line 1 generates a random value r in both the ring Zn and field Fp
as described above such that r (mod p) ≡ r (mod n). Line 3 reveals the statistically

hidden value a + 2` + r. The share 〈a+ 2` + r〉 is then created and distributed to

all parties. Finally, the parties locally subtract 2` and the share 〈r〉 to obtain 〈a〉

restored to the correct signed encoding (mod p).

Security. Observe that [r] and 〈r〉 are random integers in the range [0, 2`+κ+v]

unbeknownst to all parties, therefore, ∆(a, r) ≤ 2κ providing κ-bits of statistical

security.

Complexity. The total complexity of the protocol is 3 rounds and 3 invocations.
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2.7 Relevant Notation

A summary of notation appears in Table 2.2.

D A dataset containing rows and columns with real values.

JDK Encrypted form of the dataset D. Each cell of JDK is an encryption of
the fixed-point approximation to the real value found in D.

v Number of computing parties.

t Decryption threshold.

τ Counter of statistical tests executed on D.

(t, p) Tuple containing the test-statistic t and corresponding p-value p.

T Arithmetic circuit of a statistical test.

ψ Certificate associated with a test result (p-value).

R Researcher performing tests on JDK where R may be in the set of com-
puting parties {P1, . . . ,Pv}.

Ppk The public key identifier of party P .

B Tamper-proof ledger (e.g., Blockchain).

n The Paillier scheme modulus.

Zn The Paillier scheme’s message space.

[a] Paillier encrypted value (ciphertext)

N Number of rows in the dataset D.

M Number of attributes (columns) in the dataset D.

` Number of bits required to represent the largest integer of an arithmetic
computation (e.g., ` = 64 for most applications.

f Bits of precision in fixed-point arithmetic computation.

κ Statistical security parameter for interactive protocols.

fpf (·) Function encoding reals to fixed-point representation with f -bits of re-
sulting precision.

Table 2.2: Summary of notation used throughout this work.
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Chapter 3

System Construction

3.1 Framework

With the necessary preliminaries behind us, we are now ready to describe the Cus-

todes framework. The functionality of Custodes can be split into three phases:

Setup, Compute, and Audit. We first present the general framwwork followed by a

concrete instantiation using the Paillier encryption scheme and methods for multi-

party computations covered in the previous chapter.

Setup. A data owner publishes an (encrypted) dataset JDK under the public key pk.

The owner proceeds to distribute the the secret key shares to parties {P1, . . . ,Pv}

such that any threshold t of them can collectively compute on the encrypted data

and decrypt JDK (see § 2.2). The owner then initializes a Blockchain B by posting

to it a signed message (0, pk,⊥,⊥) that corresponds to the counter of the tests to be

executed on D set to zero. In addition to releasing the encrypted dataset, the data

owner releases metadata pertaining to D deemed sufficient for researchers to form

hypotheses on the dataset. We formalize the metadata requirements in § 3.3.

Compute. A researcher, say R, specifies the test T corresponding to a statistical

test that she wants to execute on D. We note that R can either be one of the parties

in the set {P1, . . . ,Pv} approved by the data owner during the setup of Custodes

or an independent entity granted computing access by the owner and/or parties. R
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Figure 3-1: Overview of Paillier-based instantiation of Custodes.

posts a message (τ,Rpk, T ,⊥) to B marking the start of a statistical test computation

T (described as an arithmetic circuit). For simplicity, we assume that only one test

is executed at a time though we note that this is not a necessary requirement since

the dataset is static and B ensures that every test is assigned a sequential test index

τ . Once the test is computed, the result of the test is made available only in an

encrypted form as a result of secure computation. Recall that the test result cannot

be recovered by any of the parties individually and requires a threshold number of

the parties to reach consensus in order to reveal it. To this end, R requests help from

{P1, . . . ,Pv} by posting a signed message to B along with the (encrypted) result.

Each party Pi ∈ {P1, . . . ,Pv} verifies that the message indeed came from one of

the researchers allowed to run the tests and posts a message to B with a partially

decrypted share of the final result ([t], [p]) consisting of the test statistic t and p-value

p. When combined, the shares reveal the decrypted result (t, p). This specification

ensures that each test result is made publicly available (to all parties). The final

entry recorded on B is the test certificate consisting of the tuple (τ,Rpk, T , (t, p))

where Rpk is the identifier of the researcher R, T is the arithmetic test circuit. This

final tuple is signed by all parties engaged in the reveal computation (i.e., the parties

revealing the result) since after the shares are revealed, each party may individually

reconstruct and ensure that the shares indeed correspond to the correct decryption.

Audit. A test with certificate (τ,Rpk, T , (t, p)) can be audited for correctness by any
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entity with access to B, JDK and the public key pk used to encrypt D. An auditor V

retrieves all messages related to τ from B and verifies the signature of each message,

including the certificate. V then proceeds to use this information to ensure the test

code was computed correctly and indeed produces the result (t, p). We require that

B contains sufficient information to verify whether (t, p) = T (D), even if all parties

are offline, while simultaneously ensuring V gains no information about D (except

for the result of the statistical test). In particular, any entity with access to B (e.g.,

a researcher, an auditor, a data owner, or a third party) must have the ability to

verify the computed statistical tests that have been run using Custodes: for every

tuple (τ,Rpk, T , (t, p)) anyone can verify that (t, p) is the correct output Hence, if

T (D) 6= (t, p), R’s malicious behaviour is exposed and the result (t, p) is deemed

invalid.

3.2 Implementation

We are now ready to describe the detailed construction of Custodes. By using a

threshold additively-homomorphic encryption scheme for encrypting the dataset, and

distributing the key among a set of (possibly untrusted) parties, we can construct

Custodes with minimal overhead on the researchers and parties engaged in the

system. Indeed, we achieve a construction which only requires the active participation

of parties in the network in two cases: 1) when computing a non-linear arithmetic gate

in the statistical test circuit evaluated over the encrypted dataset JDK (as explained

above) and 2) for decryption of the result of the computation (i.e., to reveal the test

statistic).

Recall that we divide the overall protocol into three distinct phases (Setup, Com-

pute and Audit).

Setup. During the setup phase, the data owner executes algorithm Paillier.KeyGen(1k) 1

that outputs a public key pk and secret key shares sk1, . . . , skv. The shares sk1, . . . , skv

are distributed to parties P1, . . . ,Pv, respectively.

1In practice k ≥ 1024 to ensure security against computationally bounded adversaries.
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The data owner then runs Paillier.Encrypt(pk,D) to obtain the encrypted

dataset JDK, where every value of D is individually encrypted. The data owner

sends the tuple (pk, ski) to Pi ∈ {P1, . . . ,Pv}, ∀i = 0 . . . v and publishes the public

key pk and JDK. The data owner then initializes a Blockchain B and records the

digital identity of every party Pi ∈ {P1, . . . ,Pv} and researcher R that can run the

protocol (e.g., it can be the verification key of a digital signature that will be used to

verify Pi’s signatures) on B. The owner then posts the signed message (0, pk,⊥,⊥)

corresponding to the counter of the tests to be executed on D set to zero. In addition

to releasing the dataset, the data owner makes available metadata pertaining to the

dataset (e.g., size of the dataset, attributes, etc). With the exception of dataset size,

the choice of metadata to be released is left up to the data owner.

tamper-proof ledger

code for computing 
the  th statistical test i

transcript of local 
and interactive 

computations involving 
the th statistical testi

result of  th
statistical 
test (t, p)

i

Figure 3-2: Use of Tamper-proof ledger in Custodes.

Compute. Let P be the researcher who wishes to run a statistical test T repre-

sented as an arithmetic circuit with input JDK. R posts (τ,Rpk, T ,⊥) to B and

obtains counter τ . R then proceeds to deterministically evaluate the arithmetic test

circuit T (JDK) locally by using the homomorphic properties of the Paillier scheme.

Assuming the arithmetic circuit contains a set of non-linear gates, P is only able to

evaluate the first w− 1 ≥ 0 gates locally before reaching some gate w which requires

an interactive protocol. Let opw(Cw) denote this computation where opw is the arith-

metic gate and Cw is the tuple of ciphertexts thatR obtained from local computations

up to level w − 1. Suppose, opw is a multiplication gate and Cw contains ciphertexts

[a] and [b]. R posts to B the message tuple (τ,Rpk, opw, Cw). All parties receive this

message and proceed to engage in the interactive protocol Mult to compute opw(Cw)

and obtain the encrypted result of this computation [c] = [ab]. Every party Pi then
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posts a signed message tuple (τ,Ppk
i , opw, [c]) to B. R then uses [c] and proceeds

with the local computation(s). In general, for the jth interactive protocol required

during the evaluation of T , R posts a message (τ,Rpk, opj, Cj) and the parties en-

gage in the protocol, posting the result of opj to B. Finally, once the evaluation of

T (JDK) is completed, R requests the decryption of the result ([t], [p]) = T (JDK) by

posting the tuple (τ,Rpk, T , ([t], [p])) to B. Once the result it obtained, the certifi-

cate ψ = (τ,Rpk, T , (t, p)), which, in conjunction with the information posted to B,

certifies the result of the hypothesis test (t, p). Figure 3-2 illustrates the use of the

tamper-proof ledger in the Compute process.

