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Abstract. We introduce the reader to the broad �eld of isoperimetry and brie�y sur-

vey discrete isoperimetric inequalities. We then cast protein folding in the HP model as

an isoperimetric problem, and obtain new bounds on the conformation energy of linear

polymers. In addition, we solve Istrail’s bipole packing problem on the two-dimensional

triangular and three-dimensional cubic la�ices. We prove a related problem, bipole la-

belling, to be NP-hard, and propose a generalization of the bipole packing problem to

consider bipoles of varying lengths.
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1. Hello!

One of the earliest problems to be considered in geometry is the isoperimetric problem,

dating back to the ancient Greeks. �e problem can be stated as follows: Among all closed

curves in the plane enclosing a �xed area, which curve minimizes the perimeter?

According to legend, the Phoenician queen Dido founded the city of Carthago on a piece

of land obtained from the local king. As she got only as much land as she could surround

by an oxhide, she cut the hide into thin strips and then encircled an entire hill nearby. A

satisfactory proof that the circle is indeed the optimal solution to this problem, however,
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was only obtained in the 19
th

century. Today, isoperimetry is a mainstay of modern ge-

ometry, with connections to graph theory, partial di�erential equations, and probability

theory.

�is paper a�empts to relate the notion of isoperimetry to the protein folding problem, one

of the holy grails of computational biology. In addition to being of tremendous importance

to drug design and medicine, the protein folding problem also carries broad implications

for combinatorial optimization, discrete geometry, and biophysical simulations. We argue

that protein folding is fundamentally an isoperimetric problem, and will then consider

several combinatorial problems related to protein folding in the HP model.

1.1. Outline

�is paper is organized as follows:

• In Section 2, we introduce the reader to isoperimetric inequalities. We present a

proof of the classical isoperimetric inequality in Rn , and brie�y survey discrete

isoperimetric inequalities.

• In Section 3, we introduce protein folding and cast it as an isoperimetric problem.

• In Section 4, we resolve Istrail’s biplane conjecture on the two-dimensional trian-

gular and three-dimensional cubic la�ices, and prove a related problem, Bipole-

Labelling, to be NP-complete.

• In Section 5, we indicate some potential directions for future work. A general-

ization of the bipole packing problem to consider bipoles of varying lengths is

introduced and modeled as a linear program.

Standard mathematical notation is used throughout. All graphs are assumed to be con-

nected and undirected unless stated otherwise.

�is work is part expository and part exploratory, with some original �ndings in Sections 3

and 4. �e scrambled and sometimes bizarre mixture of topics presented is not an accident.

While we made some a�empts at a narrative, this paper is ultimately just a collection of

loosely connected topics that the author found interesting.

2. Classical and Discrete Isoperimetric Ineqalities

Isoperimetry deals with questions such as “Given the size of a set, how small can its bound-

ary be?” or “Given the boundary of a set, how large can its area be?”. For example, in R2
,

circular discs are best. In Section 2.1, we give a proof of the classical isoperimetric inequal-

ity for Rn , and then brie�y discuss discrete isoperimetric inequalities in Section 2.2.
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2.1. �e Classical Isoperimetric Inequality

�e classical isoperimetric inequality informally states that “spheres minimize boundary

for �xed area in Euclidean space”. �ough this fact for R2
was known to the ancient

Greeks, a satisfactory proof was not obtained until the 19
th

century. �e famous geometer

Jakob Steiner gave a proof, using a geometric construction, which, starting from a curve

di�erent from a circle, leads to a curve with the same length but with strictly greater area.

His colleague Dirichlet, then in Berlin, tried without success to convince him that this does

not su�ce as a proof unless it shows the existence of a solution.

Many proofs of the classical isoperimetric inequality are now known. �e following proof

uses Brunn-Minkowski theory, and a comprehensive introduction to the subject can be

found in [Sch93].

De�nition 2.1 (Minkowski sum). Given A,B ⊂ Rn , the Minkowski sum of A and B is

de�ned as A ⊕ B = {a + b | a ∈ A,b ∈ B}.

De�nition 2.2 (parallelepipeds). Let I1, . . . , In ⊂ R be open, bounded intervals. �e set

I1 × . . . × In ⊂ R
n

with the Ij parallel to the coordinate axes is said to be a parallelepiped.

Lemma 2.3. Let I = I1 × . . . × In and J = J1 × . . . × Jn be two parallelepipeds in Rn . �en
I ⊕ J is a parallelepiped in Rn .

Proof. �is follows from the fact that I ⊕ J = (I1 + J1) × . . . × (In + Jn). �

�eorem 2.4 (Brunn-Minkowski Inequality). Let I and J be two bounded, open subsets of
Rn . �en

|I |
1

n + |J |
1

n ≤ |I ⊕ J |
1

n .

�e proof of this theorem consists of three parts: �rst, we will prove the inequality for par-

allelepipeds, then we will prove the inequality for disjoint �nite unions of parallelepipeds,

and �nally, using an elementary result from Lebesgue theory, will prove the inequality in

the general case.

Proof. Let I = I1 × . . . × In and J = J1 × . . . × Jn be two parallelepipeds in Rn . Let l(Ik ) and

l(Jk ) denote the length of Ik and Jk respectively. We then have

|I |
1

n + |J |
1

n

|I ⊕ J |
1

n
=

∏n
k=1

l(Ik )
1

n +
∏n

k=1
l(Jk )

1

n∏n
k=1
(l(Ik ) + l(Jk ))

1

n

=

n∏
k=1

(
l(Ik )

l(Ik ) + l(Jk )

) 1

n

+

n∏
k=1

(
l(Jk )

l(Ik ) + l(Jk )

) 1

n

≤
1

n

n∑
k=1

l(Ik )

l(Ik ) + l(Jk )
+

1

n

n∑
k=1

l(Jk )

l(Ik ) + l(Jk )

= 1
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where the inequality follows from the AM-GM inequality. We conclude that the result

holds for parallelepipeds.

Next, let I and J be disjoint �nite unions of parallelepipeds, i.e. I =
⋃p

k=1
Ik and J =⋃q

k=1
Jk where Ik and Jk are parallelepipeds as above. We proceed via induction on p + q.

