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2 Introduction

The ultimate goal of this thesis project is to be able to enable a user to easily edit a structured
lightfield. A lightfield is a representation of all of the light in some scene; while a traditional
RGB image captures the light that flows into a single point from a variety of angles, a
lightfield image attempts to capture more information about the light traveling through a
region. Instead of taking a picture from a single perspective, lightfields are captured with
special camera rigs that are able to sample a scene in both the spacial and angular domain
(see figure 1).

More intuitively, a structured lightfield can be represented as a set of images taken from
cameras arranged in a grid. This in turn can be represented as a 4D function, f(z,y,u,v),
where (z,y) parameterize the pixel location in an image, and (u,v) parameterize the image
itself, as the images are arranged in a grid. In this paper we largely deal with the simpler,
3D lightfields which consist of a linear array of images rather than a grid, and can thus be
represented as f(x,y, u).

Lightfields have many applications. Because we are sampling the scene from many points
instead of just one, we have much more information about the scene. For instance, if we can
find pixel correspondence across the images, we can in turn use the focal length of the cameras
and their relative positions to compute the depth of the objects in the scene. This depth
information can then be used for many post-processing effects, like dynamic Depth of Field
and background removal. It is also possible to interpolate between existing camera views to
construct views from novel camera positions. This in turn can be used to render a VR scene
to a user without explicitly reconstructing the scene’s geometry. Finally, lightfield displays
such as the Looking Glass [1] are beginning to emerge on the consumer market. Because of
these numerous applications, lightfield cameras and phones are starting to become readily
available to users.

While the redundant information present in lightfields enables
the useful operations discussed above, this redundancy can also
make performing even simple edits difficult. When editing a single
image, it is trivial to change the color of a pixel. In a lightfield im-
age, however, we need to consistently propagate the edit to every
corresponding pixel in every other view. We can use disparity es-
timation algorithms [21] [27] to determine which location the pixel
projects to in the other views, but these algorithms only estimate
disparity for the central view. If the pixel is occluded by another
object in other views, we will mistakenly project the change over
the occluding object. We therefore need some way to detect and
accommodate occlusion.

Several algorithms have been introduced in an effort to edit Figure 1: A lightfield
lightfields in an occlusion aware manner. Chen et al. [4] extend can be taken with an
2D image patches to 4D lightfield patches. This approach enables array of cameras
them to use many of the standard patch-based editing methods on
lightfields. They handle occlusion by estimating the depth for all views in the lightfield and
thus avoid projecting lower depths over higher depths. Zhang et al. [26] also use patch-
based editing methods, but they decompose the central view into multiple depth layers,




Figure 2: The central view from the Milky Way Dataset

where the decomposition supports semi-transparency in the segmentation. They use these
depth layers as occlusion maps for projecting edits that the user makes to the central view.
A disadvantage of this method is that the user can only make edits in the central view, as
they only have disparity estimates for that view. Finally, Jarabo et al. [12] use affinity fields
to determine pixel correspondence across views. They compress the entire lightfield using
these affinities, perform the user’s edit, and then decompress and render the result once the
user is ready to export their edited results. This enables very performant edits.

In contrast, we use an occlusion aware method for editing lightfields using 4D, cross-view
superpixels. First, we will introduce an algorithm for 3D lightfield segmentation and we
will discuss how to perform basic edits using these superpixels. In the next section we will
discuss how to use these superpixels as the basis for an object removal operation.

3 Superpixel Oversegmentation

3.1 Introduction

For the purposes of this problem, we will consider a lightfield to be a collection of images
taken at the same time of the same scene. We are specifically interested in structured
lightfields; therefore, we consider only lightfields composed of pictures taken from cameras
that are colinear and have the same orientation.

We would like to develop an algorithm that takes in a structured lightfield in the form of a
set of images and produces a set of superpixels for the lightfield. The edges of the superpixels
should conform to the depth and color edges in the lightfield, and all pixels contained within
a superpixel in one view should also have their corresponding pixels contained within the
same superpixel in every other view. This way, the superpixels give us a sense of object
occlusion.

We limit the scope of this segmentation to 3D lightfields, rather than 4D (the cameras
are arranged in a 1D line rather than a 2D grid). We designed this method to work on a
synthetic lightfield (figure 2) that was both 3D and had a large number of camera views.

