
BROWN UNIVERSITY

UNDERGRADUATE HONORS THESIS

Learning Feature Extraction for Transfer
from Simulation to Reality

Author:
Josh ROY

Advisor and First Reader:
Dr. George KONIDARIS

Second Reader:
Dr. Stefanie TELLEX

A thesis submitted in fulfillment of the requirements
for Honors in Computer Science

May 1, 2019

http://www.brown.edu

ii

“You could claim that moving from pixelated perception, where the robot looks at sensor data,
to understanding and predicting the environment is a Holy Grail of artificial intelligence”

Sebastian Thrun

iii

BROWN UNIVERSITY

Abstract
George KONIDARIS

Department of Computer Science

Honors in Computer Science

Learning Feature Extraction for Transfer from Simulation to Reality

by Josh ROY

Deep reinforcement learning is able to solve complex visual and control tasks in sim-
ulation, but not in reality. The ability to transfer learned policies between simulation
and reality will enable robots to better aid humans by learning task specific policies
using only a few real-world interactions.

In this thesis, I focus on the task of transferring learned policies between tasks
with different visual features. I present three methods. 1) A Markov assumption
based autoencoder, 2) A generative adversarial network, and 3) A non-Markov au-
toencoder. I empirically compare each of these three methods and their results and
compare them to the state of the art in transfer learning for visual reinforcement
learning tasks.

HTTP://WWW.BROWN.EDU
http://cs.brown.edu

v

Acknowledgements
Firstly, I would like to thank my project advisor, Professor George Konidaris. Thank
you for your guidance in theoretical setup, problem formulation, and debugging
of loss functions. I would like to thank my research advisor and reader, Professor
Stefanie Tellex for the advice on research projects and academic interests over the
past four years. I would also like to thank my academic advisor, Professor Tom
Doeppner, for thoughtful answers to all my questions and advice on my academic
career. Secondly, I would like to thank my mother and sister for supporting me
through my college career, helping me through difficult decisions, and celebrating
my accomplishments. Finally, I would like to thank my friends for listening to all of
my thoughts on Computer Science, both related and unrelated to my thesis.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Background and Related Work 3
2.1 Background . 3

2.1.1 MDPs . 3
2.1.2 Deep Reinforcement Learning 3
2.1.3 Variational Autoencoders . 4
2.1.4 Generative Adversarial Networks 5
2.1.5 Transfer Learning and Renderers 5

2.2 Related Work . 6

3 Research Methodology 11
3.1 Visual Cartpole Domain . 11
3.2 Beta Variational Autoencoder . 12

3.2.1 Loss Function . 13
3.2.2 Training Procedure . 13

3.3 Stylegan . 13
3.3.1 Motivation . 13
3.3.2 Methods . 15

3.4 Training Procedure . 15
3.5 Temporal Autoencoder . 16

3.5.1 Loss Function . 17
3.5.2 Training Procedure . 17

4 Results 19
4.1 Beta Variational Autoencoder . 19
4.2 Stylegan . 20
4.3 Temporal Autoencoder . 22

5 Conclusion and Future Work 25
5.1 Future Work . 25

5.1.1 Simulation Based Work . 25
5.1.2 Robot Based Work . 25

5.2 Conclusion . 26

Bibliography 27

ix

List of Figures

1.1 Transfer Learning . 2

2.1 NVIDIA Lobby depicted in NVIDIA ISAAC Simulator (top) vs Real
World (bottom). Image taken from NVIDIA’s blog post introducing
the ISAAC simulator [6] . 7

2.2 Domain Randomization for Dexterous Manipulation. OpenAI’s Method
is above and performance is below (higher is better) [13]. Both the im-
age of the training process and the graph of goals achieved are taken
fropm OpenAI’s Learning Dexterous In-Hand Manipulation [13]. 8

2.3 DARLA: Object Reaching [5]. This image comparison of simulators
and reality is taken from DeepMind’s DARLA: Improving Zero-Shot
Transfer in Reinforcement Learning [5]. 10

3.1 Fixed State across different tasks t ∈ M. 11
3.2 Varying state within a single task t ∈ M. 12
3.3 Beta Variational Autoencoder with RPencoder and Sencoder 13
3.4 Stylegan Architechture. Image is from NVIDIA’s A Style-Based Gener-

ator Architecture for Generative Adversarial Networks [7] 14
3.5 One Encoder Stylegan Architecture . 15
3.6 Two Encoder Stylegan Architecture . 16
3.7 Temporal Variational Autoencoder Architecture 17

4.1 Two-Encoder Beta VAE Reconstructions. Top row contains input im-
ages and bottom row contains reconstructed images. Left utilizes cor-
rect RP and right utilizes correct S . 20

4.2 RPdataset and Sdataset compared to the entire RP and S space 21
4.3 Two-Encoder Stylegan Reconstructions. Top row contains input im-

ages and bottom row contains reconstructed images. 21
4.4 One-Encoder Stylegan Reconstructions. Top row contains input im-

ages and bottom row contains reconstructed images. 22
4.5 Temporal Autoencoder Reconstructions. Top row contains input im-

ages and bottom row contains reconstructed images. 23
4.6 Episode Reward (Smoothed) vs Training Time across all approaches. . 23

xi

List of Tables

4.1 Minimum, Mean, and Maximum Reward when tested on the source
and target tasks after training on the source task. 24

1

Chapter 1

Introduction

In recent years, neural networks have shown drastic improvements in fields such
as supervised learning, unsupervised learning, and reinforcement learning. Given
their ability to draw associations from massive datasets, neural networks have sur-
passed most classical methods for tasks such as classification across many cate-
gories [9], semantic segmentation of images [10], and games such as Go or Chess [16].
While deep learning has yielded significant improvement in agents that solve spe-
cific tasks, some at a superhuman level, they do not act and react in the real world,
as humans do. Two things separate these machines from people.