Audit. Suppose an auditor V wishes to verify that the certificate ψ = (τ,Rpk, T , (t, p))

indeed certifies the result (t, p). V retrieves JDK and proceeds to evaluate the test cir-

cuit T (JDK) until the first non-linear operation (which required an interactive protocol

during the Compute phase). Let op′w denote the first such operation and C ′w denote

its ciphertext list. V retrieves (τ,Rpk, opw, Cw) from B and verifies that op′ = op and

C ′w = Cw. V then gathers the transcript resulting from the computation of opw from B

and reconstructs [c]. Note that V does not engage in an interactive protocol to obtain

[c]. V then proceeds with the evaluation of T using [c] as input and continues these

verification steps for every gate in T until obtaining a result ([t′], [p′]) = ([t], [p]) at

which point V accepts the certificate ψ as valid. Conversely, if ([t′], [p′]) 6= ([t], [p]), V

rejects the certificate. We omit the verification of ciphertexts and other verification

since we assume all parties adhear to protocol. However, we note that there exist

numerous ways to augment the audit procedure by requiring various cryptographic

proofs from the computing parties as described in [16].

Finally, once the certificates have been verified, V can verify whether the FDR

control procedure described in § 1.3.4 were applied correctly when accepting (resp.

rejecting) the τth hypothesis by ensuring mFDRη(τ) ≤ α for the specified η and α

parameters.
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3.3 Security Evaluation

We now argue that Custodes satisfies properties outlined in § 1.3.

Correctness. Custodes follows the plaintext execution of statistical tests by using

a secure version of the sub-protocols as presented in § 3.4. The main difference with

plaintext execution of these tests is in the accuracy of the results since Custodes

guarantees f -bits of precision.

Confidentiality. The aim of Custodes is to enforce p-value calculations in a truth-

ful manner. It achieves this goal by hiding the content of D and revealing only the

metadata information about the dataset D sufficient to carry out statistical tests in

addition to revealing the results of the statistical tests themselves. Specifically, the

data owner is only required to reveal the following metadata:

• The size of the dataset: both the number of columns (attributes) and number

of rows in each attribute, N and M , respectively. These values are necessary

for both computing statistical tests and determining the associated p-values.

• Attribute metadata: information on the contents of D such as the character-

istics of each attribute, the domain size, and independence from other attributes.

For example, metadata for an “age” attribute may be the set {AttrType: Age,

NumericRange: 0-110}). We stress, however, that the metadata can be made

general and independent of the values in D when deemed of no influence on

computation correctness.

The above information can be expressed as a function Ls : DN×M → {0, 1}∗, that

takes as input the dataset and returns N , M and other metadata encoded as a binary

strings

We capture the confidentiality property of Custodes using a common experiment

used in cryptography where an adversary is required to distinguish whether it is set in

the real or an ideal world. In the real world, the adversary (i.e., a entity modeling the

collusion of malicious parties) interacts with Custodes as it would in the real setting.

In the ideal world, the adversary interacts with a simulator who has access only to
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the output of Ls(D) and to a test result oracle O(D, ·). Observe that the simulator

does not have access to the dataset itself. The oracle O(D, ·) knows the database D

and takes as input a statistical test circuit which it evaluates on D and returns its

result. We note that O is a concept that is used only as part of the confidentiality

definition and the proof thereof. In particular, it is used to capture the fact that

the simulator is not given D but only the results of the tests. If one can show that

an adversary cannot distinguish the real from the ideal world then Custodes does

not reveal more about D than what the simulator knows about D. Otherwise, the

adversary could use this leaked information to distinguish between the two worlds.

We formally capture this experiment below.

Definition 3.3.1. Let Custodes = (Setup,Compute,Audit), let Ls be a stateful

metadata function, O(D, ·) a test result oracle, v is the number of parties and t is

the threshold of parties required for decryption. Consider the following probabilistic

experiments where A is an honest-but-curious, stateful adversary and S is a stateful

simulator:

RealCustodesA(1k, v, t): An adversaryA choosesD and a challenger C runs Setup(1k,D, v, t)

and obtains the encrypted dataset JDK and keys (pk, {sk1, sk2, . . . , skv}). WLOG the

parties are split into two disjoint sets {P1, . . . ,Pt−1} and {Pt, . . . ,Pv} where the first

set is controlled by A and the second by C who acts on behalf of honest parties. C

sends JDK, pk, and corresponding secret keys to all the parties {P1, . . . ,Pv}. A then

adaptively chooses q test queries {T1, . . . , Tq} where each Ti corresponds to a valid

statistical test circuit. For each Ti, A and C engage in the Compute protocol that

returns result ti. In the end, A outputs a bit b.

IdealCustodesA,S(1k, v, t): An adversary A chooses a dataset D and S is given

the output of Ls(D). S runs SetupS(1k,Ls(D), v, t) that returns an encryption of a

random dataset JDRK and (pk, {sk1, sk2, . . . , skv}). S also updates its state. WLOG

the parties are split into two disjoint sets {P1, . . . ,Pt−1} and {Pt, . . . ,Pv} where

the first set is controlled by A and the second by S. A then adaptively chooses q
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test queries {T1, . . . , Tq} where each Ti corresponds to a valid statistical test circuit.

For each Ti, S calls O(D, Ti) and gets the result ti. S then calls ComputeS(ti) where

ComputeS is an interactive protocol that simulates the interaction of the honest parties

in the Compute phase with parties controlled by the adversary. In the end, A outputs

a bit b.

We say that Custodes is (Ls, t1, . . . , tq)-secure if ∃ PPT simulator S such that for

all PPT adversaries A,∣∣∣∣Pr[RealCustodesA(1k, v, t) = 1]−Pr[IdealCustodesA,S(1k, v, t) = 1]

∣∣∣∣ ≤ negl(k)

Theorem 3.3.1. Custodes is (Ls, t1, . . . , tq)-secure, i.e., no information beyond the

metadata and the result of q statistical tests on D is revealed.

Proof (Sketch). Since the statistical test evaluation function is secure under protocol

composition (see § 2.4.1), there exists a simulator S ′ which given input (pk, {skt, . . . , skv}, [ti])

indistinguishably simulates the view of parties {Pt, . . . ,Pv} while interacting with A

to produce the secure output [ti]. Using S ′ construct simulator S which reveals

each test statistic ti. Given input, (pk, {skt, . . . , skv},Ls(D, v)), S runs S ′ with input

(pk, {skt, . . . , skv}, [ti]) where S obtains [ti] from the oracle O and S ′ indistinguishably

simulates the execution of the test statistic computation. S proceeds to engage withA

in the threshold-decryption protocol from § 2.2 using keys from the set {skt, . . . , skv}

to simulate parties Pt, . . . ,Pv and obtain the test result ti.

Access Control. Though anyone can homomorphically compute on JDK, the ob-

tained encrypted result cannot be decrypted unless a threshold number of {P1, . . . ,Pv}

collude. Moreover, each party performs a partial decryption of a result only if the de-

cryption request message was posted on B and signed by one of the approved parties.

Hence, decryption of a ciphertext can only occur if an approved party or researcher

requested the decyrption.

Verifiability. This property is guaranteed again by the fact that a threshold number

of the parties are required to decrypt a result. That is, even if someone computes on
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JDK, the obtained result is encrypted and will not be decrypted unless more than t

of the parties collude. However, every test whose result (t, p) is decrypted has partial

decryption shares of (t, p) recorded on B. Hence, even if the party P that initiated

the test goes offline after requesting a decryption of (t, p), the certificate on (t, p) can

be reconstructed from shares stored on B.

Auditability. Since all local computations are deterministic and the transcripts of

interactive protocols are recorded on B, given a certificate ψ = (τ,Ppk, T , (t, p)) an

auditor V can evaluate the arithmetic circuit T (JDK) without interaction and ensure

that each input to a non-linear gate corresponds to a local computation of T (JDK).

Note that it suffices to ensure the input is correct given that the output is signed

by all parties during the computation. We stress that an audit does not require any

MPC evaluations given that the transcript and (encrypted) result is available publicly

on B. Thus, an audit of a certificate ψ is essentially a linear scan of records obtained

from B and local homomorphic ciphertext evaluations which are highly efficient.

3.4 Evaluating Statistical Tests

We showed how a dataset can be encrypted to ensure that every tested hypothesis is

locked (i.e., by being encrypted) such that the FDR control procedure can be enforced

in an auditable way. However, one important piece remains: How do researchers ex-

ecute statistical tests over the encrypted dataset in an efficient way. In this chapter

we present pseudo code for computing the three common statistical tests: Student’s

t-test, Pearson Correlation and Chi-Squared. While not exhaustive, this trio of sta-

tistical tests forms a basis for quantitative analysis and covers many use cases: from

reasoning about population means to analyzing differences between sets of categorical

data. We stress that Custodes can be also easily be extended to other statistical

tests using the same techniques we describe here.

The pseudo-code in this section computes the test statistics of Student’s t-test,

Pearson Correlation and Chi-Squared, denoted by t, r and χ2, respectively. We note

that using these statistics computing p-values can be done trivially for each respective
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statistic using the degrees of freedom [23, 50] associated with the data and we therefore

omit the full details of this process.