�e base case when p +q = 2 has already been established above. Suppose p +q ≥ 3, with

p > 1. As the Ik are disjoint, there exists a hyperplane H separating I1 and I2. Let H+ and

H− be the two halfspaces resulting from H , and let I+ = I ∩ H+ and I− = I ∩ H−. Note

that I+ and I− are also �nite unions of parallelepipeds, i.e. I+ =
⋃p+

k=1
I+k and I− =

⋃p−

k=1
I−k

where p+ < p and p− < p as P separates at least I1 and I2.

Now, we can �nd a hyperplane Q parallel to P separating J into J+ and J− such that

|I+ |

|I |
=
|J+ |

|J |
.

�is is guaranteed by the intermediate value theorem: simply start with Q parallel to P
and to the “le�” of J , and slide it right until it is to the “right” of J . �e le� hand side of

the above expression is a �xed fraction between 0 and 1, and the expression on the right

varies continuously from 0 to 1 during the above sliding procedure. Consequently, we are

guaranteed a position where equality holds. Note that J+ and J− are also disjoint �nite

unions of parallelepipeds, i.e. J+ =
⋃q+

k=1
J+k and J− =

⋃q−

k=1
J−k where q+ ≤ q and q− ≤ q

as Q may not separate two parallelepipeds of J .

Next, note that

|I+ |

|I |
=
|J+ |

|J |
=⇒

|I− |

|I |
=
|J− |

|J |
.

As p+ + q+ < p + q and p− + q− < p + q, and so by the inductive hypothesis, we have

|I+ ⊕ J+ |
1

n ≥ |I+ |
1

n + |J+ |
1

n

|I− ⊕ J− |
1

n ≥ |I− |
1

n + |J− |
1

n

Now, as P and Q are parallel, we have P+ ⊕ Q+ = (P ⊕ Q)+. We then have I+ ⊕ J+ ⊂
P+ ⊕ Q+ = (P ⊕ Q)+, and similarly, I− ⊕ J− ⊂ P− ⊕ Q− = (P ⊕ Q)−. As P ⊕ Q is a

hyperplane, we can conclude that I+ ⊕ J+ and I− ⊕ J− are disjoint. It follows that

|I ⊕ J | ≥ |I+ ⊕ J+ | + |I− ⊕ J− | ≥
(
|I+ |

1

n + |J+ |
1

n

)n
+

(
|I− |

1

n + |J− |
1

n

)n
.
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In particular, using the fact that
|I+ |
|I | =

| J+ |
| J | and

|I− |
|I | =

| J− |
| J | , we have

|I ⊕ J | ≥
(
|I+ |

1

n + |J+ |
1

n

)n
+

(
|I− |

1

n + |J− |
1

n

)n
= |I+ |

[
1 +

(
|J |

|I |

) 1

n
]n
+ |I− |

[
1 +

(
|J |

|I |

) 1

n
]n

= |I |

[
1 +

(
|J |

|I |

) 1

n
]n

=
(
|I |

1

n + |J |
1

n

)n
which completes the induction.

Finally, let I and J be two bounded, open sets in Rn . A standard result in Lebesgue theory

states that there exist two sequences {In}n∈N and {Jn}n∈N where In , Jn are �nite unions of

disjoint parallelepipeds such that In ⊂ I and Jn ⊂ J for all n ∈ N, and |In | → |I |, |Jn | → |J |
as n →∞. It follows that In ⊕ Jn ⊂ I ⊕ J for all n ∈ N, and hence we have

|I ⊕ J |
1

n ≥ |In ⊕ Jn |
1

n ≥ |In |
1

n + |Jn |
1

n

for all n ∈ N. Taking the limit as n →∞, we get the desired result. �

Next, we make precise what we mean by the boundary or the surface area of a set in Rn .

Informally, the surface area is the rate at which the volume increases when we add a small

ball to the object.

De�nition 2.5 (surface area). LetK ⊂ Rn be bounded with smooth boundary. �e surface

area of K , wri�en |∂K |, is de�ned as

|∂K | = lim

ϵ→0

|K ⊕ ϵBn | − |K |

ϵ
.

Finally, we can use the Brunn-Minkowski inequality to prove the classical isoperimetric

inequality in Rn .

�eorem 2.6 (Isoperimetric Inequality forRn). For anyn-dimensional bodyK with volume
|K | and surface area |∂K |, we have

|K |n−1

|∂K |n
≤
|Bn |

n−1

|∂Bn |n
.

Proof. By the Brunn-Minkowski inequality, we have

|K ⊕ ϵBn | ≥
(
|K |

1

n + |ϵBn |
1

n

)n
but as |ϵBn |

1

n = (ϵn |Bn |)
1

n = ϵ |Bn |
1

n , we have

|K ⊕ ϵBn | ≥
(
|K |

1

n + ϵ |Bn |
1

n

)n
= |K |

(
1 + ϵ

(
|Bn |

|K |

) 1

n
)n
≥ |K |

(
1 + nϵ

(
|Bn |

|K |

) 1

n
)
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where the last inequality above was obtained by throwing out all but the �rst two terms

of the Maclaurin series of (1 + x)n .

We then have

|∂K | = lim

ϵ→0

|K ⊕ ϵBn | − |K |

ϵ
≥ lim

ϵ→0

|K |

(
1 + nϵ

(
|Bn |
|K |

) 1

n
)
− |K |

ϵ
= n |K |

n−1

n |Bn |
1

n

For an n-dimensional ball, we have |∂Bn | = n × |Bn |, which gives us

|∂K |

|∂Bn |
≥

(
|K |

|Bn |

) n−1

n

which can be rearranged to obtain the desired inequality. �

2.2. Discrete Isoperimetric Inequalities

Given a graph G = (V ,E), the vertex boundary of a subset S ⊂ V is the set vertices of

connected to at least one vertex in S , and the edge boundary of S is the set of edges crossing

from S to its complement. �e question, then, of the smallest possible boundary a set given

its cardinality is an interesting combinatorial question in its own right, and is a natural

analogue of classical isoperimetry. Furthermore, good estimates of these boundaries are

also very useful for several applications; we brie�y mention some:

• Lower bounds on the vertex boundary show how fast a neighbourhood of a set

has to grow when the allowed distance from the set increases, and this leads to

concentration of measure results for Lipschitz functions on the graph [MS86].