First, humans can tolerate slight differences in tasks without difficulty. For ex-
ample, if a human who knows how to drive a car is asked to drive a new model of
car that they have not seen before, they are not expected to re-learn to drive from
scratch. Instead, they are expected to find the accelerator and steering wheel, and
use their knowledge about cars to drive the new car. On the other hand, a deep rein-
forcement learning agent that learns to pick up a blue triangular prism using a robot
arm will have to retrain almost from scratch in order to pick up another object, such
as a red block. The ability to apply skills learned in one task to another related task
is called transfer learning [17].

In transfer learning, an agent is typically trained on n related tasks, and its per-
formance is tested on an unseen n + 1th task. The first n tasks are referred to as the
source tasks, and the n + 1th task is referred to as the target task. The number n of
source tasks varies depending on the specific method of transfer learning utilized.
There are two primary branches of transfer learning: 0-shot transfer and k-shot trans-
fer. A shot is defined as the number of samples from the target task that the agent
is trained on when transfering. More specifically, a 0-shot transfer learning method
would train its agent on the n source tasks, and the test on the target task, while a
k-shot transfer learning method would train its agent on the source tasks, then train
on k samples from target task, and finally test on the target task.

Second, humans have the ability to reason about what would happen in a task
given some action. In other words, they have the ability to imagine performing
a task. This gives them the ability to “train" on that task in their heads, resulting
in intelligent, though not necessarily optimal, actions before even starting the task.
This imagination is analogous to an agent training in simulation and transferring
that training to reality. Such an approach would enable neural networks to obtain
the massive amount of data and experience needed to train.

If photorealistic simulators with perfect physics engines existed, it would be easy
to train a deep reinforcement learning agent in simulation and transfer seamlessly
to reality. Unfortunately, such a realistic simulator does not exist at the current time.
Furthermore, it seems that any future simulator will have problems. For example,
a simulator that idealizes all objects as rigid bodies will not be able to capture the

2 Chapter 1. Introduction

FIGURE 1.1: Transfer Learning

slight ability for a metal pipe to bend, which might be important for assembly line
robots that build cars.

Given a task in reality and a corresponding task in simulation, we can model
the simulation to reality transfer problem as a transfer learning problem. The task
in simulation is the source task and the task in reality is the target task. Under
this model, we can train a deep reinforcement learning agent on the source task,
simulation, and transfer, either with 0 shots or k shots, to the target task, reality.

In this thesis, I focus on enabling deep reinforcement learning methods to trans-
fer between related tasks, working towards transfer from simulation to reality.

3

Chapter 2

Background and Related Work

2.1 Background

2.1.1 MDPs

In the previous section, I discussed transfer between tasks. I will now define these
terms more precisely.

Formally, a Markov Decision Process (MDP) is represented by a 5-tuple

(S, A, T, R, γ)

where S is the set of states, A is the set of possible actions, T(s, a, s′) is the probability
of transitioning from a state to another state given an action, R(s, a, s′) is the reward
for transitioning from a state to another state given an action, and γ is the discount
factor.

An agent is an intelligent system that acts in a task. This agent could be a human
or an artificial intelligence. The agent acts in an MDP by following the below steps.

1. Start in a state st

2. Pick an action at

3. Probabilistically transition to the next state st+1 based on the transition func-
tion T(st+1|st, a)

4. Observe a reward rt for taking action at at state st and transitioning to state
st+1 based on the reward function R(st, a, st+1).

5. If the task is completed or failed, do nothing. Otherwise, go to step 1.

An episode as one run of the MDP, starting from the starting state and ending
once the task is completed or failed. This includes all states, actions, and observed
rewards.

2.1.2 Deep Reinforcement Learning

To solve a task, the goal of the agent is to maximize the reward it gains throughout
all of its actions on the task. There are two methods to solve these MDPs. Both of
these methods generate a policy π(at|st), which represents the probability that the
agent should take action at from state st. To decide actions to take within the MDP,
the agent randomly samples from the policy distribution.

1. Model Based Learning:

4 Chapter 2. Background and Related Work

In model based reinforcement learning, the agent attempts to explicitly learn
the transition and reward functions. It then maximizes the expected reward
over the episode using these approximated functions.

2. Model Free Learning:

In model free reinforcement learning, the agent does not ever learn an explicit
model of the transition or reward functions of the task. Instead, it attempts to
directly learn the policy π(at|st).

Deep reinforcement learning is typically model free. The algorithm I use as com-
parison throughout my thesis is Deep Q-Network (DQN) [11]. This algorithm has
successfully solved complex, visual tasks, such as Atari games, continuous control
tasks, and classical reinforcement learning tasks. I briefly describe the algorithm
below.

A deep neural network (DNN) is a machine learning technique used to approxi-
mate linear and non-linear functions. It takes an input tensor and applies a series of
linear transformations and non-linear functions, called layers and activation func-
tions, resulting in an output tensor. DNNs learn by changing the learnable parame-
ters, called weights, of the layers to minimize a loss function calculated based on the
input and output. In deep reinforcement learning, DNNs are often used to learn the
policy, reward, or transition functions.

Solving an MDP involves learning a policy that maximizes reward over the entire
episode. Vπ(s) is the value function: the expected reward for an episode, starting at
state s, following policy π. Qπ(s, a) is the Q function. It is the expected reward for
following policy π in an episode after taking action a at state s. the DQN uses deep
neural networks to learn the Q function and a policy π.

DQN follows the below steps, using a prediction network Qp and a target net-
work Qt, which both output a Q-value.

1. For each timestep in each episode:

(a) Predict the optimal policy based on Qp.

(b) Observe the next state and reward.

(c) Calculate the Q value of the next state based on Qt

(d) Train Qp based on the Q value calculated by Qt

(e) Every n steps, set Qt = Qp

2.1.3 Variational Autoencoders

Variational Autoencoders (VAE) are generative models based on deep neural net-
works that learn a mapping from an image I to a mean vector zm and a standard
deviation vector zstd. They also learn a mapping from a vector sampled from zm, zstd
z to a reconstructed image Î in image space I [1].

A VAE has two neural networks:

1. Encoder: This maps from the input image I to zm, zstd.

2. Decoder: This maps from a vector z sampled from zm, zstd to the reconstructed
image I .

The variational autoencoder then optimizes the networks in series, by optimizing
the following loss function.