Following the general idea presented in [5], rather than performing the segmentation in
image space, we instead work in “Epipolar Image” space. “Epipolar Images,” or EPIs, are
cross-view slices of the lightfield. To generate the i*" EPI in the lightfield, we stack the
i*h row of each image in order, forming a new image (see figs. 4 and 3). We can use the
slopes of the edges in the EPI to compute the depths of the objects in the lightfield. Unlike
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(a) Multi-perspective images (b) 3D light field (c) epipolar plane images

Figure 3: We construct an EPI by slicing the lightfield perpendicular to the image plane.
Figure taken from [22]

Figure 4: An example of an Epipolar Image (EPI) from the Milky Way dataset

working in image space, EPI objects have several nice properties: lambertian objects are
always trapezoids and objects with more horizontal slopes always occlude object with more
vertical slopes.

If we can consistently extract the trapezoidal segments from the EPIs and find the cross-
EPI correspondence of those segments, we can extract 3D view-consistent object segmen-
tations. In order to automatically segment an EPI, we need to extract each object present
in the EPI. We are aiming for an oversegmentation; we need not necessarily extract each
object as a single object as long as we extract all of its components. For an example of an
over-segmentation produced by our algorithm, see fig. 5.

3.2 Related Works

There has been some work in supervised segmentation for lightfields. Wanner et al. [10]
define an optimization function using intrinsic geometric information present in the lightfield
as well as estimated disparity. Using this function, they train a Markov Random Field (MRF)
to assign per-pixel labels to the central view in the lightfield given some user annotations.
This approach only produces labels for the central view, which removes valuable information
about the lightfield such as correspondance and occlusion.

Mihara et al. [18] extend Wanner’s work by segmenting using an MRF-based graph-
cut algorithm that produces labels for all views of the lightfield. Their method uses the
appearance and 4D position of each ray in the light field as criteria for consistently segmenting
a light field. They augment these neighborhood similarity constraints with depth/disparity



Figure 5: Left: Initial EPI; Right: Segmented EPI

measures which are determined using an SVM trained on user annotated data. However,
their per-pixel graph cut is a computationally expensive operation, and causes their method
to have a very long runtime.

Hog et al.’s work [10] out-performs the running time of the naive 3D MRF graph-cut
in [18] by bundling rays according to depth. While they achieve impressive results without
excessive computational time, they, like the other methods presented above, require the user
to annotate the lightfield with “scribbles,” denoting the number and type of objects in the
scene. In contrast, we present a fully automatic segmentation method.

Criminisi et al. [5] use an EPI-based segmentation method to produce a segmentation for
a 3D lightfield. They detect the edges in each EPI, perform a matching step on the edges,
and then use the matches to reconstruct a segmentation for the original lightfield. We model
our method on their general approach.

After our method was designed, [28] was published. They use an estimated center-view
disparity map to project the lightfield pixels into 3D space, and then use a modified SLIC to
perform clustering in that space. They then reproject the segmented pixels to 2D space to
finalize the result. They produce good results for small baseline lightfields, and their method
works on 4D lightfields. However, since their method does not explicitly enforce that the
superpixels conform to edges and since they only use the disparity of the pixels in the central
view, the superpixels do not always correctly classify pixels that were obscured in the central
view.

3.3 Method

As shown in Figure 6, our method is divided into three parts. First, for the i*" EPI in
the lightfield, e;, we find the set S; of linear parameterized edges for all i. Then we match
the edges in S; with other edges in S; such that resulting set of matches M; minimizes a
custom loss function. Finally, we find cross-epi correspondence between the matches using
a bipartite graph cut.
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Figure 6: A high level overview of our pipeline. Figure taken from [13], but modified
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3.3.1 Edge Detection

The edge detection step consists of two parts: detect the edge responses for each pixel and
then fit parameterized lines to the edge responses. There are many methods to detect edge
responses, perhaps the most well known of which is the Canny Edge Detector. Unfortunately,
this method does not allow edges to bifurcate, which can produce incorrect edge responses in
areas where edges intersect and noisy edge boundaries (see figure 7). Therefore, we instead
use [17] to estimate edge responses for each pixel. First, we get the edge response value
for each pixel, a value which becomes higher the more “edgy” a pixel is. We then run
non-maximal suppression on these responses to produce an edge image.