• Lower bounds on edge boundary directly provide upper bounds on the mixing time

of random walks on the graph [Jer03].

• �e notion of isoperimetry is closely related to that of expansion and can be used

to characterize expander graphs, which have several applications in mathematics

and theoretical computer science [Spi15].

�e main player in this section will be the n-dimensional boolean hypercube Qn . We will

also brie�y discuss isoperimetric results on other graphs. Parts of the following section

are closely based on chapters from [Har04].

We start by formally de�ning what the vertex and edge boundaries of a set of nodes in a

graph are.

De�nition 2.7 (vertex boundary). Given a graphG = (V ,E) and S ⊂ V , the vertex bound-
ary of S is given by

∂S = S ∪ {v ∈ V | (u,v) ∈ E for some u ∈ S}.

De�nition 2.8 (edge boundary). Given a graph G = (V ,E) and S ⊂ V , the edge boundary
of S is given by

∂ES = {(u,v) ∈ E | u ∈ S,v ∈ V \S}.
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123

1312 23

21 3

∅

Figure 1. Q3

2.2.1. Isoperimetry on Qn

�e n-dimensional hypercube is the n-dimensional analogue of the square (n = 2) and cube

(n = 3). In what follows, P(X ) denotes the power set of X (i.e. the set of all subsets of X ).

De�nition 2.9 (n-dimensional hypercube). �e n-dimensional hypercubeQn is the graph

with vertex setV =P(X )whereX = {1, . . . ,n}, and edge set E = {(x ,y) | ∃ i ∈ X s.t. x =
{i} ∪ y or y = {i} ∪ x for x ,y ∈ V }.

We will usually write X = [n] instead {1, . . . ,n}. �us, two vertices x ,y ∈ Qn are adjacent

if |x∆y | = 1 where ∆ denotes the symmetric di�erence. For convenience, we will o�en

ignore brackets and commas while denoting vertices of Qn . In other words, {1, 2, 3} can

be wri�en as 123. Figure 2.2.1 illustrates Q3.

Alternatively, the n-dimensional hypercube can also be thought of as the graph with the

set of 0-1 sequences of length n as its vertex set, with two vertices adjacent if and only if

the corresponding 0-1 sequences di�er at exactly one position.

Let X (r ) = {x ∈P(X ) | |x | = r }, and X (≤r ) = {x ∈P(X ) | |x | ≤ r }; we can de�ne similar

sets for “≥”, “<”, and “>” instead of “≤”.

Now, given 0 ≤ m ≤ 2
n

, what A ⊂ Qn with |A| = m minimizes |∂A|? �is question was

answered rather beautifully by Harper in [Har66], who proved that the minimizers of |∂A|
are the �rstm elements of P(X ) taken in the simplicial order.

De�nition 2.10 (simplicial order). For x ,y ∈P(X ), we have x < y in the simplicial order
if either |x | < |y | or |x | = |y | and min(x∆y) ∈ x . Let Im denote the �rst m elements of Qn
in the simplicial order.
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A ⊂ Qn I |A | ⊂ Qn

Figure 2. Simplicial order on Qn

We will use the notion of compressions to prove Harper’s theorem. Informally, we will

compress A to obtain a set A′ such that |A′ | = |A| and |∂A′ | ≤ |∂A|, and A′ is “closer” to Im
than A. All of this is made formal below.

De�nition 2.11 (i-sections). Let A ⊂ P(X ) and let 1 ≤ i ≤ n = |X | where X = [n]. �e

i-sections on A are given by Ai− = {x ∈ P(X\{i}) | x ∈ A} ⊂ Q (i−)n−1
and Ai+ = {x ∈

P(X\{i}) | x ∪ {i} ∈ A} ⊂ Q (i+)n−1
where Q (i−)n−1

and Q (i+)n−1
are copies of Qn−1 labelled by sets

of P(X\{i}).

De�nition 2.12 (i-compression). Given a set A ⊂ P(X ) where X = [n], we de�ne the

i-compression of A to be Ci (A), given by its i-sections Ci (A)i− and Ci (A)i+ where Ci (A)i−
is the set of �rst |Ai− | elements of P(X\{i}) in the simplicial order, and Ci (A)i+ is the set

of �rst |Ai+ | elements of P(X\{i}) in the simplicial order.

De�nition 2.13 (i-compressed set). We say that A ⊂ P(X ) where X = [n] is i-compressed
if Ci (A) = A.

�e following example should make the above de�nitions clear.

Example 2.14. �e simplicial order on Q3 is {∅, 1, 2, 3, 12, 13, 23, 123}. Let X = [4], and

A = {1, 14, 23, 123} ⊂ Q4. �en A2− = {1, 14}, and A2+ = {3, 13}. Moreover, we

have C2(A)2− = {∅, 1} and C2(A)2+ = {∅, 1} which gives us C2(A) = {∅, 1} ∪ {2, 12} =

{∅, 1, 2, 12}.

�eorem 2.15 (Harper’s �eorem). Let A ⊂ Qn with |A| = m and let Im ⊂ Qn be the �rst
m elements of Qn in the simplicial order. �en |∂A| ≥ |∂Im |.

Proof. We proceed via induction on n. �e case when n = 1 is trivial. Let C = Ci (A) be

an i-compression of A. Note that |C | = |Ci (A)i− | + |Ci (A)i+ | = |Ai− | + |Ai+ | = |A|. We

will a�empt to show that |∂C | ≤ |∂A|. In particular, this would follow if we could show

|(∂C)i− | ≤ |(∂A)i− | and |(∂C)i+ | ≤ |(∂A)i+ | from an argument similar to that used to obtain

the above expression.