2.1. Background 5

The loss function for a varational autoencoder is

L = Eq(z|x)[log pθ(x|z)]− (DKL(qφ(z|x)||(p(z)− ε)

where x is the input image, z is the sampled predicted latent vector, q is the decoder
network, p is the encoder network, θ is the weights of q, φ is the weights of q, and
KL is the function that calculates KL divergence.

The first term is the reconstruction loss between the input image I and the recon-
structed image I . This term forces the encoder to learn a latent space that is useful
for reconstruction and the decoder to learn a mapping that correctly produces a re-
construction. The second term is the KL divergence, which is the distance from the
distribution with mean zm and standard deviation zstd to a standard normal distri-
bution. This forces the output of the encoder to be a distribution that can be sampled
from easily.

A beta varational autoencoder is an autoencoder with a slight change to the loss
function:

L = Eq(z|x)[log pθ(x|z)]− β(DKL(qφ(z|x)||(p(z)− ε)

where β is a scalar hyperparameter greater than or equal to one [4]. When β = 1, the
beta VAE is a standard VAE. When β > 1, the weight on the KL term is higher, which
encourages the latent distribution parameterized by zm, zstd to be more similar to a
standard normal and more disentangled. Specifically, it enourages the distribution
to have one dimension for each independent factor, such as color or shape, in the
latent space [4].

2.1.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are generative models based on deep
neural networks that learn a mapping from a latent space z ∈ Z to an image space
Î ∈ I [3]. A GAN is able to learn such a mapping with noise as the input z and few
examples of Î, due to their dueling architecture.

A GAN has the following two networks:

1. Discriminator: The discriminator takes as input an image I that could either be
generated by the generator or sampled from the true image space I . It outputs
a label indicating whether it thinks I came from I or the generator. This is a
supervised learning task and has a corresponding loss function, such as cross
entropy loss.

2. Generator: The generator takes as input a vector z whose elements are ran-
domly sampled from a normal distribution. It then learns to map this vector
to an image I.

By training these two networks simultaneously, the generator correctly learns a
mapping from input vector z to image I and the discriminator correctly learns to
differentiate real and generated images.

2.1.5 Transfer Learning and Renderers

The focus of my work is on visual tasks. In such MDPs, the state is an image. For
example, if the task is to utilize a robot arm to pick up a mug, the state would be the
image of the mug and part of the robot captured by the robot’s camera. Let us denote
this image (observed state) as SO. Each of these visual tasks also has a factored state,

6 Chapter 2. Background and Related Work

denoted ST. For example, ST may be the position of the mug and the robot arm in
the task described above. For these tasks, there exists a mapping from ST to SO. I
denote this as a function Ren : ST → SO and refer to it as a Renderer.

Consider a family of tasks M that all have the same actions, rewards, transitions,
and discount factors, but different states. The tasks in this family have the same true
states ST, but different observed states, SO, since they have different renderers. For
example, one renderer may be the Mujoco renderer, another may the Unity game
engine, a third may be the Unreal Engine, and the last may be real life. Humans
have the ability to transfer the knowledge they learned across this family of tasks
without any difficulty, but Deep RL agents do not.

The goal of my thesis is to give Deep RL agents this ability to transfer learned
knowledge across such a family of tasks.

2.2 Related Work

Domain randomization, formal modeling of transfer, and learning a mapping be-
tween source and target tasks are the main methods that have been used to transfer
learning across a family of tasks M generated by different renderers.

Reinforcement learning agents that employ machine learning methods, such as
neural networks, are generalizable to an extent. There is some amount of transfer
possible between domains without any explicit effort. For example, a deep reinforce-
ment learning agent that flies a drone without avoiding walls will not fly straight
into a wall in reality if trained properly in simulation [14]. Unfortunately, due to the
current quality of state of the art graphics renderers, directly transferring complex
visual tasks from simulation to reality is not yet possible. As depicted in figure 2.1,
even relatively simple simulated scenes differ from their real world counterparts.
Lighting, textures, and shadows are particularly different.

To overcome this reality gap, work has been done to increase the variation in the
source domain [14, 13]. This allows the network to learn robustness to differences
in renderers. Most popularly, this is done through domain randomization [14, 13].
Randomizing parameters such as gravity, motor strength, object weights, etc. en-
ables the network to learn robustness to these physical parameters, accounting for
differences between the transition dynamics of the source and target domains. Sim-
ilarly, randomizing the colors and textures of the visual input to a network teaches
robustness to visual input, disambiguating what the network should consider im-
portant in visual processing and what it should not [14].

This is the same as training the agent on a subset of tasksM ⊂ M and testing
on a different subset U ∈ M 6=M, as depicted in figure 2.2. While this method has
shown success in transferring from simulation to real life, as well as to other tasks
with different renderers, its sample complexity is far too high to be used in complex
visual tasks. As shown in figure 2.2, training on one m ∈ M takes about 3 years
of simulation time to converge, while training on M ∈ M takes about 100 years.
Additionally, each task m ∈ M uses a different renderer. This forces the person
training the agent to write a series of renderers, which adds additional overhead. If
any of the renderers is incorrect, the agent will not correctly transfer to the target
task. While control of a dexterous hand is a difficult task, the amount of training
time and number of renderers necessary to transfer more complex tasks to real life
makes domain randomization infeasible in practice.

Other work has reformulated the family of related tasks as an Hidden Param-
eter MDP (HiP-MDP). They model a distribution of tasks where variation in the

2.2. Related Work 7

FIGURE 2.1: NVIDIA Lobby depicted in NVIDIA ISAAC Simulator
(top) vs Real World (bottom). Image taken from NVIDIA’s blog post

introducing the ISAAC simulator [6]
.

8 Chapter 2. Background and Related Work

FIGURE 2.2: Domain Randomization for Dexterous Manipulation.
OpenAI’s Method is above and performance is below (higher is bet-
ter) [13]. Both the image of the training process and the graph of
goals achieved are taken fropm OpenAI’s Learning Dexterous In-Hand

Manipulation [13].