Now that we have an edge image composed of the strongest local edge responses, we
would like to extract the parameterized lines that form the edges. Due to the nature of
EPI images, in lambertian scenes the edges will always be straight and non-horizontal. We
exploit this by iteratively fitting lines to the edge image.

To fit the lines, we make a few assumptions. We assume (1) that every active pixel in
the edge image lies on or near some true edge by at most some constant threshold o. We
also assume (2) that every true edge in the image is represented by some pixels in the edge
image. Finally, we assume (3) that each contiguous segment of pixels in the edge image
represents part or all of only one true edge. That is, the segments representing two distinct
true edges will be discontiguous. This is reasonable for non-intersecting edges, certainly,
so only the clusters containing an intersection violate this assumption. Fortunately there
tend to be several clusters that represent an edge, so the majority of clusters don’t contain
intersections even if their lines intersect.

Informed by assumptions (2) and (3), we segment the edge image by connectivity such
that each cluster of connected pixels gets its own label. We then pick the cluster with the
most pixels and fit a line to that cluster using least squares regression. Next, in accordance



Figure 7: The compass edge operator performs better for this dataset than either canny or
sobel edge detection methods



with (1), we create a set P = {P;,...,P,} of all active pixels within distance « of the
parameterized line [, where P is a 2D location vector and P} is the label of pixel i. We then
refine our estimate by minimizing

1P|
Z W x log(distance_to_l(P;)) (1)
i=1
Y pep Lipi__pi
where W; = PJEP|PE|PJ i (2)

We use gradient descent to refine the line estimate, as the equation above is differentiable
with respect to [. This tends to converge in a few hundred iterations and is therefore quite
fast to compute.

Once we have refined the line estimate, we resample P using the new line parameters.
We then repeat this process until the line converges to a stable location (4-5 times). We
then record the final location of the line and delete all pixels within « distance of the line
(see figure 8).

The motivation for the equation 1 requires some explanation. By assumption (3), we’'d
almost like to fit the line to just one cluster, as each cluster represents a true edge. However,
some edges are represented by multiple clusters. Thus, we would really like to regress using
all clusters representing that line. However, we don’t know which clusters represent that
line.

If multiple clusters represent a line, those clusters should contain colinear pixels. Con-
versely, if a nearby cluster represents a different line, that cluster’s pixels should not be
colinear with the other clusters. If we regress to all of the pixels in all nearby clusters, we
will fit to neither true line, instead fitting to the average between them. This is undesirable.
To avoid this, we weight clusters higher if they have more pixels within « of the current line
estimate. This causes the line to move closer to the clusters that contain more pixels, in turn
causing those clusters to be weighted higher in the next iteration. Within a few iterations,
the line tends to converge to just one set of clusters.

Note also that we use log rather than L, distance. Lo distance heavily penalizes outliers,
but many of our points are outliers (edge pixels sampled from clusters representing different
lines). The log distance metric ignores outliers and cares more about minimizing distance
to the most points possible.

3.3.2 Edge Matching

Using the algorithm in the last section, we now have a set of n lines, {ly,...,l,} for our
EPI. Each line is parameterized by [zg, x1], where xq is the x coordinate of the intersection
of the line with the top of the image, and x; is the x coordinate of the bottom intersection
point. We assume that every true edge in the EPI is represented by a line, but some lines
are extraneous and don’t represent a boundary.

We would like to output a set of line matches, M, such that each match is in the form
(l;,1;). We define a match to “cover” a set of pixels A if all elements in A are contained
between [; and [;. A set of matches “covers” the union of the areas covered by its constituent

9



Figure 8: An overview of our line fitting algorithm. (1) We cluster the edge responses by
connectivity; distinct colors represent distinct clusters. (2) We fit a line to the largest cluster
using least squares regression. (3) We refine the estimate using equation 1. (4) We remove
all pixels within a distance to the line.
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Figure 9: The result of our line fitting algorithm for an EPI. The top image is the original
EPI with the parameterized lines superimposed, and the bottom image is the parameterized
lines alone

matches. M should minimize the energy function L(M) (defined below). Furthermore, M
should meet these constraints:

o V[l;,l;] € M,i+# j, as a line should not match with itself.

V[l;, ;] € M,l; and [; should not have a point of intersection located inside the EPI
image, as the matching regions should be trapezoidal.