Now, note that (∂A)i− = ∂(Ai−) ∪ Ai+. �e reverse inclusion is clear, and in order to see

the forward inclusion, note that if x ∈ (∂A)i− such that x < Ai+, then x ∪ {i} < A and

x ∪ {j} ∈ A for some j ∈ [n]. But then x ∪ {j} ∈ Ai− =⇒ x ∈ ∂(Ai−). Similarly, we have

(∂C)i− = ∂(Ci−) ∪Ci+. By the inductive hypothesis, we have |∂(Ci−)| ≤ |∂(Ai−)|. We also

have |Ci+ | = |Ai+ |. Now, note that if Ci− is an initial segment of the simplicial order on
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P(X\{i}), then so are ∂(Ci−) and Ci+. In particular, they must be nested and so we must

have either ∂(Ci−) ⊂ Ci+ orCi+ ⊂ ∂(Ci−). Consequently, (∂C)i− = ∂(Ci−) or (∂C)i− = Ci+.

In either case, we have |(∂C)i− | ≤ |(∂A)i− |.

An identical argument gives |(∂C)i+ | ≤ |(∂A)i+ |, and so we have |∂C | ≤ |∂A| as desired.

Next, de�ne a sequence A = A0,A1, . . . as follows: if Aj is i-compressed for all i ∈ [n],
then terminate the sequence. Otherwise, there must exist some i for which Aj is not i-
compressed; de�ne Aj+1 = Ci (Aj ). But why must this process terminate? For x ∈ Aj ,

let f (x) denote the position of x in the simplicial order on Qn . �en, as

∑
x ∈Aj f (x) is a

decreasing function in j, the above process must terminate, say at some Ak .

Now, ifAk were an initial segment of simplicial order, then the result would follow immedi-

ately. �is, however, is not always the case (for example, {∅, 1, 2, 12} ⊂ Q3 is i-compressed

for all i ∈ [3]). However, Lemma 2.16 tells us that if a set is i-compressed for all i ∈ [n]
and is not an initial segment of simplicial order, then there are precisely two possibilities

for it. In either case, the boundary has greater size than the corresponding initial segment

of simplicial order with same size, completing the proof. �

Lemma 2.16. Let A ⊂ P(X ) be i-compressed for all i ∈ [n] where X = [n]. If A is not an
initial segment of simplicial order, then

• if n is odd, then A = X (<n/2)\{{n+3

2
, n+5

2
, . . . ,n}} ∪ {{1, 2, . . . , n+1

2
}}.

• if n is even, then A = X (<n/2) ∪ {x ∈ X (n/2) | 1 ∈ x}\{{1, n
2
+ 2, n

2
+ 3, . . . ,n}} ∪

{{2, 3, . . . , n
2
+ 1}}.

Proof. Note that as A is not an initial segment of simplicial order, there exist x ,y ∈P(X )
with x < y in the simplicial order such that x < A and y ∈ A. Now, note that if there exists

an i ∈ [n] such that i < x and i < y, then x ,y ∈ Ci (A)i−, which contradicts the fact that

B is i-compressed. Similarly, we cannot have i ∈ [n] such that i ∈ x and i ∈ y. �us, for

each i ∈ [n], either i ∈ x or i ∈ y, i.e. y = X\x .

Consequently, if z < y and z < A, then z = x (as z = X\y). Similarly, if x < z and z ∈ A,

then z = y. In particular, this implies that z ∈ A whenever z < x and z < A if z > y. If

x < z < y, then we cannot have z ∈ A as x < z, and we also cannot have z < A as z < y,

a contradiction. �us, y = X\x is the immediate successor of x in the simplicial order,

which gives us A = {z ∈P(X ) | z ≤ y}\x .

If n is odd, then |x | + 1 = |y |, i.e. x is the last set of X (n−1/2)
in simplicial order. If n is

even, then |x | = |y |, and we note that the only sets satisfying the above conditions are

x = {1, n
2
+ 2, n

2
+ 3, . . . ,n} and y = {2, 3, . . . , n

2
+ 1}. �is completes the proof of the

lemma. �

Having obtained a vertex isoperimetric inequality on Qn , we turn our a�ention towards

edge isoperimetry on Qn . Suppose we want to minimize |∂E (A)| given A ⊂ Qn . Do initial

segments of simplicial order again minimize edge boundary? Consider the case when
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n = 3 and |A| = 4. �en I4 ⊂ Q3 has |∂E (I4)| = 6, but |∂E (Q2)| = 4 where Q2 is the

co-dimension 1 subcube of Q3.

Experiments suggest that subcubes are minimizers of the edge boundary, but which ver-

tices do we choose if |A| is not a power of 2? De�ne the following order on P(X ):

De�nition 2.17 (binary order). For x ,y ∈ P(X ), we have x < y in the binary order if

max(x∆y) ∈ y. Equivalently, x < y in the binary order if

∑
i ∈x 2

i <
∑

i ∈y 2
i
.

De�nition 2.18 (i-binary compression). For A ⊆ Qn and 1 ≤ i ≤ n, the i-binary compres-
sion of A is Bi (A) ⊂ Qn given by its i-sections Bi (A)i− and Bi (A)i+ where Bi (A)i− is the set

of �rst |Ai− | elements of P(X\{i}) in the binary order, and Bi (A)i+ is the set of �rst |Ai+ |

elements of P(X\{i}) in the binary order.

For example, the binary ordering on Q3 is {∅, 1, 2, 12, 3, 13, 23, 123}. �e following result

states that the initial segments of binary order are minimizers of edge boundary on Qn .

�is result is also known as the �eorem of Harper, Lindsey, Bernstein and Hart, and was

initially solved with a coding theory application in mind.

�eorem 2.19 (edge isoperimetric inequality for Qn). Let A ⊂ Qn and C be the �rst |A|
elements of Qn in the binary order. �en |∂EA| ≥ |∂EC |.

Proof. Once again, we proceed via induction on n. �e base case when n = 1 is trivial. Let

B = Bi (A) be a i-binary compression of A. We will a�empt to show that |∂EB | ≤ |∂EA|.
Note that for A and B, we have ∂EA = ∂EAi− ∪ ∂EAi+ and ∂EB = ∂EBi− ∪ ∂EBi+. Now,

|∂EBi− | ≤ |∂EAi− | and |∂EBi+ | ≤ |∂EAi+ | by the inductive hypothesis. Also, |Bi+ | = |Ai+ |,

|Bi− | = |Ai− |. Finally, as Bi+ and Bi− are nested, we get that |∂EB | ≤ |∂EA|.