3.4.1 Dataset Characteristics

Let DN×M(R) be the set of all real-valued N -by-M matrices. Formally, a dataset

D ∈ DN×M(R) is a matrix with N rows and M columns (attributes). Recall that

the encrypted form of D is denoted by JDK where each entry is encrypted. Then

JDK ∈ DN×M(Z2
n) (note: n and N have nothing to do with each other. See § 2.7).

Therefore, D can be seen as a N ×M matrix containing real values and JDK as a

N ×M matrix containing encrypted fixed-point approximations to the real values of

each entry. In describing the tests, we assume, WLOG, that the tests are computed

over the first M (where M ≥ 2) attributes π1, . . . , πM of D. As such, we denote the

value of the ith row of attribute j as Di,πj , equivalently denoted as JDi,πjK in the

encrypted dataset.

Recall, that in order to allow researchers to form hypotheses on D, we require the

data owner to release attribute metadata (e.g., number of attributes, their type and

domain size, independence from other attributes, etc) and assume that the size of

the dataset is known. Again, we define Ls : DN×M → {0, 1}∗ to be a function from

datasets to binary strings encoding attribute metadata. Given Ls(D) it should be

possible to 1) define a hypothesis on D and 2) perform a statistical test in Custodes.

At minimum, we require that Ls(D) provides N , M , a set of independent attributes

and a set of bounds on attribute domains.

We are now ready to describe the three statistical tests we implement in Cus-

todes, Student’s t-test, Pearson Correlation test, and the Chi-Squared test.

3.5 Student’s t-test

Student’s t-test is used to compare means of two independent samples where the null

hypothesis stipulates that there is no statistically significant difference between the

two distributions [64]. Student’s t-test, for example, can be used to compare outcomes
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of clinical trials to determine whether a significant difference is observed between the

experiment and control group.

Let π1 and π2 be two independent attributes (columns) in D. Let x and y represent

the column values of π1 and π2 in D, respectively. That is, x is D1,π1 , . . . ,DN,π1 and

y is D1,π2 , . . . ,DN,π2 . Denote the mean of x and y as x̄ and ȳ, respectively. Let the

empirical standard deviations of the samples x and y be denoted as σ̂x and σ̂y.

The t statistic is computed according to:

t =
x̄− ȳ

σ̂p

√
2
N

(3.1)

where σ̂p =

√
σ̂2
x+σ̂2

y

2
is an estimator of the empirical pooled standard deviation of

the two samples x and y [50].

Student’s t-test in Custodes. Pseudo-code for the test is presented in Protocol 6.

The protocol closely follows equation 3.1 while adjusting the precision of fixed-point

computations using TruncPR as explained in § 2.3.1.

We briefly describe the steps of the protocol: Lines 2 to 4 compute the sample

mean of the two samples x and y. Lines 10 to 12 compute the variance (square of the

standard deviation) of the two variables. Line 13 computes the pooled variance of

the sample. Line 21 computes the square of the denominator in equation 3.1. Line 17

extracts the sign of the test statistic. Line 21 computes the reciprocal square-root

of the denominator. Line 23 reveals the test statistic. Finally, line 27 computes the

p-value in the clear by using the revealed test statistic t and the degrees of freedom,

which, in the case of the Student’s t-test is one less than the number of rows [50].
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Protocol 6: (t, p)← StudentTTest(π1, π2)

Public Parameters: JDK, N , M , B, pk, v, t, κ, `, f
Result: Test statistic and p-value (t, p) resulting from computing the

Student’s t-test over the selected attributes π1, π2.

1 df ← N − 1; // t-test degrees of freedom

2 ([x], [y])← (
N∑
i=1

JDi,π1K,
N∑
i=1

JDi,π2K);

3 [x̄]← TruncPR([x]fpf (1/N), 2`, f); // compute the sample mean of x

4 [ȳ]← TruncPR([y]fpf (1/N), 2`, f); // compute the sample mean of y

5 foreach i← 1, 2, . . . , N do parallel
6 [dxi ]← JDi,π1K− [x̄];
7 [dyi ]← JDi,π2K− [ȳ];
8 [hxi ]← Mult([dxi ], [dxi ]);
9 [hyi ]← Mult([dyi ], [dyi ]);

10 ([hx], [hy])← (
N∑
i=1

[hxi ],
N∑
i=1

[hyi ]);

11 [ˆ̂σ2
x]← TruncPR([hx], 2`, f); // compute the sample variance of x

12 [σ̂2
y]← TruncPR([hy], 2`, f); // compute the sample variance of y

13 [u]← [σ̂x] + [σ̂y];
14 [u′]← [u]fpf (1/(N

2 −N));

15 [v]← TruncPR([u′], 2`, f);
16 [w]← [x̄]− [ȳ];

17 [s]← SignBit([w]); // extract the sign of the test statistic

18 s← Reveal([s])

19 if s = 1 then
20 [w]← [w](−1); // make the numerator positive

21 [q]← FPSqrtRcpr([v]); // compute the denominator in equation 3.1

22 [t]← Mult([w], [q]);

23 t̃← Reveal([t]);
24 t← t/22f ; // obtain the real value approximation

25 if s = 1 then
26 t← −t; // restore the sign of the test statistic

27 p← computePV alue(t, df);
28 return (t, p);
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Requirements. Let η ∈ N be an upper bound on the largest absolute value in D

(i.e., given as part of attributes’ domain size), to evaluate a Student’s t-test over any

two attributes D, the following constraints must hold to ensure no “overflow” occurs

during computation: ` > log2(N) + 2 log2(η) + f and n > 2`+κ+v+1. The calculation

is trivial to verifiy by examining the arithmetic circuit.

Complexity. All sub-protocols invoked are constant-rounds with the exception of

FPSqrtRcpr which requires a number of rounds on the order of log2(`). Therefore, the

total round complexity hinges on the FPSqrtRcpr invocation making the final com-

plexity O(log2(`)) rounds and O(2N) invocations of constant-round sub-protocols.

3.6 Pearson’s Correlation Test

Pearson Correlation test is used to compare the linear correlation between two con-

tinuous independent variables and is frequently used to evaluate the effect that two

variables have on each other. The test statistic, r, lies in the range [−1, 1] where

r = 1 corresponds to a positive correlation level between the variables and r = −1

corresponds to a negative correlation [64].

Let π1 and π2 be two continuous attributes and let variables x and y represent

the values of π1 and π2, respectively. We let x1, . . . , xN and y1, . . . , yN denote the

observed values for x and y and denote the empirical mean of x and y by x̄ and ȳ.

Pearson Correlation’s correlation coefficient r is computed according to the following

equation [50]:

r =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

(3.2)

Pearson Correlation in Custodes. Pseudo-code for computing Pearson Correla-

tion coefficient is presented in Protocol 7. The protocol closely follows equation 3.2 to

compute the statistic and uses TruncPR to adjust the precision of fixed-point values as

explained in § 2.4. Lines 2 to 4 compute the mean of the two samples. Lines 11 to 13

compute the sum of the variance of two samples. Line 14 computes the covariance

54



of the two samples (the numerator of equation 3.2). Line 21 computes the square

of the denominator in equation 3.2. Line 16 extracts the sign of the test statistic.

Line 21 computes the reciprocal square-root of the denominator. Line 23 reveals the

test statistic. Finally, line 27 computes the p-value in the clear using the value of the

test statistic and the degrees of freedom, which, in the case of the Pearson Correlation

test is one less than the number of rows [50].
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Protocol 7: (t, p)← PearsonTest(π1, π2)

Public Parameters: JDK, N , M , B, pk, v, t, κ, `, f
Result: Test statistic and p-value (t, p) resulting from computing the Pearson

Correlation test over the selected attributes π1, π2.

1 df ← N − 2; // correlation test degrees of freedom

2 ([x], [y])← (
N∑
i=1

JDi,π1K,
N∑
i=1

JDi,π2K);

3 [x̄]← TruncPR([x]fpf (1/N), 2`, f); // compute the sample mean of x

4 [ȳ]← TruncPR([y]fpf (1/N), 2`, f); // compute the sample mean of y

5 foreach i← 1, 2, . . . , N do parallel
6 [dxi ]← JDi,π1K− [x̄];
7 [dyi ]← JDi,π2K− [ȳ];
8 [hxi ]← Mult([dxi ], [dxi ]);
9 [hyi ]← Mult([dyi ], [dyi ]);

10 [qi]← Mult([dxi ], [dyi ]);

11 ([hx], [hy])← (
N∑
i=1

[hxi ],
N∑
i=1

[hyi ]);

12 [σ̂2
x]← TruncPR([hx], 2`, f); // compute the sample variance of x

13 [σ̂2
y]← TruncPR([hy], 2`, f); // compute the sample variance of y

14 [q]←
N∑
i=1

[qi]; // compute the sample covariance of x and y

15 [w]← TruncPR([q], 2`, f);

16 [s]← SignBit([w]); // extract the sign of the test statistic

17 s← Reveal([s])

18 if s = 1 then
19 [w]← [w](−1); // make the numerator positive

20 [v]← Mult([σ̂2
x], [σ̂

2
y ]);

21 [x]← FPSqrtRcpr([v]); // compute the denominator in equation 3.1

22 [r]← Mult([w], [x]);
23 r ← Reveal([r]);
24 r ← r/22f ; // obtain real value approximation

25 if s = 1 then
26 r ← −r; // restore the sign of the test statistic

27 p← computePV alue(r, df);
28 return (r, p);
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Requirements. Let η ∈ N be an upper bound to the largest absolute value in D,

to evaluate a Pearson Correlation test over any two attributes in D, the following

requirements must hold for the user-set parameters to ensure no “overflow” occurs

during computation: ` > 2 log2(η) + log2(N) + f and n > 2`+κ+v+1. Again, the

calculation follows from the description of the circuit in the protocol.