M must cover the entire image.

Each line must occur in at most two matches in M.

WLOG [l;, 1], [l;,l] € M = 1;(z0) < l;(x0) and (o) < lx(zo) (a line can only be
matched to once on the left and once on the right).

To compute the energy of a set of matches, M, we first create an ordered list of matches
M'. To create M', we sort the matches in M by their depth (given by the angle of their
boundary lines) such that M’[0] is the region most in the foreground and M’[n — 1] is the
region most in the background. Given M’ we then define our loss function as:

|M'|—1
L(M') = Z ay * EndsRatio(M'[i]) + o * ColorVariance(M'[i], M'[1 : 1 —1])  (3)
i=0

Where

min(|li(xo) — li(wo)|, |li(w1) — li(w1)])
max(|l;(zo) — Li(wo)], [li(x1) — Li(21)])

The EndsRatio term encourages the top and bottom of the matched region to be of
approximately equal length, resulting in regions that are parallelograms since EPI objects

EndsRatio([l;, lj]) =

11
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Figure 10: An example of an optimal edge matching solution

are usually parallelograms. The ColorVariance([l;,[;], mask) term is the variance in color
in the region between [; and [; after we remove from consideration the area covered by the
matches in mask (in this case, all of the matches in front of match 7). Finally, o; = 1 and
as = 500 are constant weights.

Minimizing this function is difficult. Originally we conducted a complete search of the
space of valid matches, which yielded a globally optimal solution but took an extremely long
time to run, as it was in O(4™). Due to this, we instead switched to a greedy algorithm.
At each step, the algorithm considers all valid matches and picks the one that will increase
the match energy the least. The algorithm terminates once the mask defined by its set of
matches covers the entire EPI or it can no longer make any valid matches. In this way, it
greedily minimizes the loss and maintains the constraints (as it never picks a match which
would cause the constraints to be violated). An example matching output can be see in
figure 11.

3.3.3 Cross-EPI Correspondence

Now that we have matches for each EPI, we need to find cross EPI correspondence between
the matches. To find these “tracks” of matches, we first convert each match, m = (ly, ;) into
a 7D vector of [lg(xo), lo(z1),l1(x0), 1 (x1), 7, g, b] where r,g,b are the average values of the
match’s red, green, and blue channels, respectively. Then, we construct a bipartite graph by
connecting every vector from EPI; to every vector in EPI; ;. We then perform a bipartite
graph cut on the matches, as in [19] to find the best matches in L1 space. Unfortunately,
this forces the resulting tracks of matches to be continuous, even if the matches are no
longer being pulled from the same underlying object. We therefore perform a post-process
operation to split the tracks. Starting at the beginning of a track, we add the current match,
m; to a set S and compute the entropy of S. If the entropy of S is greater than a fixed
parameter [3, we split the track before m; and start a new set, S = {m;}. In this way, we
find vertical correspondence across the image.

12



Figure 11: (1) The original EPI. (2) Our matched result. Note that we color each distinct
match the average of the colors in the region that it covers. The bright green color represents
regions not covered by any matches (there are no lines at the end of the EPI to match to,
so these regions are not covered)

This step is not strictly necessary, as the previous two steps give us cross-epi superpixels.
Since the lightfield is 3D, this is enough information to use to detect horizontal occlusions.
However, it can be nice to have superpixels in all dimensions for purposes such as object
selection.

3.4 Results

To visualize our results, we first run the segmentation algorithm on each EPI. We color each
match the average color of the area covered by that match. We then reconstruct every view
from these matches. The original and reconstructed central views are shown in figure 12.
We also visualize the matched regions (resulting from step 3) for the central view in figure
13.

3.5 Conclusion

We present a method for segmenting a 3D large baseline dataset. This method produces
reasonable segmentations for this dataset, but has its limitations. Since it uses a greedy
algorithm for step 2, it can sometimes mismatch EPI segments, resulting in the object
boundaries not being respected, as in figure 14. This could be improved by propagating
matches from EPIs with lower losses from function (3) to EPIs with much higher losses. The
algorithm also does not generalize well to small baseline lightfields. However, it inspired the
work of [13]; their method generalizes this approach to 4D lightfields. I was also involved in
the design of the method and writing the paper.