De�ne a sequence A = A0,A1, . . . as we did in the proof for �eorem 2.15, except using

i-binary compressions instead of i-compressions. Once again, this sequence must termi-

nate (say at Ak ); however, this set need not be an initial segment of the binary order. For

example, {∅, 1, 2, 3} in Q3 is i-binary compressed for all i ∈ [3], but is not an initial seg-

ment of binary order. Lemma 2.20 allows us to conclude, however, that if Ak is not an

initial segment of binary order, then |∂EAk | ≥ |∂EC | where C is as in the statement of the

theorem. �

Lemma 2.20. Let A ⊂ Qn be i-binary-compressed for all i ∈ [n] but not an initial segment
of the binary order. �en A = Qn−1 ∪ {n} − {{1, 2, 3, . . . , (n − 1)}}.

Proof. As before, we have x < A and y ∈ A for some x < y in the binary order. Once again,

we must have y = X\x , and so A = {z | z ≤ y in the binary order}\{x}. As x and y are

consecutive in the binary order, x must be the last point with n < x and y is the �rst point

with n ∈ y. �

We conclude this section by noting that in both proofs the extremal sets formed a nested

family.
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2.2.2. Other Isoperimetric Problems

In general, very few exact isoperimetric inequalities in discrete spaces are known. Some

of these are listed in Table 1.

Graph Edge-optimal shapes Vertex-optimal shapes

Qn Subcubes Hamming balls

(Zd , l1) Cubes Cross-polytopes

(Zd , l∞) Zonotopes Cubes

Table 1. Some known edge-optimal and vertex-optimal shapes

An approximation to the size of the edge boundary (and consequently, a lower bound on

the size of the vertex boundary) can be obtained via Cheeger’s inequality, which bounds

the size of the edge boundary of a graph using the second-largest eigenvalue of the adja-

cency matrix of the graph.

�eorem 2.21 (Cheeger’s inequality). LetG = (V ,E) be a �nite, connected, d-regular graph
and let λ2 be the second-largest eigenvalue of its adjacency matrix. �en we have

d − λ2

2

≤ h(G) ≤
√

2d(d − λ2)

where h(G) = minS ⊂V : |S | ≤ n
2

|∂E (S ) |
|S | is the edge expansion of G.

We omit the proof of Cheeger’s inequality due to its length; an accessible proof can be

found in [Spi15].

3. The Protein Folding Problem

Proteins are large biomolecules comprising of one or more residues of amino acids, and

perform a large variety of functions within the cell. �e function of a protein, however, is

intimately linked to its three-dimensional structure or fold. Moreover, experiments suggest

that this fold of a protein is dictated entirely by its one-dimensional sequence.

�us, the protein folding problem asks to determine the optimal fold of a protein given its

one-dimensional amino-acid sequence. Unfortunately, under any reasonably biophysical

model, this problem is NP-hard. A natural simpli�cation of this problem, then, would be

to isolate the major driving forces behind the folding process. �is led to the introduction

of the hydrophobic-hydrophilic or the HP model for protein folding [Dil85].
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Figure 3. Structure of human hemoglobin

�e HP model is based o� the axiom that interactions between hydrophobic amino acid

residues are the major driving force behind protein folding. Consequently, we can model

a protein as a self-avoiding walk consisting of two kinds of residues, namely hydrophobic
(H) and hydrophilic (P) residues. �e objective, then, is to �nd a conformation of the HP-

polymer that maximizes the number of H-H contacts.

Figure 4. Two Conformations of HPPHPH on Z2

For convenience, we usually restrict the folding to a graph where the residues are placed

at nodes and adjacent residues in the polymer must be connected by an edge in the graph.

Figure 4 shows two conformations of a HP polymer on the two-dimensional square grid.

Unfortunately, even when restricted to la�ices, protein folding in the HP model remains

computationally intractable [HI97][Cre+98]. Several approximation algorithms for HP

folding, however, do exist for graphs such asZ2,Z3
, and the three-dimensional face-centered

cubic (FCC) la�ice. In order to evaluate the performance of these approximation algo-

rithms, upper bounds on the maximum possible number of H-H contacts are desirable.

For example, given a HP polymer on Z2
with n hydrophobic residues, an easy upper bound

can be obtained by noting that each non-start or endH residue can make at most 2 contacts,

but as we double count each contact, we can have at most
2n
2
= n contacts. A slightly be�er

bound can be obtained for linear polymers on Z2
by noting that Z2

is bipartite; therefore,
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Parity Isoperimetric

H
2
(P

2
H)

7
H 11 10

P
2
HP

2
(H

2
P

4
)
3
H

2
8 8

Table 2. Comparison of the parity and isoperimetric bounds on Z2

if we were to index the residues in a HP polymer, then hydrophobic contacts can only be

made between residues di�ering in parity.

Note, however, that protein folding in the HP model can be modeled as an isoperimetric

problem by a�empting to minimize the number of missed contacts. In other words, given

a �xed HP polymer, we wish to arrange the H residues so as to minimize the number of

H-P and H-W contacts where W denotes an empty la�ice point or node.

In other words, we wish to minimize the edge boundary of the set of H residues, where

the boundary is de�ned as above. As the edge-optimal shapes on Z2
are squares, we can

obtain upper bounds on the number of H-H contacts made by linear polymers by packing

them into squares. A comparison between the parity bound and our isoperimetric bound

is given in Table 2.

�is section is very much a work-in progress, and we intend to update this document with

a detailed write-up of our isoperimetric bound in the near future. We conclude by noting

that our isoperimetric bound generalizes the results of, and in the case of Z2
, is identical

to their upper bound on the number of H-H contacts obtained by [GP13].

4. Bipole Packing and Related Problems

In the previous section, we considered proteins as linear polymers of hydrophobic and

hydrophilic residues. �is, however, is almost never the case with real-world proteins

which consist of a few to a few dozen branched polymers held together by a backbone.