2.2. Related Work 9

dynamics of the MDPs in the family are captured by a set of hidden parameters θ
with probability Pθ [8]. Setting θb to some value will result in a task MDP that is
analagous to m ∈ M. θb is not observed directly by the agent, as it is a set of pa-
rameters that specify the task. Transferring across tasks generated by varying θ is
the same as transferring across tasks in the family. Note that the transition function
T is now modeled as T(s|a, s′, θb) where θb is a task specific latent parameter from
θ [18]. This formulation allows for transfer across a related series of tasks whose
transition functions are different. This may enable agents to transfer the knowledge
learned from performing a task in simulation to performing the same task in reality.
Extending this work may result in a similar hidden parameter that enables the agent
to transfer between tasks with different observed states.

Additionally, other newer, neural network inspired methods may allow k-shot
transfer. These methods, known as meta learning, are based around optimization
of neural network weights for quick learning of a new task [12, 2]. Given a series of
tasks F that can each be independently solved by a neural network, these approaches
follow these steps.

Initialize some weights φ for the neural network
while Neural Network has not yet converged
do

for Each task f ∈ F do
Train for some number of steps on f , storing updated weights in φ f
Update φ based on the gradient from φ f to φ using a standard gradient
descent optimizer

end
end

Algorithm 1: General Meta Learning Algorithm [12].

After training to convergence, the network weights φ should be optimized to
converge to any φ f as quickly as possible given training in task F. Thus, it should
also transfer to some held out task g 6∈ F, assuming the optimal network weights
φg for that task are similar to some φ f . This strategy yields transfer between all
aspects of an MDP. Not only does it allow a neural network to transfer between tasks
with different transition functions, but across MDPs with different states, actions,
transitions, rewards, and discount factors.

While this method is very general and potentially very powerful, it is model-
free and requires a large amount of training time. Additionally, this strategy will
optimize φ to converge on φ f as fast as possible when training on task f . However,
there is no guarantee how many episodes that convergence will require. If the tasks
in F are within the same family M, but their observed states are sufficiently different,
meta-learning may have difficulty transferring.

Additional work has been done to attempt to transfer from simulation to reality
by directly addressing the reality gap instead of modeling a general transfer between
tasks. DARLA [5] focuses on 0-shot transfer using a three step method.

1. Learning to see. In this step, the agent learns latent representation for an envi-
ronment that disentangles the raw image data from the representation using a
modified β varational autoencoder [4]. Thus, looking at the same scene across
domains should yield similar latent representations, enabling transfer between
domains with slightly different visual characteristics.

10 Chapter 2. Background and Related Work

FIGURE 2.3: DARLA: Object Reaching [5]. This image comparison of
simulators and reality is taken from DeepMind’s DARLA: Improving

Zero-Shot Transfer in Reinforcement Learning [5].

2. Learning to act. In this step, the agent learns to act based on the latent repre-
sentation. The agent can use any standard reinforcement learning algorithm,
such as PPO [15], actor critic, or other methods. Assuming the latent represen-
tation is mostly similar across domains, and the task itself remains the same,
a policy learned on the latent representation should transfer across domains
with no retraining.

3. Transfer. In this step, the transfer to a new domain is tested, with the same
task.

The success of this method relies upon the sight network’s ability to map simi-
lar states from both the target and source domains to the same state in the latent
space. Given this mapping is correct, the action network will receive the same in-
puts, whether acting in simulation or reality. This method has shown to work for
simple domains, such placing the end effector of a Jaco arm close to an object of
interest [5]. However, this method’s robustness has not yet been thoroughly mea-
sured.

11

Chapter 3

Research Methodology

As mentioned in the previous section, the goal of this thesis is to learn a feature
extractor that allows a deep reinforcement learning algorithm to transfer a learned
policy between tasks with different visual features. I implemented three different
methods of learning the feature extractor. In this section, I describe the research
methodology of each approach. Additionally, I describe the visual reinforcement
learning task I created to evaluate each method.

3.1 Visual Cartpole Domain

To train and test different methods of transfer across a family M of tasks, I create a
Visual Cartpole domain. I modify OpenAI Gym’s Cartpole environment.

In this domain, an agent must learn to keep a pole attached to a cart on a track
upright for as long as possible. The states in the original domain are the position
and velocity of the cart and pole, and the states in the modified domain are image
renderings of the cart and pole. The agent acts in both domains by applying a force of
+1 or −1 to the cart, and the environment transitions based on a physics simulation
of the cart and pole. The reward is +1 at every timestep that the pole has not fallen
over, and the episode terminates when the pole falls over or the cart moves too far
to the left or right.

I create a family M of visual cartpoles by varying the colors of the cart, pole, and
track, effectively changing the renderer. The goal of this domain is to train an agent
on a subset M ⊂ M and transfer to tasks that the agent has not been exposed to
U = M \M.

See figure 3.1 for the same state across different tasks in M and figure 3.2 for
different states across one task in M.

Note that visual cartpole as described above is a Partially Observable Markov
Decision Process (POMDP), in which there is a hidden state that is not directly ob-
servable. Specifically, it is not possible for an agent to determine the velocity of the
cart and pole solely based on one image.

FIGURE 3.1: Fixed State across different tasks t ∈ M.

12 Chapter 3. Research Methodology

FIGURE 3.2: Varying state within a single task t ∈ M.

In order to simply the visual cartpole task to an MDP, I feed the velocity informa-
tion directly into the DQNs used to solve the task later in this paper. This allows me
to directly test the ability for my feature extractors to extract the position of the cart
and pole and the performance of the DQNs utilizing them across visual domains.

To verify the visual cartpole environment and to establish a comparison baseline
for the methods evaluated in this paper, I implement, train, and test a convolutional
DQN to solve the visual cartpole problem.

The input to the network is the image of the visual cartpole environment and
the velocity of the cart and pole. The output of the network is a policy distribution
π(at|st) where st is the input to the network. The image input is passed through sev-
eral convolutional layers and flattened. The flattened features are then concatenated
with the velocity input, and passed through several dense layers.

This convolutional DQN is able to achieve a maximum reward of 444 on the
environment, an average reward of 282.1, and a minimum reward of 253.1. See
figure 4.6 for a graph of reward vs. training time.