13



Figure 12: The segmentation of the central view produced by step 2 of our algorithm. To
generate this image, we run the algorithm shown in Figure 11 on every EPI. We then stack
the results and slice across each EPI (in the same way that we generated the EPIs initially,
only we now generate views). We show here the central view. Note that this does not
incorporate step 3; it only provides horizontal cross-image segmentations.

Figure 13: The final 3D segmentation for the central view. Note that this each segment is
randomly colored; distinct colors represent distinct superpixels.
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Figure 14: An example of a failure case of this algorithm. The yellow sphere matches to
the boundary of the blue cylinder because increasing the total area decreases the per-pixel
variance, even though the area being included is purple rather than yellow. This error tends
to occur when the objects have noisy texture, as is happening here with the sphere’s shadow.

4 Basic Editing Operations

Using lightfield superpixels we can perform basic editing operations.

4.1 Pixel edit propagation

Suppose that a user would like to change a pixel’s color in the central view. We need
to consistently propagate that change to all other views in an occlusion aware manner; if
we just project the color change using the pixel’s estimated disparity, we run the risk of
projecting it over an occluding object. We will use our light-field segmentation to project in
an occlusion-aware manner using the following method:
1 for each pixel, p, in user’s edit:
2 set p to the new color in the central view
3 get the label, 1, of p’s segmentation in the central view
4 for each view, v:
5 project p to pixel p’ in view v using the central view disparity estimates
6 get the label of the projected pixel, 1’
7 if 1 =1"
8 set p’ to the new color
9 else continue

Since the labels of objects in the segmentation are theoretically consistent across views, if
p and p’ have different labels, they must be representing different objects. Furthermore, since
foreground always keep their labels during occlusions, it must be that p is occluded in view
v. We implemented this algorithm and projected a simple edit using the segmentations from
the previous section, shown in figure 15. For this example we use ground truth disparity,

15
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Figure 15: An overview of our pixel edit propagation system. A user performs an edit in
some view (in this case the central view). We then use the estimated disparity of the pixels
in that view to project the edited pixels to all other views. We can use the labels produced
by our segmentation to detect if the pixels will be projected behind an occluding object.

but in an actual application we’d estimate the disparity of the central view using one of the
several available methods.

4.2 Disparity estimate propagation

While the above method works well for editing the central view, it could potentially fail if a
user wants to edit another view. As we only have disparity estimates for the pixels visible in
the central view, if a user edits an occluded pixel, we won’t be able to project their edit to
the other views. We can solve this problem by using our superpixels to propagate disparity
estimates to every pixel in the following manner:
for each pixel, p, in the central view:
for each view, v:

project p to pixel p’ in view v using the central view disparity estimates

get the label of the projected pixel, 1’

if 1 =17

set the disparity of p’ to the disparity of p
else continue

16
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Figure 16: Left to right: the depth projection with missing depths (marked in red); the
depth projection with our estimated depths; the ground truth depth

for each pixel, p, in the lightfield without disparity:
get the label, 1, of p
d’ = average disparity of the pixels with label 1
set the disparity of p to d’

This assumes that superpixels represent regions of objects’ surfaces with basically uniform
disparity and uses that disparity to infer the missing disparities. A more sophisticated
method might fit a plane to the superpixel’s disparity map and interpolate on that basis, but
we found that this method works for small baseline lightfields, at least. While this method
fails for objects that are totally obscured in the central view, it produces reasonable results,
shown in figure 16. For this example we use the superpixels produced by [13] and the Still Life
lightfield from the old HCI dataset, as we were unable to obtain dense disparity estimates for
the Milky Way dataset. Note that we did use ground truth rather than estimated disparity

The incorrect depth estimates occur largely as a result of incorrect superpixel bound-
aries. We post-process the depth estimates with a 3x3 median filter to alleviate some of the
floating pixels, but this does not solve large clusters of errors. A more robust method might
additionally use the color of the nearby regions to detect and correct erroneous depths, but
our simple method works well enough for demonstration purposes.

4.3 Object selection

In order to facilitate more advanced editing operations, a user may wish to perform a cross-
view object selection. This is trivial when we have superpixels. The user merely selects
which superpixels they would like the selection to contain by drawing “squiggles” on any
view. Since the superpixels theoretically respect object boundaries, there will be some set of
superpixels which contains the object they’d like to modify. We create a set, L of the labels
of the pixels contained within the squiggles. We then perform the cross view selection by
selecting all pixels whose label is a member of L. This approach is demonstrated in figure
17.