A natural �rst order approximation to real-world folding, then, would be to consider pro-

teins to be made of a backbone of hydrophilic residues, together with several bipoles each

of which is one hydrophobic residue connected to a backbone hydrophilic residue.

Figure 5. Side-chain Model for HP Folding

�is model for folding is called the side-chain model and was introduced by Istrail [IL09].

In this section, our primary focus will not be the proteins in the side-chain model, but
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the side-chains (i.e. bipoles) themselves). We will study several combinatorial problems

focused on bipoles and their assemblies.

4.1. Bipole Packing

Assemblies or packings of bipoles occur commonly in nature as micelles, vesicles, and

perhaps most notably as the phospholipid bilayer found in cell membranes. A natural

question to ask, then, is whether bipoles naturally arrange into bi-layered or biplanar
con�gurations? In other words, is the biplane the optimal arrangement of bipoles?

Figure 6. Phospholipid bilayer in cell membranes

Istrail’s biplane conjecture states that this is indeed the case for a reasonable class of graphs,

namely space-�lling la�ices. In this section, we will prove Istrail’s biplane conjecture on

the 2D triangular and 3D cubic la�ices.

De�nition 4.1 (bipole). A bipole on a graphG = (V ,E) is an ordered pair of vertices (u,v)
such that (u,v) ∈ E. Given a bipole (u,v) ∈ E, we will refer to the �rst vertex u as the

hydrophobic residue, and the second vertex v as the hydrophilic residue.

De�nition 4.2 (BPP). An instance (G,n) of the Bipole-Packing-Problem (BPP) consists

of a graph G = (V ,E) and an integer n ≤ |V |/2. A feasible solution to BPP(G,n) is a pair

(H ,P) whereH ,P ⊂ V and |H | = |P | = n such that:

• (Hi ,Pi ) is a bipole for i ∈ {1, . . . ,n}.

• No vertex appears more than once inH ∪ P.

An optimal solution to BPP(G,n) is a feasible solution (H ,P) such that |{E(G(H))}| is

maximized over all feasible solutions, where G(H) ⊂ G is the subgraph induced byH .

We will o�en refer to a feasible solution to BPP as a packing, the setsH and P as the sets

of hydrophobic and hydrophilic residues respectively, and E(G(H)) as the set of contacts
among hydrophobic residues, i.e. any edge between two hydrophobic residues is a con-

tact. �e objective of BPP, therefore, is to �nd a con�guration of bipoles on a graph that

maximizes the number of hydrophobic contacts.
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We will now show that BPP isNP-hard via a reduction fromNP-complete problemDensest-

k-Subgraph (DkS), a natural generalization of the Max-Cliqe problem.

De�nition 4.3 (DkS). An instance of (G,k) of Densest-k-Subgraph (DkS) is a graph

G = (V ,E) and an integer k < |V |. A feasible solution to DkS(G,k) is a subgraph H ⊂ G
such that |V (H )| = k , and an optimal solution is a feasible solution H that maximizes

|E(H )| over all feasible solutions.

�eorem 4.4. BPP is NP-hard.

Proof. Consider the following reduction from DkS(G,k) to BPP: Create G ′ � G, and for

each vertex v ∈ V (G), add a new vertex v ′ ∈ V (G ′) and edge (v,v ′) ∈ E(G ′). �is is

illustrated in Figure 4.1.

a

b

c

a′

b ′

c ′

G

a

b

c

a′

b ′

c ′

G ′

Figure 7. Reduction gadget for �eorem 4.4

• Given an optimal solution H ⊂ G to DkS(G,k), it’s clear that se�ing H = {v ∈
G ′ | v ∈ H } with the corresponding P residues at the added vertices is an optimal

solution to BPP(G ′,k).

• Conversely, given an optimal instance H of BPP(G ′,k), note that if any of the

added verticesv ′ contain aH residue, we may �ip the bipole (v ′,v) so as to obtain

a theH residue on a vertex contained in the original graph. As each of the added

vertices are only connected to one other vertex, this operation cannot decrease

the number of H −H contacts. Again, it’s easy to see that H = H is an optimal

solution to DkS, since li�ing a be�er solution of DkS to BPP would contradict the

optimality ofH .

Clearly this reduction runs in time polynomial in the size of G, and so we conclude that

BPP is NP-hard. �

Although BPP is NP-hard on arbitrary graphs, we shall soon obtain exact solutions on

some particularly nice graphs, namely certain two and three dimensional la�ices.

4.1.1. BPP on Z2 and T2

An exact solution for BPP on the two-dimensional square grid, namely Z2 = Z × Z, was

obtained in [IL09], which we reproduce below.
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Figure 8. Packings of n = 13 bipoles on Z2

�eorem4.5 (Biplane Conjecture onZ2
). �eoptimal packing of bipoles on the two-dimensional

square la�ice is a bi-planar arrangement.

Proof. For any packing (H ,P) of n-bipoles, consider drawing lines parallel to the x and

y-axes through each h ∈ H . Note that each hydrophobic residue h divides the la�ice into

four quadrants Q1(h),Q2(h),Q3(h),Q4(h) as shown in Figure 9.

p h

Q1(h)Q2(h)

Q4(h)Q3(h)

Figure 9. �adrants generated by a hydrophilic residue.

Each quadrant Qi (h) includes its boundary lines, and for each h ∈ H , let qi (h) be the

number of hydrophobic residues in H besides h. We claim that for each i ∈ {1, . . . , 4},
there exists a vertex hi such that qi (hi ) = 0, i.e. Qi (hi ) contains no hydrophobic residues

besides hi .

Indeed, suppose, for some �xed 1 ≤ i ≤ 4, there is no hi ∈ H such that qi (hi ) = 0.

�is implies that qi (h) > 0 for all h ∈ H ; pick h ∈ H such that qi (p) is minimized. It

follows that there must exist some hydrophilic residue h′ ∈ Qi (h) and h , h′, but note that

qi (h
′) < qi (h), contradicting our choice of h.