When the colors of the environment are changed, the convolutional DQN fails
to transfer knowledge well, achieving a maximum reward of 129, a mean reward of
71.4, and a minimum reward of 39.6.

3.2 Beta Variational Autoencoder

The first approach I tried is heavily based off of DARLA [5]. There is one key differ-
ence. The latent space that is generated by DARLA’s beta variational autoencoder is
partially disentangled, due to the use of a beta vae.

Given that the observed states, renderings of the cart and pole, come from a
visual reinforcement learning task in a family of related tasks M, there are properties
that we use to further disentangle the data. In the latent space, there are two types
factors that can vary. There are factors that correspond to elements of the ST that vary
within a single episode and across episodes, and factors that vary across episodes,
but not within a single episode. I define these as state parameters S, and render
parameters RP. For visual reference, see figure 3.1 for an example of varying render
parameters and figure 3.2 for an example of varying state parameters.

To achieve this goal, I split the latent space into two sections: one representing
the render parameters and the other representing the state. As shown in figure 3.3,
I split the encoder into two different encoders, RPencoder and Sencoder to ease the
training process. Additionally, this enables the Sencoder to be frozen and used as a
feature extractor for the reinforcement learning algorithm without dependence on
the RPencoder.

Forcing the variational autoencoder to learn to disentangle S from RP in its latent
space requires a change to the loss term and the training procedure.

3.3. Stylegan 13

FIGURE 3.3: Beta Variational Autoencoder with RPencoder and Sen-
coder

3.2.1 Loss Function

For this two encoder architecture, I modify the loss term as follows.

L =Eq(z|x)[log pθ(x|z)]− β(DKL(qφ(z|x)||(p(z)− ε)

+ 1{x∈Sdataset} ∗ L2(z0:RPdimension) + 1
{x∈RPdataset}∗L2(zRPdimension:end)

where L2 is the L2(x) L2 norm between the vectors in x. The indicator terms
toggle the L2 losses based on whether or not the image x comes from the RP dataset
or the S dataset, as described in the section below. The subscript of the z term denotes
which section of the sampled latent vector z the L2 norm is applied over.

3.2.2 Training Procedure

Training this two-encoder beta variational autoencoder requires a different proce-
dure than training the beta variational autoencoder used in DARLA. Specifically, in
order to train the two different encoders, different training data sets were required.
The first set, RPdatset contained fixed true state and varying render parameters (col-
ors). The second set, Sdataset contained fixed render parameters (colors) and vary-
ing true states, as shown in figures 3.1 and 3.2, respectively.

When training the encoder, created batches of some data from each dataset, with
an indicator variable. The network’s loss function then used this indicator variable
to decide if 1{z∈Sdataset} or 1{z∈RPdataset} and calculate the loss accordingly.

3.3 Stylegan

3.3.1 Motivation

The previous approach, with a two-encoder beta variational autoencoder network
suffered from a lack of generalizability due to the inability of the decoder to learn a
generative function over the entire S and RP space given the data it was provided.
Additionally, a small number of samples from multiple places in the RP and S space
is insufficient to train such an encoder.

Stylegan is a recently released GAN architecture with impressive disentangle-
ment results [7]. There are a few factors that make Stylegan a desirable generative
model for this transfer learning task.

14 Chapter 3. Research Methodology

FIGURE 3.4: Stylegan Architechture. Image is from NVIDIA’s A Style-
Based Generator Architecture for Generative Adversarial Networks [7]

.

3.4. Training Procedure 15

FIGURE 3.5: One Encoder Stylegan Architecture

As depicted in figure 3.4, Stylegan differs from a traditional GAN in one major
way. Instead of mapping directly from the latent space Z to images, Stylegan first
maps Z to W, an intermediate latent space. W contains the same information as Z,
but is a disentangled space. Stylegan achieves this with a mapping network that
takes as input z ∈ Z and outputs w ∈ W. The generator, called a synthesis network,
then uses a novel layer AdaIN to apply the “style” learned by each dimension of
w to the image at various points throughout the synthesis network [7]. For a visual
comparison between a vanilla GAN and Stylegan, refer to figure 3.4.

3.3.2 Methods

In this experiment, I replaced the decoder of the beta variational autoencoder uti-
lized in DARLA with the synthesis network learned in the Stylegan. Theoretically,
this generator should learn different styles of the cartpole images with few training
examples, and the encoder should be able to regress to the latent space W easily.
This network architecture is depicted in figure 3.5.

In this architecture, the encoder takes an image I as input, outputs the corre-
sponding w ∈ W, the disentangled space of Stylegan, and the synthesis network of
Stylegan maps the w to a reconstructed image Î. When used as a feature extractor for
the reinforcement learning task, the encoder is frozen and extracts a state S, which
is the same w ∈ W that would allow the synthesis network to reconstruct Î. As
in DARLA, that state S is then passed as input to the deep reinforcement learning
network, which in turn learns to solve the task.

Note that each dimension of W corresponds to a style that the generator utilizes.
In the domain of visual cartpole, styles can be factors such as cart position, pole
angle, or pole color.

I also tried a variant of this architecture that mirrors the two encoder approach
in the previous section. This architecture is depicted in figure 3.6. Instead of one
encoder that learns a mapping from I to w, there are two encoders, RPencoder and
Sencoder that should learn the render parameters and the state of the image, respec-
tively. As in the previous section, I train these on the same datasets, RPdataset and
Sdataset and enforce the same L2 loss functions. This should force the output of the
RPencoder to stay fixed for fixed render parameters and the output of the Sencoder
to stay fixed for fixed state.

3.4 Training Procedure

I trained the one encoder network as described below.

16 Chapter 3. Research Methodology

FIGURE 3.6: Two Encoder Stylegan Architecture

1. Generate training data sampled randomly by varying both RP and S.

2. Train the Stylegan as described in NVIDIA’s paper on the dataset generated in
step 1.

3. Extract and freeze the synthesis network.

4. Train the encoder by minimizing the reconstruction loss between the input
image I and the reconstructed image Î that is created by passing the output of
the encoder to the frozen synthesis network.