Complexity. All sub-protocols invoked are constant-rounds with the exception of

SqrtRcpr which requires a number of rounds proportional to log2(`). We therefore

conclude that the protocol requires O(log2(`)) rounds and 17 invocations.

3.7 Chi-Squared Test

The Chi-Squared test determines whether the sampling distribution of the test statis-

tic follows a χ2 distribution when the null hypothesis is true [13, 64]. The Chi-Squared

test is useful in determining whether there is a significant difference between the ex-

pected frequencies and the observed frequencies in a set of observations from mutually

exclusive categories. In other words, Chi-Squared evaluates the “goodness of fit” be-

tween a set of expected values and observed values, the test result is deemed significant

if the expected frequencies are different from the observed frequencies.

For a collection of N observations classified into M mutually exclusive categories

where each observed value is denoted by xi for i = 1, 2, . . . ,M , denote the expected

probability that a value falls into the ith category by αi such that
∑M

i=1 αi = 1. Note

that the expected value for each category is Ei = nαi. The Chi-Squared statistic is

computed according to the following equation:

χ2 =
M∑
i=1

(xi − Ei)2

Ei
(3.3)

Let D contain M mutually exclusive attributes (categories) π1, . . . , πM such that

Di, πj ∈ {0, 1} for all i = 1 . . . N and j = 1 . . .M . In other words, each category is a

Boolean flag representing whether a row i inD is in the category j. Given such a “raw”

dataset D, we need a way to convert D into histogram form H = (h1, h2, . . . , hM),
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filtered based on the selected categories, so as to compute the Chi-Squared statistic

over H. To achieve this in a private and secure manner, we must first “pre-process”

JDK into a histogram H containing the summations of the M categories selected by

the user.

Remark 3.7.1. Note that αi may or may not be known by the researcher. In some

applications of the test, the expected probability of a given category given for the null

hypothesis may be computed from the dataset and may therefore be deemed private.

In the case that αi is is known (e.g., it may simply be N/M in the case of an expected

uniform distribution) then the evaluation of the test does not require evaluating

interactive gates. However, in the case that each αi is computed from the data, then

a linear (in the number of evaluated categories) number of division evaluations are

necessary. Protocol 8 presents the latter variant for the sake of generality.

Remark 3.7.2. We use H for the purpose of providing a general solution and to

remain consistent with the descriptions of the previous two tests (i.e., D has the same

format across all tests with the exception of being categorical). If D is already in his-

togram form, then the Chi-Squared test may be applied directly on D. Furthermore,

we note that it is possible to compute a histogram from an arbitrary dataset using the

basic computational building blocks presented in § 2.4, though it could potentially

require O(N) multiplications in order to perform a SELECT operation over attributes

in JDK.

Chi-Squared in Custodes. Pseudo-code for computing the Chi-Squared test is

presented in Protocol 8 and closely follows equation 4.3.3. The first for-loop (line

2 computes the histogram JHK = ([h1], . . . , [hM ]) from JDK. The correctness of the

computed histogram H follows from the fact that each attribute in the set is mutually

exclusive, i.e., if Dj,πi = 1 then Dj,πM = 0 for all j = 1 . . . N and i 6= M . Line 4

computes the sample total. The second for-loop (line 5 computes the expected values

of each entry in the JHK as well as the (xi − Ei) term of equation 4.3.3. The third

for-loop (line 8 computes each term in the summation. Finally, line 12 computes the

Chi-Squared statistic by summing over all the individual terms.
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Protocol 8: (t, p)← ChiSq({π1, ..., πw}, {α1, ..., αw})

Public Parameters: JDK, N , M , B, pk, v, t, κ, `, f
Result: Test statistic and p-value (t, p) of computing the Chi-Squared test

over the selected attributes {π1, ..., πw} and expectations {α1, ..., αw}.

1 df ← w − 1; // χ2 test degrees of freedom

2 foreach i← 1, 2, . . . , w do parallel

3 [hi]←
N∑
j=1

JDj,πiK; // count observations in each category

4 [s]←
w∑
i=1

[hi]; // compute total number of observations for selection

5 foreach i← 1, 2, . . . , w do parallel
6 [ei]← [s]αi; // compute the expected observations

7 [di]← [hi]− [ei];

8 foreach i← 1, 2, . . . , w do parallel
9 [wi]← Mult([di], [di]);

10 [wi]← TruncPR([wi], 2`, f);
11 [ui]← FPDiv([wi], [ei])

12 [q]←
w∑
i=1

[ui];

13 q ← Reveal([q]);
14 χ2 ← q/2f ; // obtain real value approximation

15 p← computePV alue(χ2, df);
16 return (χ2, p)

Requirements. Let η ∈ N be an upper bound to the largest absolute value in

D. Let H be a histogram with w attributes (2 ≤ w ≤ M). To correctly perform the

Chi-Squared test over the w selected attributes in D, the following requirements must

hold for these user-set parameters to ensure no “overflow” occurs during computation:

` > log2(η) + 2 log2(M) + f and n > 2`+κ+v+1. The requirement follows from the test

circuit description.

Complexity. All sub-protocols invoked are constant-rounds with the exception of

FPDiv which requires a number of rounds proportional to log2(`). We therefore con-

clude that the protocol requires O(M log2(`)) rounds and 3M + 1 invocations.
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Chapter 4

Providing Differential Privacy

4.1 Motivation

A desirable extension to Custodes is the ability to evaluate hypotheses in a differ-

entially private manner. Roughly speaking, differential privacy [28] is a definition for

ensuring the privacy of any given individual in the database. Intuitively, differential

privacy guarantees that the presence or absence of any individual’s contribution to

the dataset does not affect the output of the computation (from the point of view

of an adversary seeing the computation results). By making the outputs1 of the sta-

tistical tests differentially private, sensitive datasets (e.g., medical records) can be

analyzed through Custodes without fear of leaking personal, classified or otherwise

secret information while still gaining insights on the data. As there is no such thing

as a free lunch, ensuring differential privacy may significantly reduce the utility of

the output for some class of functions with high variability in the output evaluated

on differing inputs. However, as we shall see, under certain reasonable assumptions

we may achieve differentially private outputs for statistical tests while still preserving

utility and correctness of the FDR control procedure.

The reader is advised to view the techniques presented in this chapter as a modular

extension to the main Custodes construction. The usefulness of differentially private

outputs is solely based on the context in which the statistical tests are performed

1Not to be confused with dataset perturbation.
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and, as we shall see, depends heavily on attributes of the dataset. It is therefore an

extension which should only be applied in situations where the trade-offs in privacy

and utility are carefully considered and deemed reasonable. We note, however, that

this is not a requirement unique to Custodes as many applications of differential

privacy require careful trade-off considerations [25].

4.2 Definitions

Formally, if D1 and D2 are datasets differing in at most one entry, then D1 and D2 are

said to be adjacent or neighboring . Let M be a randomized mechanism (algorithm)

which takes a dataset D as input and produces a randomized response as output. We

denote the range of M by Range(M).

Definition 4.2.1 (Differential Privacy [28]). A randomized mechanismM is said to

be (ε, δ)-differentially private for non-negative ε, δ if for all adjacent datasets D1, D2

and all outputs S ⊂ range(M)

Pr[M(D1) ∈ S] ≤ eε Pr[M(D2) ∈ S] + δ

where the probability is over the randomness of the mechanismM. When δ = 0, the

mechanism is said to achieve pure differential privacy.

Definition 4.2.2 (Global Sensitivity [28]). The Global Sensitivity (GS) for any func-

tion F : D→ R is defined to be

GSF , max
D1,D2∈D

|F (D1)− F (D2)|

Where D1 and D2 are neighboring datasets, i.e., differ in at most one entry. Note

that GS depends only on the function itself and not the dataset (or contents thereof).

Specifically, GS must hold for all possible datasets in the domain and not just a

specific instance.
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4.2.1 Design of Differentially Private Mechanisms

Two common mechanisms used in practice to satisfy differential privacy are the

Laplace and Gaussian mechanisms which perturb a sensitive output using a ran-

dom sample from the Laplace and Gaussian distributions, respectively, where the

parameters of the distributions are set based on the sensitivity of the evaluated func-

tion [25]. Again, it is important to remember that a differentially private mechanism

works independently of the data over which the function is evaluated and only takes

into consideration the sensitivity of the function producing the sensitive output. For

the sake of brevity, we provide an informal overview of the Laplace mechanism but

omit the Gaussian mechanism which follows a similar vein.