Now, each h ∈ H can make at most three contacts, as of its four adjacent vertices, one

is occupied by a hydrophilic residue. Moreover, each Qi (hi ) results in one fewer contact.

Consequently, the maximum number of contacts in any arrangement of n bipoles is 3n−4,

but as we double counted each contact, we get an upper bound of b 3n−4

2
c on the number

of contacts. Note, however, that in a bi-planar arrangement, each hydrophobic residue

makes exactly 3 contacts except for the four residues corresponding to the corners of the

bilayer (which lost 4 contacts for even n, and 5 contacts for odd n). It follows that the

biplane meets the above upper bound. �
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Next, we will consider BPP on the two-dimensional triangular la�ice, T2
. �is la�ice o�ers

the densest packing of spheres—both on-la�ice as well as o�-la�ice—in two-dimensional

space, and thus, in a sense, is the best approximation to two-dimensional o�-la�ice BPP.

Figure 10. BPP on T2

Note that the main idea behind the proof of �eorem 4.5 carries over to T2
: We can show

that there exist {hi }i ∈[6] such that each of them misses one potential hydrophobic contact.

As each vertex in T2
has degree 6, each hydrophobic residue can make at most 5 hydropho-

bic contacts, resulting in an upper bound of
5n−6

2
= 2.5n−3 on the number of hydrophobic

contacts for any packing on T2
. A biplane, however, makes

4n−6

2
= 2n − 3 contacts.

Examining the two expressions above provides some intuition about BPP on T2
: While

a hydrophobic residue can make 5 contacts on T2
, the optimal con�guration prefers 4

contacts on average. In particular, this suggests that every time we have a hydrophobic

residue making 5 contacts, there must exist one that makes 3 or fewer contacts.

h1

h
h4

p
h5

h2 h3

Figure 11. Collisions in BPP on T2

Indeed, as T2
is not bipartite (unlike Z2

), every time a hydrophobic residue makes 5 con-

tacts, it induces two collisions as shown in Figure 11: the bipole (h,p) makes 5 contacts,

but the residues h1 and h5 can make at most 4 contacts as one of their neighboring vertices

is occupied by p, the hydrophilic residue corresponding to the bipole (h,p).

De�nition 4.6 (collision). Let (H ,P) be a feasible solution to BPP(G,n), and let (h1,p1)

be a bipole. A hydrophobic contact (h1,h2) is a collision if (h2,p1) ∈ E. Moreover, we say

that the collision (h1,h2) is induced by h1 and absorbed by h2.

De�nition 4.7 (collision count). To each hydrophobic residueh ∈ H in a feasible solution

(H ,P) to BPP(G,n) we associate a number Ch which is the number of collisions induced

by h minus the number of collisions absorbed by h.
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Figure 12. Non-biplanar optimal structure on T2
for n = 13 bipoles

More concretely, in Figure 11, the collisions are indicated with red dashed lines. Note that

h induces 2 collisions (namely (h,h1) and (h,h5)), and absorbs 0 collisions; consequently,

Ch = 2. �e notion of a collision has appeared before: [Aga+97] use this notion to develop

a set of local rules for protein folding in the HP model on T2
and the face-centered cubic

la�ice.

�eorem 4.8 (Biplane Conjecture for T2
). �e optimal packing of bipoles on the two-

dimensional triangular la�ice is a bi-planar arrangement.

Proof. Let (H ,P) be a feasible solution to BPP(T2,n). Now,

∑
h∈H Ch = 0, as every con�ict

induced by a residue is absorbed by another. Furthermore, if a hydrophobic residue h
makes 5 contacts, then Ch = 2 as seen in Figure 11, and every residue h that makes 4

contacts has Ch ≥ 0. Consequently, as

∑
h∈H Ch = 0, we must have at least as many

hydrophobic residues making 3 or fewer contacts as we have hydrophobic residues making

5 contacts.

It follows that the total number of contacts made by n bipoles is ≤ 4n, and by an argument

similar to that in the proof for �eorem 4.5, we have an upper bound of
4n−6

2
= 2n − 3 on

the number of contacts. We conclude by noting that the biplane meets this bound. �

We note that non-trivial, non-biplanar solutions to BPP do exist on T2
; these solutions,

however, are always locally biplanar.

4.1.2. BPP on Z3

BPP(Z3,n) was �rst studied in [CI99] where upper bounds showing that the biplane was

within 94% of optimal were obtained. In [IL13], the biplane conjecture was veri�ed via

simulations for values up to n = 150. Here, we prove the optimality of the biplane via a

rather elegant and surprisingly elementary argument.

�eorem 4.9 (Biplane Conjecture for 3D Cubic). �e optimal packing of bipoles on the
three-dimensional cubic la�ice is a bi-planar arrangement.

Proof. We are given n HP-bipoles on the three-dimensional cubic la�ice, and we want to

�nd the con�guration that maximizes H-H adjacency. Suppose the optimal arrangement
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has k ≥ 2 layers, and let ni be the number of H-residues in the ith layer. We then have

n1 + n2 + . . . + nk = n.

It follows from �eorem 8 in [BL91] that given a set of nodes A ⊂ Z2
(the integer grid),

the edge boundary of A has size least 2 × d2
√
|A|e.

From this result, in the ith layer of any arrangement of the bipoles, we lose at least 2 ×

d2
√
ni e H-H contacts. In total, we lose at least:

2 × (d2 ×
√
n1e + . . . + d2 ×

√
nk e)

H-H contacts.

However, note that given two numbers a,b ≥ 0, we have

√
a +
√
b ≥
√
a + b. �is in turn

implies:

2 × (d2 ×
√
n1e + . . . + d2 ×

√
nk e) ≥ 2 × d2

√
n1 + . . . 2

√
nk e

≥ 2 × d2(
√
n1 + . . . +

√
nk )e

≥ 2 × d2(
√
n1 + n2 + . . .

√
nk )e

...