This training process allowed the encoder to successfully learn a function from I
to w.

I trained the two encoder network as described below.

1. Follow steps 1-3 from the one encoder training process.

2. Until the encoders converge:

(a) Generate a batch of data sampled from RPdataset and Sdataset
(b) Train the encoders on the batch, as described in step 4 of the one encoder

training process, but also enforce an L2 loss on the extracted RP across all
data sampled from Sdataset and an L2 loss on the extracted S across all
data sampled from RPdataset.

3.5 Temporal Autoencoder

There are two main ways to improve the Stylegan DQN results. The first is to learn
a separation between RP and S, and the second is to reduce the variance in the
behavior of the agent.

In this method, I exploit the fact that data in transfer learning between RL tasks
comes from episodes of a reinforcement learning task. I use this knowledge and a
novel loss function to train a single encoder and decoder to extract both RP and S
from a series of given images. I call this a temporal autoencoder.

The encoder of the temporal autoencoder takes as input an image or series of
images corresponding to sequential frames from the reinforcement learning task, in
this case, visual cartpole. It outputs a set of predicted render parameters RP and
states S for each input frame.

The decoder of the autoencoder takes a series of RP and S, corresponding to
render parameters and states extracted by the encoder from a sequential series of
frames from the RL task. It then maps them to reconstructed images for each frame.

3.5. Temporal Autoencoder 17

FIGURE 3.7: Temporal Variational Autoencoder Architecture

3.5.1 Loss Function

The loss function for the temporal autoencoder is as follows.

L =Eq(z|x)[log pθ(x|z)]− β(DKL(qφ(z|x)||(p(z)− ε)

+ L2(z0:RPdimension)− L2(zRPdimension:end) + Entropy(zRPdimension:end)

where Entropy(x) is the entropy of the normalized x.
The first term of this function is reconstruction loss, and the second is KL loss,

as are standard for a beta variational autoencoder. The third term encourages the
render parameters z0:RPdimension to stay fixed over a given series of inputs. The fourth
term encourages the extracted state zRPdimension:end to have high variance between
subsequent states. Finally the fifth term encourages the states to have a low number
of parameters that vary between subsequent frames.

Given that the input to this network is a sequence of images corresponding to
one episode of visual cartpole, the true RP should be fixed for the entire episode.
Thus, the L2 loss of subsequent extracted RP should be 0. The true S is the posi-
tion of the cart and pole, which change between every frame. Thus, the L2 loss of
subsequent extracted states should be rather high. However, the true S is a vector
of size 2. Given that the extracted state from the temporal autoencoder has length
24, the network may learn to place both the RP and the S in the output vector that
should contain only the extracted state. The entropy loss of the extracted state en-
courages the extracted state to contain as little information as possible, encouraging
the extracted render parameters to contain render parameters. Combined with the
fact that the extracted render parameters should not change between subsequent
frames, and the extracted state should vary highly, this encourages the extracted
state to only contain the state.

3.5.2 Training Procedure

Training this autoencoder is much more straightforward than the previous two ap-
proaches. I follow the below steps:

1. Create a dataset of images of episodes of visual cartpole based on a random
policy

2. For each episode of training data:

(a) Train the autoencoder on the episode of training data.

18 Chapter 3. Research Methodology

This training process is much simpler than the other two, requiring only a single
dataset and a single network to optimize.

19

Chapter 4

Results

In this section, I list the training and test results for each approach. Additionally,
I compare their results against the results of a baseline convolutional DQN as well
as an implementation of the variational autoencoder-based approach described in
DARLA [5].

4.1 Beta Variational Autoencoder

Despite significant hyperparameter turning, the two-encoder network was unable
to generalize to unseen data. The network would learn to sufficiently reconstruct
training data, yielding a low loss. However, when faced with test data, the network
would output one of two reconstructions, depicted in figure 4.1:

1. An image of a cartpole with the same state as the input image, but incorrect
colors.

2. An image of a cartpole with the correct render parameters (colors) as the input
image, but an incorrect state. Specifically, the state was a starting state.

Upon closer inspection of the reconstructions, it becomes apparent that the net-
work is learning a switch statement, reconstructing whichever option presents lower
loss, but not actually learning the entire space. This behavior indicates that the au-
toencoder is simply memorizing the training examples instead of learning a genera-
tive function over the space. Despite changing the network architecture and various
other hyperparameters, the network either continued learning the switch statement
described above or failed to converge. This indicates an issue in the problem setup.

As shown in figure 4.2, this task gives the ovals as training data, and expects
the decoder of the autoencoder to learn a generative function over the entire space.
Based on these results, it seems the decoder of an autoencoder is not suited to learn
this function.

It would be possible to train the decoder independently, in a normal beta vari-
ational autoencoder with data sampled from the entire RP and S space, freeze the
weights, and then attach the two encoders and train them as described above.

I explored this approach briefly, but it seems that the amount of data required
to train the decoder and then the two encoders separately is too high, since it re-
quires a fairly large dataset where both the RP and the S vary in addition to the
RPdataset and Sdataset as described above. Given the amount of data required to
generate these three datasets, it seems almost as easy to train with domain random-
ization. Additionally, there are generative models that can learn the same function
with much less data.

20 Chapter 4. Results

FIGURE 4.1: Two-Encoder Beta VAE Reconstructions. Top row con-
tains input images and bottom row contains reconstructed images.

Left utilizes correct RP and right utilizes correct S

4.2 Stylegan

Unfortunately, the two encoder network did not sufficiently learn to separate the
RP from the S. Instead, it learned to properly regress from the input image I to the
corresponding w ∈W, but learned a similar piecewise function to the one described
in the two encoder beta variational autoencoder, as shown in figure 4.3. The L2
loss terms forced the RPencoder to learn both RP and S corresponding to images
from RPdataset and Sencoder to learn both RP and S corresponding to images from
Sdataset. After experimenting with various encoder architectures, weight terms on
the different elements of the encoder loss function, and hyperparameters such as
learning rate and learning rate decay, it seems that the two encoder is not able to
separately learn RP and S.