Definition 4.2.3 (Laplace Mechanism [28]). Let randomized mechanismMF output

F (D) + y where y ∼ L(λ) is a random variable sampled independently from the

Laplace distribution with variance
√

2λ [28]. Formally,

MF (D) = F (D) + y

Theorem 4.2.1. The Laplace Mechanism satisfies (ε, 0)-differential privacy.

Proof. We refer the reader to [28] for the proof of the theorem.

4.2.2 Impelentation Challenges

Several challenges arise when attempting to make the outputs of statistical tests dif-

ferentially private. The first challenge is deriving the sensitivities of the test statistics.

The second challenge is securely generating random samples from the Laplace distri-

bution in a distributed manner, since none of the computing parties (or researchers)

can know the noise term added to the final result. Finally, the third subtlety which

needs to be dealt with is ensuring that the added noise does not inhibit the FDR

control procedure set in place. Specifically, we must guarantee that adding noise

does not lead to false-rejections (e.g., by making the p-value smaller; more signifi-

cant). Fortunately, the latter requirement is satisfied immediately by the definition
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of α-investing FDR control procedure which bounds the expected number of false

discoveries. Since the noise added to the results is sampled from the Laplace distri-

bution, centered at zero, the expected value of the noise added is likewise zero due

to symmetry. Therefore, the overall number of expected false discoveries remains

unaffected by the differentially private mechanism. We leave it as future work to

analyze the interplay between differential privacy, statistical tests, and FDR control

procedures but note that a similar line of work was recently initiated in [29, 26, 27].

4.3 Sensitivity of Statistical Tests

A crucial component required by the differentially private mechanism the global sen-

sitivity of the evaluated function (i.e., the statistical test). This is not always trivial

to achieve in practice with complex function such as statistical tests and, to our

knowledge, has not been attempted prior to this work (with the exception of the

Chi-Squared test [34]). In what follows, we require several assumptions be placed on

the data in order to effectively upper bound the sensitivity of each statistical test.

Furthermore, we omit discussion of how the parameter ε should be set for each of

these tests. As is generally the case with differentially private mechanisms, the value

for ε is ultimately a social question and application specific [28].

4.3.1 Sensitivity of Student’s t-test

Let samples x = (x1, . . . , xN), y = (y1, . . . , yN) contain values in the range [α, β] and

have equal size |x| = |y| = N . To analyze the sensitivity of the Student’s t-test

statistic, we maximize the difference in test statistics |t − t′|, where t and t′ are the

Student’s t-test statistics computed over the samples differing in at most one value.

Hence, to upper bound the sensitivity, we must, WLOG, maximize t and minimize t′.

Recall that the t-statistic is computed according to the following equation (see § 3.4):

t =
x̄− ȳ

σ̂p

√
2
N
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Let the samples x, y (resp. x′, y′) correspond to the samples used in computing

the test statistic t (resp. t′) such that x, x′ (resp. y, y′) differ in at most a single

element. It suffices to maximize the sample mean x̄ (resp. minimize x̄′) by changing

only a single element in the sample x and likewise minimize ȳ (resp. maximize ȳ′)

with the constraint that y, y′ differ in at most one element. We note that by the

definition of global sensitivity, it would suffice to change either the sample x or y (not

necessarily both) but for ease of analysis, we derive an upper bound to the global

sensitivity by assuming that both x and y differ in a single entry.

Theorem 4.3.1. Assuming samples x, x′ (resp. y, y′) contain values in the range

[α, β] such that they differ in at most one value, and assuming the empirical pooled

standard deviations of the differing samples are such that σ̂p = σ̂′p ≥ γ for some lower

bound γ, the sensitivity of the Student’s t-test is bounded by,

|t− t′| ≤ |β − α|

γ
√

N
2

Proof.

|t− t| =
∣∣∣∣ x̄− ȳ
σ̂p1

√
2
N

− x̄′ − ȳ′

σ̂p2

√
2
N

∣∣∣∣ =

∣∣∣∣ x̄− ȳ√
σ̂2
x+σ̂2

y

2

√
2
N

− x̄′ − ȳ′√
σ̂2
x′+σ̂

2
y′

2

√
2
N

∣∣∣∣

=
√
N

∣∣∣∣ x̄− ȳ√
σ̂2
x + σ̂2

y

− x̄′ − ȳ′√
σ̂2
x′ + σ̂2

y′

∣∣∣∣

≤
√
N

∣∣∣∣ x̄− ȳ√
σ̂2
x + σ̂2

y

−
x̄− β−α

N
− ȳ − β−α

N√
σ̂2
x + σ̂2

y

∣∣∣∣

≤
√
N

∣∣∣∣ x̄− ȳ − x̄+ ȳ + 2
(
β−α
N

)
√

2γ2

∣∣∣∣
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=
|2(β − α)|√
N
√

2γ
=
|β − α|

γ
√

N
2

The first inequality holds on the assumption that σ̂2
x = σ̂2

y and the second inequality

holds on the assumption that σ̂x = σ̂y ≥ γ.

Remark 4.3.1 (Standard Deviation Equality). In computing the sensitivities, we

make the assumption that the empirical standard deviation of the two samples dif-

fering in at most one value are equal. While at first glance this may seem as a strong

assumption, given that the Student’s t-test assumes the variables in the sample fol-

low a normal distribution this is a reasonable assumption to make in practice [50].

Furthermore, by the central limit theorem, the resulting samples will follow a nor-

mal distribution in the limit (regardless of their original distribution), and as such,

changing two of the variables to either extreme (i.e., setting the one of the variables

to α and the other to β) changes the variances by an equal amount due to symmetry.

4.3.2 Sensitivity of Pearson Correlation

Let samples x = (x1, . . . , xN), y = (y1, . . . , yN) contain values in the range [α, β]

and have equal size |x| = |y| = N . To maximize |r − r′|, where r and r′ are the

Pearson Correlation correlation statistics computed over samples differing in at most

one value, we must, WLOG, maximize r and minimize r′. Recall that the Pearson

Correlation statistic is computed according to the following equation (see § 3.4):

r =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

and can be re-written as,

r =

∑N
i=1 xiyi −Nx̄ȳ
(N − 1)σ̂xσ̂y

for the purpose of simplifying the subsequent analysis, where σ̂x, σ̂y are the empirical

standard deviations of the two samples, respectively.

Let the samples x, y (resp. x′, y′) correspond to the samples used in computing
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the Pearson Correlation test statistic r (resp. r′) such that they differ in at most a

single entry. Again, for ease of analysis, we upper bound the global sensitivity by

having both samples x, x′ and y, y′ differ in one value each.

Theorem 4.3.2. Assuming samples x, x′ (resp. y, y′) contain values in the range

[α, β] such that they differ in at most one value, and the empirical standard deviations

are such that σ̂x = σ̂y ≥ γ, the sensitivity of the Pearson Correlation test is given by,

|r − r′| ≤ |β
2 − α2|
Nγ2

Proof.

|r − r′| =
∣∣∣∣∑N

i=1 xiyi −Nx̄ȳ
(N − 1)σ̂xσ̂y

−
∑N

i=1 x
′
iy
′
i −Nx̄′ȳ′

(N − 1)σ̂x′σ̂y′

∣∣∣∣

=

∣∣∣∣∑N−1
i=1 xiyi + β2 −Nx̄ȳ −

∑N−1
i=1 xiyi − α2 +Nx̄′ȳ′

(N − 1)σ̂xσ̂y

∣∣∣∣
=

∣∣∣∣β2 − α2 −N(x̄ȳ − x̄′ȳ′)
(N − 1)σ̂xσ̂y

∣∣∣∣

=

∣∣∣∣β2 − α2 −N(β
2−α2

N2 )

(N − 1)σ̂xσ̂y

∣∣∣∣
≤
∣∣∣∣ β2 − α2

(N − 1)γ2
− β2 − α2

N(N − 1)γ2

∣∣∣∣ ≤ |β2 − α2|
Nγ2

The first inequality holds on the assumption that σ̂x = σ̂y ≥ γ. The second inequality

follows from the factor of N2 in the denominator of the term being subtracted.
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4.3.3 Sensitivity of Chi-Squared

Given a histogram consisting of N observations across M categories, we wish to

measure the sensitivity of the χ2 statistic on samples differing in at most one element

which, in the case of the Chi-Squared test consists of a single observation in one

category shifting to an observation in a different category (e.g., an observation in

the ith category moves to an observation in the kth category). Recall that the Chi-

Squared statistic is computed according to,

χ2 =
M∑
i=1

(xi − Ei)2

Ei

Hence, we can bound the sensitivity by examining the change in the Chi-Squared

statistic when a single observation is swapped from one category to another (i.e.,

moves from xi to xj for some i, j ≤ M). Furthermore, the expected number of

observations, Ei, can either be a function of N or a function of N and M and

denotes the number of expected observations in each category. Let the expected

observations per category follow the probability distribution (η1, η2, . . . , ηM) and let

ηmin = min(η1, η2, . . . , ηM). Then, each Ei = Nηi (note: this is simply a reformula-

tion of the definition of the Chi-Squared test [50]).