17



Figure 17: An example output of our selection method. From top left to bottom right:
the central view with the user selection; the superpixels in the central view with the user
selection; the resulting selection in the central view; the resulting selection in the leftmost
view

18



5 Consistent Object Removal

5.1 Introduction

A more sophisticated editing operation that we may wish to perform on lightfields is object
deletion. That is, given an object in our scene, we would like to remove the object by “in-
painting” or “hallucinating” what is probably obscured by the object. While there has been
considerable research on object inpainting in single view images, the problem becomes more
complicated when applied to lightfields. In addition to the problem of hallucinating back-
ground information in a single view, we also need to be able to propagate that information
in a view consistent manner.

Although it is generally more difficult to inpaint objects in lightfields, they do have the
advantage of having more information. While in a single view image there is little to no
explicit information about the scene behind an object, we can use the multiple views present
in lightfield images to “see around” an object. Specifically, we can propagate the background
information from views in which the background is visible to those in which it is not. While
this is useful for large baseline lightfields, the utility of this technique decreases with the
baseline, as we can’t see as far around the object.

Previous inpainting methods on structured lightfields work best with very small baselines.
In general, the user annotates an object in the central view, the algorithm uses some single-
view infilling method and projects the results to all other views (see figure 18). These
methods work well for removing a foreground object from a small baseline lightfield. However,
they do not work well for more complex scenes where multiple objects can occlude one
another and they do not take advantage of the background information present in other
views. In part, this is because these algorithms generally only have access to disparity
estimates for the central view, and thus cannot project pixels which do not appear in that
view. Therefore, the algorithms are unable to “look around” objects.

We present a novel approach for lightfield inpainting that exploits the information present
in other views using lightfield superpixels. This enables us to both infill more complicated
scenes and to propagate background information from other views.

5.2 Related Works
5.2.1 Single Image Inpainting

Many papers exist for single-view inpainting. Classical algorithms propagate color informa-
tion from exemplar regions into the masked region [20] [3] [6]. They can use user-defined
boundaries to preserve object structure in the infilled regions, or they can automatically
attempt to preserve structure by maintaining strong edges. These methods tend to pro-
duce good local results, but they lack semantic understanding of scenes. Thus, they do not
perform well when applied to global inpainting tasks; for instance, they tend to produce un-
realistic results when the masked region is large. Since they have no semantic understanding,
they also tend to fail when objects need to maintain a particular global pattern in order to
be recognizable, such as in the case of faces.

Recently neural networks have emerged and have surpassed many classical algorithms
in both speed and accuracy. Modern learning based approaches use convolutional neural

19
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Figure 18: The general pipeline of non-segmentation based lightfield infilling methods (figure
taken from [2])

networks to infill masked regions. They have achieved impressive results, and are able to have
a better semantic understanding of scenes [11] [24]. However, while standard convolutional
networks are good at globally consistent infilling, they also tend to produce textureless and
distorted local results.

In an attempt to remedy this problem, [16] introduced the Partial Convolutional (PConv)
layer. We will discuss this layer in detail soon, but essentially each layer inpaints slightly
more than the previous, propagating information from the edge of the unknown region
further into its center. This, they claim, helps prevent the network to being sensitive to
whatever value the masked region was initialized to. It also helps propagate detail rather
than producing uniform textures in the masked region. Using this novel approach, they
achieved state-of-the-art accuracy on infilling tasks with arbitrarily shaped masks.

5.2.2 Structured Lightfield Inpainting

As previously discussed, lightfield inpainting is generally a more difficult task than single-
view inpainting. Nevertheless, researchers have created several methods for performing this
operation. Yatziv et al. [23] first align all corresponding pixels in the lightfield by warping
each view. They then propagate pixels that are obscured from views in which they are
visible. Finally, they use a high-dimensional patch-based texture synthesis method to infill
any regions that are still missing information.

Le Pendu et al. [15] treat the lightfield as a low rank matrix. This enables them to
take an arbitrary infilled region from the central view and propagate it to all other views
using a low rank matrix completion algorithm. Their method is agnostic as to how the color
information in the central view is infilled, focusing rather on propagating the infilled data
once it’s been created.