This is surprising due to the fact that RP and S are relatively disentangled in
Stylegan and they are represented as different styles. Since neither the two encoder
beta variational autoencoder nor the two encoder Stylegan could seperately learn
RP and S, it is likely that the combination of the two encoder architecture and the L2
loss function will not learn a disentanglement of RP and S, regardless of generator.

However, the one encoder network did successfully learn to map from an input
image I to a state S = w ∈ W that allows the synthesis network to sufficiently
reconstruct the input image, as shown in figure 4.4. As such, since the W space of
a Stylegan should contain disentangled styles, I trained a DQN on visual cartpole,
utilizing the one encoder as a frozen feature extractor. The reward is plotted as a
function of training time in figure 4.6, and a comparison to a baseline DQN as well
as a DQN trained on a DARLA beta variational autoencoder is depicted in table 4.1.
This table was generated by training each encoder and DQN and testing on both the
source RP and a target RP over 10 trials.

Unsurprisingly, the baseline DQN outperforms both the DARLA DQN and the
Stylegan DQN on the source task. This is expected, since the baseline DQN is able to
optimize its CNN-based feature detection for the source task. It only needs to learn
to detect a cart and pole of a single color. Not only is this a strictly easier task than

4.2. Stylegan 21

FIGURE 4.2: RPdataset and Sdataset compared to the entire RP and S
space

FIGURE 4.3: Two-Encoder Stylegan Reconstructions. Top row con-
tains input images and bottom row contains reconstructed images.

22 Chapter 4. Results

FIGURE 4.4: One-Encoder Stylegan Reconstructions. Top row con-
tains input images and bottom row contains reconstructed images.

learning to detect a cart and pole of varying color, but the baseline DQN is also less
modeled than the other two. Specifically, it does not need to learn factors that would
aid in image reconstruction but not in actually solving the source task.

Also unsurprisingly, the baseline DQN performs poorly on the target task, bal-
ancing the cartpole with different colors (RP). It is able to somewhat generalize
due to the simplicity of the task, but this would not scale on more complex visual
tasks. The DARLA DQN comes in second and is able to transfer to the target task
significantly better than the baseline DQN. This shows that it is learning some repre-
sentation of the S that is agnostic to changes in RP, but given its drop in performance
compared to the source task, it is still not ideal. The Stylegan DQN transfers to the
target task the best, either maintaining or improving its performance. This seems to
handily beat the other two methods.

The fact that the Stylegan’s max performance on the target task is higher than its
performance on the source task is surprising. While the Stylegan is able to extract
features relatively well, its performance also varies more than the other two methods
across test episodes. While it clearly extracts relevant features for transfer, its repre-
sentation may be difficult for the DQN to fully understand, given the same training
time. This is likely due to the fact that the Stylegan’s S = w ∈W is a vector of length
512, instead of 16, 32, or 48 in the case of the DARLA DQN. This adds significant
complexity to the DQN network. I expect that training the Stylegan DQN for longer
would decrease variance in performance on visual cartpole. Additionally, changing
the latent space size of the Stylegan may decrease complexity.

4.3 Temporal Autoencoder

The temporal autoencoder trains relatively easily, and the corresponding DQN per-
forms surprisingly well on both the source and target tasks.

Surprisingly, the temporal autoencoder’s reconstructions are not as accurate as
other approaches. As shown in figure 4.5, it is correctly able to learn the state S of the
cartpole, but the render parameters RP are not correct. The learned RP are within
some bound of the true colors. Likely, this can be improved with additional training
time, but does not seem to be necessary to solve the visual cartpole task.

Based on table 4.1, the temporal autoencoder DQN outperforms all the previous
approaches both on the source and target tasks. Performing so well on the target
task given the same training time as the other networks shows that the latent rep-
resentation S learned for the state is significantly easier for the DQN to understand.

4.3. Temporal Autoencoder 23

FIGURE 4.5: Temporal Autoencoder Reconstructions. Top row con-
tains input images and bottom row contains reconstructed images.

FIGURE 4.6: Episode Reward (Smoothed) vs Training Time across all
approaches.

24 Chapter 4. Results

Metric Visual DQN DARLA DQN Stylegan DQN Temporal Autoencoder

Min Source Task Reward 239 201 180 249
Mean Source Task Reward 282.1 261 262.9 403.5
Max Source Task Reward 444 359 408 500
Min Target Task Reward 55 148 200 233
Mean Target Task Reward 71.4 189.4 256.5 335.8
Max Target Task Reward 129 248 489 500

TABLE 4.1: Minimum, Mean, and Maximum Reward when tested on
the source and target tasks after training on the source task.

This suggests that the S learned contains all of the information the DQN requires to
solve cartpole while having little irrelevant information that the DQN would need
to learn to ignore.

The temporal autoencoder DQN’s performance on the target task seems to be
that its performance on the source task, which shows that it has not entirely disen-
tangled the S and RP. If it had, the performance would be the same across tasks.
However, these results show that it has learned to disentangle S and RP better than
any of the other approaches, since its maximum reward is the same, and its mean
reward decreases only marginally between tasks.

25

Chapter 5

Conclusion and Future Work

5.1 Future Work

I divide my future work into two section, simulation based work and robot based
work.

5.1.1 Simulation Based Work

The approaches described in this paper transfer between visual cartpoles of different
colors, however, the feature extractors must only learn to extract the position of the
cart and the pole at any given step. Ground Truth velocity information of the cart
and pole are directly passed into the DQN in order to simplify the DQN’s task and
enforce the Markov Property on states. Namely, the next state (image and velocity)
of the environment depends only on the current state (image and velocity).

I intend to improve the temporal autoencoder so that it is able to extract the ve-
locity of the cart and pole between subsequent images, in order to extract the entire
ground truth state (position and velocity) from images. I will first try to utilize a
fixed history of images to learn to predict velocity and will then implement a re-
current neural network to learn to predict velocity. The recurrent neural network
should theoretically outperform the fixed history, since it will be able to remember
information from images beyond the fixed history window.

This improvement will allow the DQN to solve an MDP without being given any
ground truth state information, which is realistic to real world tasks. The improved
extractor will allow the DQN to keep track of the velocity or acceleration of visual
objects in addition to position.