Theorem 4.3.3. Given samples x, x′ of size N ≥ 2 differing in at most one obser-

vation and assuming the expected observations across categories follow a distribution

(η1, η2, . . . , ηM) proportional to the sample size N , where ηmin = min(η1, η2, . . . , ηM),

the sensitivity of Chi-Squared test for N observations in M categories is bounded by,

|χ2 − χ2′| ≤ 2

ηmin
,

Proof. WLOG let the histogram differ in the last two categories (observation switches

from category M to category M − 1). Then, the difference in the empirical χ2 test
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statistics is given by,

|χ2 − χ2′| =
∣∣∣∣ M∑
i=1

(xi − Ei)2

Ei
−

M−2∑
i=1

(xi − Ei)2

Ei
− (xM−1 + 1− EM−1)2

EM−1

− (xM − 1− EM)2

EM

∣∣∣∣

=

∣∣∣∣(xM−1 − EM−1)2

EM−1

+
(xM − EM)2

EM
− (xM−1 + 1− EM−1)2

EM−1

− (xM − 1− EM)2

EM

∣∣∣∣
=

∣∣∣∣(xM−1 − EM−1)2 − (xM−1 + 1− EM−1)2

EM−1

+
(xM − EM)2 − (xM − 1− EM)2

EM

∣∣∣∣
=

∣∣∣∣−2xM−1 + 2EM−1 − 1

EM−1

+
2xM − 2EM − 1

EM

∣∣∣∣
=

∣∣∣∣−2xM−1 − 1

EM−1

+
2xM − 1

EM

∣∣∣∣
≤
∣∣∣∣2(N − 1)− 1

EN
− 2 + 1

EN−1

∣∣∣∣ (by letting xM = N − 1 and xM−1 = 1)

≤
∣∣∣∣2N − 3

Nηmin

∣∣∣∣ ≤ 2

ηmin

The first equality is simply the difference in the Chi-Squared equations where

one observation in category xM is changed to category xM−1. The second and third

inequalities hold on the assumption that EN = Nηmin (in the worst case) where we

have that ηmin ∈ (0, 1].

4.4 Secure Noise Generation

To achieve differential privacy in Custodes, it is necessary to generate a random

sample from the Laplace distribution without the parties learning the resulting value
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of the sample. To achieve this, we exploit the infinite divisibility of the Laplace

distribution [52, 38] which makes it possible to generate a random sample from the

Laplace distribution using four samples from the Gaussian distribution as follows,

L(µ, λ) = N (µ, σ̂)2 +N (µ, σ̂)2 +N (µ, σ̂)2 +N (µ, σ̂)2 (4.1)

where σ̂ = λ/2.

Since the Gaussian distribution is stable [38], random samples of the Gaussian

distribution can be generated in a distributed fashion,

N (µ, σ̂) =
v∑
i=1

N (µ, σ̂/v) (4.2)

Protocols 9 and 10 are used in conjunction to generate noise for the Laplace

mechanism in a secure manner.

Protocol 9: [g]← SampleNormal(µ, σ̂)

Public Parameters: JDK, N , M , B, pk, v, t, κ, `, f
Result: Encrypted i.i.d. value sampled from the normal distribution.

1 foreach i← 1, 2, . . . , v do parallel
2 [gi]← RandNormalPi

(µ, σ̂/v) ; // Pi samples N (µ, σ̂/v)

3 [g]←
∑v

i=1[gi];
4 return [g];

Correctness. Correctness follows from the fact that the normal distribution is in-

finitely divisible and that the sum of random normal variables is normal [50]. Each

party generates a sample from the normal distribution with standard deviation σ̂/v

making the sum have standard deviation σ̂ as required.

Security. Security follows from the fact that each input chosen by the party is sam-

pled independently and at random from the other inputs making the sum a random

sample from the normal distribution unknown to the other parties. It is important

to note, however, that while the variable is random, it follows a normal distribution
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which is not uniform.

Complexity. The protocol has total complexity of one round and no invocations.

Protocol 10: [c]← SampleLaplace(λ)

Public Parameters: JDK, N , M , B, pk, v, t, κ, `, f
Result: Encrypted i.i.d. value sampled from the Laplace distribution.

1 foreach i← 1, 2, . . . , 4 do parallel
2 [ai]← SampleNormal(µ, β/2);
3 [bi]← Mult([ai], [ai]);

4 [b]← [b1] + [b2] + [b3] + [b4];
5 [c]← TruncPR([b], 2`, f);
6 return [c];

Correctness. Correctness follows from Equation 4.1. The protocol generates four

random samples from the normal distribution which are then squared and summed

to generate a random sample from the Laplace distribution.

Security. Security follows from the use of secure sub-protocols and the fact that no

inputs are revealed.

Complexity. The protocol has total complexity of 2 rounds and 9 invocations.

4.5 Discussion

We can use the derived sensitivities and protocols for securely generating random

samples from the Laplace distribution to make the revealed tests statistics described

in § 3.4 differentially private. The obvious question, however, is whether the injected

noise perturbs the test statistic beyond any utility. Consider, for example, the r-

statistic computed using the Pearson Correlation test. Assuming the sample size is

100 and the range of values |β2 − α2| = 100 (e.g., [α, β] = [0, 10]) then, even for a

relatively high epsilon (e.g., ε ≥ ln 3), the noisy statistic can deviate from the true

value by as much as ±0.3 (with high probability) which, though seemingly small, may
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drastically affect the perceived correlation in the sample. This example illustrates why

applying the methods discussed in this chapter to Custodes must be done on a per-

dataset bases where the added noise is deemed sufficiently small (in the worst case)

so as to not hinder the utility of the test. We note, however, that the issue of utility

is a universal question when it comes to differential privacy, one that is not confined

to the practicality of Custodes.

We envision these techniques being effective when the dataset is relatively large

(e.g., N > 1000) and the range of values contained within is small. As mentioned

at the beginning of this chapter, it is also important to consider how the perturbed

statistics will affect the FDR control procedure presented in § 1.3. While the expec-

tation of the injected noise is zero, the expected number of false discoveries equals

the expected number of false discoveries without injected noise (by linearity of expec-

tation) and therefore does not affect the number of false discoveries in the average

case.

4.6 Future Work (Related to this Chapter)

Future work should explore whether tighter bounds on the sensitivity of test statistics

can be derived for these specific statistical test. Furthermore, there are interesting

questions (many of which are outside the scope of this work) surrounding the in-

terplay between differential privacy and FDR control procedures. Recent work by

Dwork et al. [29] describes a method for achieving differentially private false discov-

ery rate control using the Benjamini-Hochberg FDR control procedure [4] and proves

sensitivity bounds on the p-values (rather than the test statistics). Furthermore, in

another work by Dwork et al. [27], the authors demonstrate how differentially pri-

vate outputs can be harnessed to prevent over-fitting in machine learning models, a

similar problem to the one of false discovery control. While [27], unlike Custodes,

the proposed system requires a central (and trusted) authority, future work could

explore ways in which techniques from this chapter, and the Custodes framework

in general, can be combined do distribute the trust to a set of computing parties
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(e.g., universities). Other directions for future work include exploring the relation-

ship between FDR control procedures and differentially private mechanisms. Are test

statistics above (or below) a certain threshold worth making differentially private?

While all these questions are tangential to this work, we believe they contain fruitful

ideas for future research.
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Chapter 5

Experimental Evaluation

5.1 Goals

We now turn to demonstrating the applicability of Custodes to the real world.

The purpose of this chapter is to understand the feasibility of using Custodes for

certifying valid hypothesis testing. The goals of our experimental evaluations are as

follows:

• Thoroughly evaluate Custodes on a variety of datasets in terms of overall

runtime and dataset characteristics.

• Ensure the correctness of statistical tests computed through Custodes matches

those of the theoretical guarantees and compare the error (if any) to the equiva-

lent computation performed outside of Custodes using the SciPy [48] scientific

computing library in Python.

• Measure the impact of the number of parties in the system on the overall com-

putation time required for each statistical test on a combination of datasets,

parties, and other parameters.

• Evaluate the auditing process for statistical tests computed through Custodes.
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5.2 Experiment Setup

5.2.1 Implementation and Environment

We implemented Custodes in Go 1.10.1. The code is open-source and available

at https://github.com/sachaservan/custodes. The implementation of statistical

tests closely follows the pseudo-code described in § 3.4. We implement the threshold-

variant of the Paillier encryption scheme for performing the computation required

for evaluating statistical tests but deviate slightly when computing division gates as

we found that using linear-secret sharing methods for computing division was more

efficient in practice (see § 2.6) As such, we implement FPDiv protocol using Shamir

secret sharing [62] as the underlying primitive for MPC and convert from Paillier

ciphertext to shares using the protocol described in § 2.6. We stress, however, that

this is only done for two ciphertexts (numberator and denominator of the division or

square-root reciprocal gate) and not the entire computation.

All experiments were conducted on a single machine with Intel Xeon E5 v3

(Haswell) @ 2.30GHz processors (40 cores in total) and 36GB of RAM, running

Ubuntu 16.04 LTS. Unless otherwise stated, each result is the average over five sep-

arate runs (for each combination of parameters). While in most cases the variance

in runtime across runs was minimal, we nonetheless report 95%-confidence markers

(under a normal approximation assumption).