≥ 2 × d2(
√
n1 + . . .nk )e

= 2 × d2 ×
√
ne

�us, any arrangement ofn bipoles on at least two layers loses at least 2×d2×
√
ne contacts,

giving us the following bound:

# hydrophobic contacts ≤
5n − 2 × d2 ×

√
ne

2

A biplanar structure meets this bound does meet this bound, and so we’re almost done—all

that remains is to show that the biplane is the be�er than any one-layered arrangement,

which we omit. �

4.2. Bipole Labelling

We have a�empted to pack or arrange bipoles so as to maximize the number of hydropho-

bic contacts. What if, instead of free-�oating bipoles, their positions were “�xed” up to

�ipping the orientation of a bipole? We can therefore de�ne the following problem:

De�nition 4.10 (Bipole-Labelling). Given a perfect matchingM of a graphG = (V ,E),
orient each edge inM as a bipole so as to maximize the number of hydrophobic contacts.

�e set of potential contacts is given by C.

�is problem can be thought of, in some sense, as an inverse to BPP; alternatively, it can

also be thought of as a constrained variant of BPP. Similar problems arise in various sce-

narios in statistical physics, most prominently in the context of spin glasses and as spin
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labelling problems [SM99]. Below, we show that Bipole-Labelling is intractable on arbi-

trary graphs via a reduction from the NP-complete problem Max-2-SAT.

De�nition 4.11 (Max-2-Sat). Given a boolean formula in conjunctive normal form with

exactly two literals per clause, �nd an assignment to the variables that maximizes the

number of satis�ed clauses.

Proposition 4.12. �e Bipole-Labelling problem is NP-complete.

Proof. Given an instance of Bipole-Labelling, we can nondeterministically check all pos-

sible labelings of the bipoles, and choose the one that has the maximum number of contacts

in nondeterministic polynomial time. �us Bipole-Labelling is in NP. Given an instance

of Max-2-SAT in n variables (xi )i ∈[n] for some n ∈ N, set up a bipole con�guration assign-

ing an unlabelled bipole (xi ,x i ) for all i ∈ [n]. For i, j ∈ [n]:

(1) Given clause (xi ,x j ), place potential contacts between (xi ,x j ), (xi ,x j ), and (x i ,x j ).

(2) Given clause (xi ,x j ), place potential contacts between (x i ,x j ), (xi ,x j ), and (xi ,x j ).

(3) Given clause (x i ,x j ), place potential contacts between (x i ,x j ), (xi ,x j ), and (x i ,x j ).

xi

x i

x j

x j

xi

x i

x j

x j

xi

x i

x j

x j

xi ∨ x j xi ∨ x j x i ∨ x j

Figure 13. Reduction from Max-2-SAT to Bipole-Labelling

We claim that a maximal-contact labelling of the bipoles corresponds to a maximal as-

signment for the Boolean formula where the H-residue of a bipole corresponds to the

equivalent variable being assigned 1. Indeed, as each bipole can only have one H-residue,

only one of xi ,x i can be assigned true (and vice versa). Moreover, in each of the three

contact-edges placed in each of the cases above, only one edge can ever be an H-H edge,

and every H-H contact is in one-to-one correspondence with a satis�ed clause.

Clearly the above reduction can be performed in time polynomial in the size of the input,

and so Bipole-Labelling is NP-complete. �

5. Conclusion

To summarize, we were able to obtain non-trivial bounds on linear polymers via discrete

isoperimetric inequalities. We were also able to prove Istrail’s biplane conjecture on the

2D triangular and 3D cubic la�ices, and proved Bipole-Labelling to be NP-hard. Below,

we indicate some possible directions for future work.
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5.1. BPP on the FCC Lattice

While BPP has been solved for the three-dimensional cubic la�ice, Istrail’s biplane con-

jecture remains open on the three-dimensional triangular or the face-centered cubic (FCC)

la�ice.

Figure 14. Unit cell of the FCC La�ice

�e FCC provides the densest packing of spheres in three-dimensional space, famously

proven by �omas Hales using a computer-assisted proof [Hal+15], and therefore would

approximate real-world protein folding much more closely than Z3
. In [CI99], counting

arguments for BPP on the FCC la�ice were given, but the optimality of the bilayer remains

an open problem.

We are uncertain whether a layer-by-layer decomposition argument as in the proof for

�eorem 4.9 would work for the FCC, in particular because the FCC can be decomposed

in two di�erent ways: either as a stack of Z2
layers or as a stack of T2

layers both with

some o�set. We believe that the �rst step towards solving BPP on the FCC la�ice would

actually be to “�x” our proof for BPP on Z3
, which only considers contacts within a layer

and ignores contacts across layers.

5.2. Variants of Bipole Packing

While BPP packing and the side-chain model allow for a coarse approximation to branched,

real-world proteins, considering “bipoles” of varying lengths would provide even be�er

approximations to real-world folding, and is a natural generalization of BPP.

Figure 15. An instance of Generalized BPP

In other words, instead of just considering packings of dominos (i.e. bipoles), we can con-

sider packings of polyominoes (i.e. “generalized” bipoles). Figure 5.2 illustrates a packing

of a mixture of side chains of length 2 as well as length 3. A natural question to ask is
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whether near-biplanar solutions (such as the packing in 5.2) are still optimal packings for

such mixtures? What other optimal packings or arrangements exist?

As discussed in [IL13], BPP admits a formulation as a linear program. �is LP formulation

can easily be extended to consider bipoles of varying lengths. Simulations for certain

mixtures of side-chains on graphs such asZ2,Z3
would be the natural next step. In addition

to the aforementioned linear-programming algorithm, Monte Carlo methods could also be

of use.

Two other variants of BPP that could be of interest are listed below:

• How does changing our potential function (i.e. considering P-P and/or H-P con-

tacts in addition to just H-H contacts) a�ect BPP?

• On what graphs is the optimal packing far from a biplane, assuming one can be

de�ned?

5.3. Algorithms for Bipole Labelling

Although Bipole-Labelling is NP-hard on arbitrary graphs, it may be tractable on cer-

tain “nice” graphs (la�ices, for example). Moreover, formulating Bipole-Labelling as a

quadratic program should result in an approximation algorithm for Bipole-Labelling on

arbitrary graphs; similar algorithms exist for problems such as Max-2-SAT, Max-Cut, etc.
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