5.1.2 Robot Based Work

This work has demonstrated that it is possible to transfer learned policies between
visual domains in simulation, however, it has not been tested on transfer from a
simulated task to a real world task. As such, my first robot based test is to create a
simulator for a Markov, visual robotics task, such as grasping a cube, given a robot
arm that takes positions as input and a camera that observes both the arm and cube.
I will then train the visual feature extractor and the corresponding DQN and test
transfer both between simulator parameters and to real life.

Given that my Stylegan and Temporal Autoencoder feature extractors outper-
form DARLA’s feature extractor in visual cartpole, I am hopeful that they will out-
perform DARA‘s feature extractor in transfer between simulation and reality. If it
does not, it will demonstrate that my feature extractors are not sufficient for com-
plex visual tasks.

26 Chapter 5. Conclusion and Future Work

5.2 Conclusion

In this paper, I have presented three methods to extract features for visual reinforce-
ment learning tasks that enable transfer between visual domains. I evaluate these
three methods on a toy domain of visual cartpole, and compare against previous
work as well as a baseline DQN.

This work brings transfer of deep reinforcement learning policies from simula-
tion to reality closer to fruition. Visual differences between simulators and reality
are one of the largest factors that contribute to the reality gap, and overcoming dif-
ferences in rendering between simulations and the real world will enable complex
visual policies learned in simulation to transfer to real world robots. My results
show that learning to transfer between different visual domains, such as simulation
and reality, is within reach, and that jumping the reality gap will soon be possible.

Transferring learned policies from simulation to reality will greatly improve au-
tonomous robots’ abilities to aid humans. Humans will not need to explicitly pro-
gram robots to follow very rigid, specific instructions, such as working in assem-
bly lines. Instead, these robots will be able to teach themselves, in simulation, to
solve tasks that humans assign, immensely reducing the overhead of integrating au-
tonomous robots into both industrial settings and daily life.

27

Bibliography

[1] Carl Doersch. “Tutorial on variational autoencoders”. In: arXiv preprint arXiv:1606.05908
(2016).

[2] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning
for Fast Adaptation of Deep Networks”. In: CoRR abs/1703.03400 (2017). arXiv:
1703.03400. URL: http://arxiv.org/abs/1703.03400.

[3] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural in-
formation processing systems. 2014, pp. 2672–2680.

[4] Irina Higgins et al. “beta-vae: Learning basic visual concepts with a constrained
variational framework”. In: (2016).

[5] Irina Higgins et al. “DARLA: Improving Zero-Shot Transfer in Reinforcement
Learning”. In: CoRR abs/1707.08475 (2017). arXiv: 1707.08475. URL: http:
//arxiv.org/abs/1707.08475.

[6] Introducing NVIDIA Isaac. URL: https://www.nvidia.com/en- us/deep-
learning-ai/industries/robotics/.

[7] Tero Karras, Samuli Laine, and Timo Aila. “A Style-Based Generator Architec-
ture for Generative Adversarial Networks”. In: CoRR abs/1812.04948 (2018).
arXiv: 1812.04948. URL: http://arxiv.org/abs/1812.04948.

[8] George Konidaris and Finale Doshi-Velez. “Hidden parameter Markov deci-
sion processes: an emerging paradigm for modeling families of related tasks”.
In: the AAAI Fall Symposium on Knowledge, Skill, and Behavior Transfer in Au-
tonomous Robots. 2014.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classifi-
cation with Deep Convolutional Neural Networks”. In: Advances in Neural In-
formation Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc.,
2012, pp. 1097–1105. URL: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf.

[10] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional
Networks for Semantic Segmentation”. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2015.

[11] Volodymyr Mnih et al. “Human-level control through deep reinforcement learn-
ing”. In: Nature 518.7540 (2015), p. 529.

[12] Alex Nichol, Joshua Achiam, and John Schulman. “On First-Order Meta-Learning
Algorithms”. In: CoRR abs/1803.02999 (2018). arXiv: 1803.02999. URL: http:
//arxiv.org/abs/1803.02999.

[13] OpenAI et al. “Learning Dexterous In-Hand Manipulation”. In: ArXiv e-prints
(Aug. 2018). arXiv: 1808.00177.

[14] Fereshteh Sadeghi and Sergey Levine. “CAD2RL: Real single-image flight with-
out a single real image”. In: arXiv preprint arXiv:1611.04201 (2016).

http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1707.08475
http://arxiv.org/abs/1707.08475
http://arxiv.org/abs/1707.08475
https://www.nvidia.com/en-us/deep-learning-ai/industries/robotics/
https://www.nvidia.com/en-us/deep-learning-ai/industries/robotics/
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1808.00177

28 BIBLIOGRAPHY

[15] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: CoRR
abs/1707.06347 (2017). arXiv: 1707.06347. URL: http://arxiv.org/abs/
1707.06347.

[16] David Silver and Demis Hassabis. “AlphaGo: Mastering the ancient game of
Go with Machine Learning”. In: Research Blog (2016).

[17] Matthew E Taylor and Peter Stone. “Transfer learning for reinforcement learn-
ing domains: A survey”. In: Journal of Machine Learning Research 10.Jul (2009),
pp. 1633–1685.

[18] Jiayu Yao et al. “Direct Policy Transfer via Hidden Parameter Markov Decision
Processes”. In: (2018).

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

	Abstract
	Acknowledgements
	Introduction
	Background and Related Work
	Background
	MDPs
	Deep Reinforcement Learning
	Variational Autoencoders
	Generative Adversarial Networks
	Transfer Learning and Renderers

	Related Work

	Research Methodology
	Visual Cartpole Domain
	Beta Variational Autoencoder
	Loss Function
	Training Procedure

	Stylegan
	Motivation
	Methods

	Training Procedure
	Temporal Autoencoder
	Loss Function
	Training Procedure

	Results
	Beta Variational Autoencoder
	Stylegan
	Temporal Autoencoder

	Conclusion and Future Work
	Future Work
	Simulation Based Work
	Robot Based Work

	Conclusion

	Bibliography