We emphasize that our implementation is unoptimized and does not make use

of pre-computation and parallelization techniques to reduce interactive protocol ex-

ecution overhead. Therefore, the results of our experiments should be viewed as an

upper-bound on the runtime required for a real-world, optimized, implementation of

Custodes.

5.2.2 Datasets

We evaluate each statistical test on synthetic and real-world datasets. Notice, how-

ever, that Custodes’s performance is not impacted by the distribution of the un-
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derlying data since the data itself is encrypted. We nonetheless evaluate Custodes

on two real-world datasets to illustrate this fact.

The real-world datasets are obtained from the UC Irvine Machine Learning Repos-

itory [2]. For experiments involving Student’s t-test and Pearson Correlation test we

use the Abalone dataset containing weights and heights of 4177 Tasmanian abalones.

For Chi-Squared we use the Pittsburgh Bridges dataset which contains categorical

data on 108 bridges in the city of Pittsburgh.

In addition to these datasets, we generate three continuous synthetic datasets

containing 1,000, 5,000 and 10,000 rows, respectively, with random real value entries

ranging between 0 and 100. We use these datasets to evaluate the Student’s t-test and

the Pearson Correlation test. For evaluating the Chi-Squared test, we generate three

categorical datasets containing 20 mutually exclusive categories and compute the Chi-

Squared statistic on a subset of 5, 10 and 20 categories to demonstrate the impact of

varying the number of selected attributes. The characteristics of the datasets used in

our evaluation are summarized in Table 5.1.

Dataset Size # Attributes Type Range

Abalone 4177 2 Continuous [0, 1.37]
Pittsburgh 108 4 Categorical {0, 1}
cat 1k 1000 5, 10, 20 Categorical {0, 1}
cat 5k 5000 5, 10, 20 Categorical {0, 1}
cat 10k 10000 5, 10, 20 Categorical {0, 1}
rand 1k 1000 2 Continuous [0, 100.0]
rand 5k 5000 2 Continuous [0, 100.0]
rand 10k 10000 2 Continuous [0, 100.0]

Table 5.1: Dataset characteristics

5.2.3 Evaluation

We benchmark all statistical tests with 3, 5 and 11 parties, where a threshold majority

is required to decrypt in each case (t = 2, t = 3 and t = 6, respectively). Each party

is run as a separate process and with access to two cores on the computing machine.

In other words, each party is simulated as a dual-core machine, separate from other
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parties1. This setup allows us to simulate a multi-party computing environment

while simultaneously controlling for all external variables, (e.g., network latency) in

the system. We set the simulated network latency (delay between communication

rounds) to 1ms which simulates average latencies observed on a local area network

(LAN); a standard setup used for bench-marking multi-party computations [67, 7].

P-value Absolute Errors

Statistical Test Mean Error Std. Min Max

Student’s t-test 5.86× 10−5 1.00× 10−4 0.0 2.32× 10−4

Pearson Correlation 4.43× 10−11 5.21× 10−11 0.0 2.05× 10−10

Chi-Squared 2.35× 10−9 1.22× 10−9 1.37× 10−20 4.48× 10−9

Table 5.2: Absolute error of statistical tests computed through Custodes compared
to the equivalent test computed using the SciPy package.

5.2.4 Parameters

To ensure all tests are evaluated in a way that enables comparisons between results, we

fix the parameters of Custodes ahead of time to satisfy the requirements imposed by

all three statistical tests (and datasets) and do not change the parameters between

experiments. Specifically, we set f = 30 which provides approximately 9 decimal

places of precision. We let the statistical security parameter κ = 40 which provides

40-bits of statistical security; a common default value [7]. The largest value found

in all the datasets is 100.0 so we set ηmax = 100.0 and the number of entries in the

largest dataset is Nmax = 10, 000. Hence, we fix ` = 100 which satisfies the parameter

requirements for all three statistical tests. Finally, we set N (the Paillier modulus)

to be a 1024-bit composite which both ensures security of ciphertexts and guarantees

that ZN (the plaintext message space) is large enough to support statistical test

computations with the given parameters.

1The machine on which the experiments are conducted has 40 cores which allows such a setup
without CPU swapping.
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Figure 5-1: Runtime comparisons for the Student’s t-test.
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Figure 5-2: Runtime comparisons for the Pearson Correlation test.

5.3 Results

We break down the results into four sections each of which roughly corresponds to a

goal that we outline at the beginning of this section.

System Setup. Across all experiments, the amount of time required to setup Cus-

todes (i.e., generating keys, encrypting the dataset, etc) remained below 45 seconds

with mean 16 seconds, std. 14. This affirms that the overhead placed on the data

owner is minimal in addition to being a one-time cost incurred at system setup time.

Correctness. We compare the resulting precision of each statistical test computed
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in Custodes with results obtained from computing the same test over the same data

using the Python SciPy Library [48]. The absolute error for all tests was between 0.0

and 0.00023. The mean absolute error over all tests was 1.9× 10−5. We observe that

the empirical error obtained in Custodes matches the precision expected based on

the parameter selection, even with small variation in precision due to the probabilistic

correctness of the TruncPR protocol.
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(a) Chi-Squared test with 5 selected categories.
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Figure 5-3: Runtime comparisons for the Chi-Squared test.

Runtime Evaluation. We run each statistical test on each configuration of param-

eters five times and report the average runtime in Figures 5-1, 5-2, and 5-3. The

Chi-Squared test had the highest maximum runtime at 11m18s, and mean runtime

of 2m54s across all combinations of parties, datasets, and category selections. Both

Student’s t-test and Pearson Correlation had a maximum runtime of approximately
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4m50s with a mean of approximately 2 minutes across combinations of parties and

datasets.

In all experiments, computing division gates (or reciprocals) required the most

computation time relative to the other protocols invoked. This observation is not

unexpected considering that it is the most computationally expensive protocol, along

with the sign bit extraction protocol, invoked by each test due to the need for decom-

posing encrypted values into their bit-wise representations. Furthermore, the results

demonstrate that for larger datasets, interactive multiplication (which is required by

all interactive protocols) is a dominant factor in the overall computations, and more-

over, dependent on the size of the dataset (with the exception of the Chi-Squared

test). Perhaps surprisingly, the number of parties involved has a larger impact on

performance than the size of the dataset. This is due to the high overhead incurred

by interactive protocols which require many interactions between parties. Both Pro-

tocol 6 and 7, require only a single division operation making the computation of the

division (resp. reciprocal) gate independent of the dataset size. When computing the

Chi-Squared test, division is overwhelmingly the dominant contributor to the overall

runtime (see Figure 5-3). This is due to the nature of the Chi-Squared statistic which

requires one division per category (in the general case) which equates to a total of

20 calls to FPDiv for the largest selection of categories used in the Chi-Squared test

experiments. In practice, under certain assumptions (e.g., when the expectation is

uniform across categories or the totals for each category are made public) it would

be possible to evaluate the Chi-Squared test with only a single division operation

(for the purpose of obtaining the reciprocal) and would thus considerably reduce the

interactive overhead.

Finally, we evaluate the runtime of computing a single multiplication gate with

both Paillier and linear secret sharing instantiation of the interactive protocols to

demonstrate the practical motivation of using the latter for computing highly-interactive

gates such as division. Figure 5-4 shows the total time required for computing a single

multiplication (over LAN) as a function of parties.

Again, we stress that we make no attempt to optimize the interactivity or complex-
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ity of the protocols. With many recent developments in multi-party computations,

overall runtime can be significantly improved. Nonetheless, our results demonstrate

practical feasibility as-is and we believe that with the right optimizations, we could

see a two to three fold reduction in the online computation time, even in upgraded

security settings, based on benchmarks provided by general multi-party protocols

frameworks such as SPDZ [19, 49].
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Figure 5-4: Runtime comparisons for computing a single multiplication interactively
as a function of the number of parties, using the threshold Paillier and linear secret
sharing as the underlying method.

Interactive Protocol Complexity. We measure the total number of multiplica-

tions required per statistical test and combination of parameters. Since Mult is the

fundamental building block of all interactive protocols, this measurement provides

an estimate for the total number of interactive rounds required between parties for

computing a given test. We report the results in Table 5.3 and 5.4).

For both Student’s t-test and Pearson Correlation test the number of multiplica-

tions ranged between 35,969 and 57,616 and was dependent on the total number of

rows in the dataset. We stress that this also includes the computation of the divi-

sion gate and therefore the number of multiplications does not scale linearly with the

number of rows for this pair of tests (given there is only a single division operation).
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Student’s t-test and Pearson Correlation Complexity
Dataset Student’s t-test Pearson Correlation

Abalone 35,969 40,147
rand 1k 29,615 30,616
rand 5k 37,615 42,616
rand 10k 47,615 57,616

Table 5.3: Number of multiplications required to compute a Student’s t-test and
Pearson Correlation test for each dataset.