Allain et al. [2] introduce a warping method that very quickly performs infilling on small
baseline lightfields. First, they estimate the disparity of the pixels in the central view using
a fast, noisy approximation. They then use a single view inpainting algorithm to fill a user-
defined mask in the central view and project that region to all other views. Their method
works well with small baselines and clearly delimited foreground objects, but fails in more
complex scenes with multiple depth layers.
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5.3 Method

We introduce a segmentation-based method for consistently inpainting a lightfield. First, we
use the method in 4.2 to propagate disparity to every pixel in the lightfield. Then, we use
the method in 4.3 to select some set of superpixels, S, representing the object to be removed.
Using S, we can consistently create a mask of the object for every view. Let M, represent
the mask for view v.

Our ultimate objective is to infill all masked pixels in all views. Consider the central
view ¢ with mask M.. It may be that some pixels occluded in M, are visible in other views.
We would like to project those pixels to view ¢ so that we can use them to infill M,.. If we
project a pixel p, from view v such that p, ¢ M,, we can use that pixel to fill in M,. Due to
occlusion, it may be that several pixels from different views project to the same location in c.
In this case, we keep the pixel with the highest disparity, as it represents the closest object,
which should occlude the background objects. See figure 19 for our propagation result.

If the disparity is wide enough and the object is small enough, we may fill all of M, in
this step. If, however, the object is wide enough to obscure some background from all of the
views, it may be that we need to hallucinate background for the remaining masked region,

As discussed above, there are many methods for inpainting RGB images. Any method,
automatic or manual, can be used for this step. For the example above, we use Photoshop
to inpaint the region in the central view.

Now that we have inpainted color information we need to project it to the other views.
Technically there is no disparity for this region, as the pixels exist only in one view. Therefore,
we must also hallucinate the disparity. Other methods use low-rank matrix completion
algorithms [15] or superpixel depth propegation techniques [2] (like the one we used for
the central view occluded pixels). We introduce a novel depth infilling technique using a
convolutional neural network, which is discussed in detail below.

Our network gives us a disparity estimate for all of the infilled pixels, so we project these
pixels to all views. Finally, we repeat this process of infilling M, for every other view v in
the lightfield, if we didn’t already infill all of M, by projecting our infilled regions from other
views. Our results for this method are shown in figure 20.

5.4 Depth Infilling Network

There are many existing networks that perform monoscopic depth estimation from a single
RGB image. Godard et al. [9] use an unsupervised network using pairs of stero images. They
use the disparity estimates to project one view to the other, and use the difference in the
resulting images as their loss function. Kim et al. [14] simultaneously train two adversarial
networks, one of which detects global inconsistencies in the output, and the other of which
detects local anomalies. They then merge the outputs of these networks using a variational
framework and use it as their loss function. Kumar et al. [7] use a GAN to learn a loss
function for predicting depth outputs for monocular images.

Our task is different than monocular depth estimation, however. In addition to having an
RGB image, we also have a partially completed depth image. We would like to somehow ex-
ploit the existing depth information. There are non-learning approaches to this problem [12],
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Figure 19: Results of propagating the pixels from other images into the central view using
our depth infilling algorithm. The baseline is small, so not very much information gets
propagated.

22



ate mask from selection

Perform depth estimation

-1
ke ﬁ I S

other views

Propagate infilled region to other views

Figure 20: Our infilling pipeline. Our CNN can only operate on 256x256 images, so we have
to crop and downsample the image in order to predict the depth. The masked depth input
is on the left and our depth prediction is on the right. We show our final results for the
leftmost, center, and rightmost views.
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but given the efficacy of neural networks for similar tasks, we decided to try this approach.
Note that we were not trying to achieve state-of-the-art performance in monocular depth
estimation: that is beyond the scope of this research project. Instead, we are attempting to
find a good way to use the existing depth information to inform the depths of the infilled
region.

5.4.1 Datasets

One disadvantage of neural networks is the large amount of data that we need to train them.
In this case especially, there are a dearth of existing RGBD datasets. There is the NYU
Depth v2, which contains 500,000 RGB+D images taken with the Kinect v1. Unfortunately,
the Kinect v1 tends to produce rather noisy depth images. The Make3D dataset contains
very accurate depth maps for their images, but there are only 500 images; not enough to
train a network on. KITTI is well-known, but it has a very limited domain (street scenes)
and sparse depth maps. Therefore, we decided to use the DIML Kinect v2 dataset which
contains 220,000 RGB+D images taken with the Kinect v2. The Kinect v2 produces much
better depth maps than the Kinect v1.