Chi-Squared Test Interactive Complexity
Dataset 5 categories 10 categories 20 categories

Pittsburgh N/A N/A N/A

cat 1k 138,105 276,180 552,330
cat 5k 138,105 276,180 552,330
cat 10k 138,105 276,180 552,330

Table 5.4: Number of multiplication required to compute a Chi-Squared test for each
dataset.

For Chi-Squared test, the number of multiplications is independent of the num-

ber of rows. This is expected given that the protocol for computing Chi-Squared

is dependent only on the number of categories selected and not on the number of

observations in the dataset.

Auditing. For each test computed in our evaluation, we store the locally computed

ciphertext trace in addition to the results of interactive protocols which we then use to

evaluate the audit process for each computed statistical test. As expected, the audit

verified successfully across all computed tests. The total audit time was consistently

below 25 seconds with mean 12s, std. 9s. This demonstrates that while computing

statistical tests in Custodes incurs a computational overhead, the auditing process

remains relatively efficient.

5.3.1 A Note on Scalability

The results of the runtime evaluation begs the question: Can Custodes scale to

a setting with more than a handful of computing parties? We believe the answer

is yes. We note that in the experimental evaluation we set the threshold of parties
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necessary for decryption and computations to be a majority of the total number of

parties in the system. In practice, however, this is too stringent a requirement. From

a technical standpoint, a system with n parties need only have t of them present in

the computation phase and t need not scale with n. Therefore, even in a setting

with thousands of researchers, similar performance can be achieved as demonstrated

in our evaluation. Furthermore, as mentioned, our implementation does not exploit

many parallelization techniques and efficiency improvements made possible with re-

cent advances in multi-party computation protocols. With this in mind, we believe

the results of our evaluation provides convincing evidence for the practical nature of

Custodes in the real-world application.
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Chapter 6

Discussion

6.1 Alternative Instantiations

In conclusion, we briefly mention alternative instantiations of Custodes. While

these instantiations have several drawbacks compared to the Paillier-based imple-

mentation, we believe they may be of theoretical and practical interest in certain

contexts where Custodes might be used.

6.1.1 FHE-based Instantiation

An alternative instantion of Custodes can be achieved using threshold fully-homomorphic

encryption (TFHE). Fully homomorphic encryption (FHE) allows one to evaluate ar-

bitrary functions on encrypted data without decrypting the data [63, 35]. Unlike

additively-homomorphic schemes, FHE enables the computation of both linear and

non-linear arithmetic gates. Recent advances have led to threshold fully homomor-

phic encryption [44, 1] which enables computing with a single public key. The Setup,

Compute and Audit phases of this instantiation are similar to the main instantiation

with the exception of the interactive protocols which are no longer required for the

evaluation of the statistical test circuit except for revealing the final result. While

at first glance this may seem appealing, there are are several drawbacks to this ap-

proach. Due to many inefficiencies surrounding FHE such an instantiation is likely
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to be far less practical compared to the instantiation we present [35], at least for

the foreseeable future. Furthermore, while in our instantiation the auditing is fairly

efficient because the auditing entity only needs to evaluate linear gates (see § 3.2), an

FHE-based approach would require the auditor to recompute the entire circuit from

scratch.

Nonetheless, we believe that with sufficient improvements to the practicality of

FHE schemes, such an instantiation may be of interests in certain contexts. Figure 6-1

displays a high-level overview of Custodes instantiated with FHE.

data owner

p-value]]
local 
computation 
of test

blockchain

p-value
{ }=sk k1 k2 k3 k1

k2
k3

pk

pk

Figure 6-1: High-level overview of an FHE-based implementation of Custodes.

We now briefly outline how the TFHE-based version of Custodes can be instanti-

ated. Formally, TFHE is a collection of algorithms TFHE.Setup, TFHE.Encrypt,TFHE.Eval

TFHE.PartDec, and TFHE.FinDec [44]. Using TFHE as a building-block, we can in-

stantiate Custodes as follows.

TFHE Custodes.

Setup. During the setup phase, the trusted data owner executes algorithm Setup

that outputs a public key pk and secret key shares sk1, ..., skv. The data owner then

runs TFHE.Encrypt(pk,D) on dataset D that returns encoded dataset JDK, where

every value of D is individually encrypted. The data owner sends pk, ski, JDK to P

and publishes the encrypted dataset JDK.

Compute. Let R be the researcher that wishes to run a statistical test T (rep-
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resented as a Boolean or arithmetic circuit). R posts (τ,Rpk, T ,⊥) to B. R then

runs the deterministic algorithm TFHE.Eval(T , JDK) to evaluate the circuit using

D as input. The output of this algorithm is the encrypted result of the statisti-

cal test ([t], [p]). R posts the message (τ,Rpk, T , ([t], [p])) to B Every party Ppk
j ,

upon receiving (τ,Rpk, T , ([t], [p])) verifies that it was signed by a valid researcher

and/or party. If the verification succeeds, Pj executes TFHE.PartDec([t], skj) and

TFHE.PartDec([p], skj) and obtains the partial decryption (tj, pj) of the result. Pj
then posts (τ,Ppk, T , (tj, pj)) to B. With at least t partial decryptions posted to B,

the result can be decrypted by running TFHE.FinDec(T ) where T is a sequence of all

partial decryptions that correspond to τth test.

Audit. Auditing follows an almost identical procedure as Compute where the auditor

replaces the role of the researcher in computing the circuit. A test with certificate

(τ,Rpk, T , (t, p)) can be audited for correctness by any entity with access to B, JDK

and the public key pk used to encrypt D. The auditor then checks whether the

output of TFHE.Eval(T ′, JDK) matches the output of TFHE.Eval(T , JDK) where T ′

corresponds to a valid statistical test circuit. If the evaluation matches then the

computation is deemed valid.

6.1.2 LSS-based Instantiation

Yet another alternative instantiation is one based solely on secret shared data. The

downside of this approach is that the owner must share the entire database among

the parties which also increases the number of interaction.

Compared to the threshold-Paillier based approach, parties are required to in-

teract during every non-linear operation of a statistical test increasing the overhead

required of the network. An advantage, however, is that coupled with zero-knowledge

proofs and an assumption of an honest majority of parties, such an instantiation can

guarantee the correctness of computations without the need for an audit. Figure 6-2

presents a high-level overview of such an instantiation. Note that researcher no longer

perform any of the computations locally and offload the storage and computations to
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the set of parties in the network.

data owner blockchain

p-value
= }}

1 2 3

2
3

1

query

Figure 6-2: High-level overview of an FHE-based implementation of Custodes.

Using a secret sharing scheme such as Shamir [62], the owner would secret share

the dataset D with all parties in the network such that a threshold t of the parties

can reconstruct D. Researchers interested in computing a statistical test would issue

a query to the network (or post a message to B) requesting that parties compute a

statistical test over their shares of the data. Note that researchers take no part in the

computations.

LSS Custodes. We omit the details of secret sharing schemes which are described

at a high-level in § 2.6 and in-depth in [5].

Setup. During the setup phase the owner runs CreateShares() on each value of the

dataset D to distribute D among the set of computing parties {P1, . . . ,Pv} such that

any t (or more) of the parties can collectively recover the shared values. As in the

previous instantiation, after sharing the dataset and establishing access rights, the

data owner goes offline.

Compute. For every statistical test a researcher R wants to execute, R posts a

corresponding arithmetic circuit of this test, T (or some specified test identifier) to

B. Let τ be the index of this test in B. All the parties download the circuit, store

the index of the test and engage in the computation. Once the parties have obtained

their share of the final result (〈t〉i, 〈p〉i), they post message (τ,Rpk, T , (〈t〉i, 〈p〉i)) to
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B. Using these public shares, R can obtain test result from B.

Audit. If an honest-majority of parties is assumed and the researchers simply issue

statistical test queries, then no auditing of the computation is necessary and it suffices

to check that the FDR control procedure was applied correctly given the transcript

of tests performed on the shared dataset.

On the other hand, if researchers supply the circuit to be evaluated or the parties

are deemed malicious, then an auditor can verify the computed circuit matches a

valid statistical test and ensure that the parties evaluated the circuit correctly (e.g.,

using zero-knowledge proofs or other techniques for ensuring correctness when the

parties are adversarial [19, 16]).

6.2 Conclusion

In this thesis we present Custodes, a system that certifies hypothesis testing using

proven cryptographic techniques and a decentralized certifying authority. Custodes

computes statistical test over encrypted data and uses a handful of existing crypto-

graphic building-blocks to provide auditability of those results to third parties. The

protocol we describe is a novel approach to the problem of ensuring validity in the

scientific process.

In addition, we present several novel extensions to efficient MPC computation

techniques when it comes to evaluating complex arithmetic circuits required by sta-

tistical tests with minimal interaction between parties and researchers computing over

the data. We present an extension for making the computations differentially private

without imposing additional requirements on the data owner which we believe is a

contribution which may be of independent interest to the field.

Based on the results of our implementation and evaluation, we believe that Cus-

todes is a viable solution to prevent p-hacking and controlling false-discoveries in

statistical testing procedures. Through enforcing accountability, Custodes ensures

reporducability in scientific studies and inhibits the possibility of p-hacking.
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Figure 6-3: XKCD Cartoon on p-hacking [58].
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