5.4.2 Network Loss

Another problem that we had to address was the network loss. Recent RGB infilling papers
[11] [25] train local and global discriminators using adversarial architectures to ensure that
the network preserves both high-level structure and low-level consistency. However, the
current state-of-the-art, Liu et al. [16] does not use a GAN. Instead, they define their loss
function using a combination of perceptual loss [8], style loss using a Gram matrix, TV loss,
and L loss. The perceptual loss takes the L; loss of the projection of the ground truth and
output images into a different feature space using the pretrained Image-Net’s VGG16. The
idea is that this projection will represent high-level information about the image, and will
therefore help the output to look realistic.

Unfortunately, as we are training our network to generate depth images rather than color
images, we cannot use the perceptual loss term. ImageNet is trained on RGB images, and
therefore does not work for depth images. In a future work, we could attempt to retrain
ImageNet to encode depth images, but that was beyond the scope of this project. Therefore,
as the major part of their loss function was unavailable, we instead used a simple L; loss.
Once again, we were not attempting to achieve state of the art results; just design a method
to exploit the existing depth information. Still, we found that L, loss worked well enough
for our purposes.

5.4.3 Network Architecture

Our network architecture is inspired by [16]. They use a U-net with skip layers to encode
the input and reconstruct the infilled image. Instead of using convolutional layers, as in a
standard U-net, they instead use “Partial Convolutional” layers. Partial Convolutional, or
PConv, layers are like standard convolutional layers that also take a binary mask as input.
Specifically, let X be the pixels in the convolution, M be the pixels from the binary mask
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in the convolution, W be the convolutional weights, and b be the bias. In this case, the
resulting pixel after the convolutional operation is performed is defined as:

T = sum (M)

[ WX eoM)2ml 4 p o if sum(M) > 0
0 else

We also update the input mask as follows for each layer:

, 1 if sum(M) >0
0 else

In this way, each layer propagates some information from the edge of its masked region
and erodes the mask. According to [16], this allows the network to ignore the initialization
value of the masked region and better propagate information into the mask. [16] claims that
these PConv layers are largely what allows them to achieve state-of-the-art performance on
their image infilling task.

5.4.4 Network Results

Using their architecture, we implemented a U-net with PConv layers (figure 24), fed it the
RGB and masked depth channels, and trained it on the L; difference between its output and
ground truth. Unfortunately, this produced very bad depth maps: the depth boundaries
did not seem to conform at all to the edges present in the RGB image. We found that this
was because PConv layers mask all output channels, so the RGB information was being lost
after the first layer.

Our subsequent network design fixed this issue by separating the depth and RGB channels
into parallel networks. The RGB information was processed with standard convolutional
layers, but the depth was still processed with PConv layers. In order to allow the depth
estimates to respect the color edges, we feed each depth layer the concatenated output of
the previous depth channel and the corresponding RGB convolution (figure 25). The images
produced by this network, while better than the first, were very blurry. Blurry images are
common with L; and Lo losses, however, so we tried several other losses including MS-SSIM,
and L; Charbonnier, but none of these yielded better results.

Finally, we tried replacing the PConv layers with standard convolutional layers. Surpris-
ingly, this produced far better results than the partial convolutional network, which seems
to conflict with the results of [16]. The results for all three networks are given in figure 21.

5.4.5 PConv vs Convolutional Layers

We found the fact that straight convolutional layers work better than partial convolutional
layers in this task surprising. We developed a few theories to explain the discrepancy:

1. Some feature of the second network’s architecture (figure 25) is causing the network to

not learn well. Perhaps the idea of the parallel RGB network is fundamentally flawed
somehow.
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Figure 21: Top row: Input color image; mask for depth (depth information is set to 0 where
mask is black); ground truth depth. Bottom row: original PConv network output; second
PConv network output; CNN output
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2. PConv layers do not work well with simple loss functions like L;. Perhaps this is
because PConv layers mask out large portions of their output, and thus have a diffi-
cult time encoding/learning global features of images. [16] found that PConv layers
outperform convolutional layers in inpainting tasks largely because their loss function
used a term based on ImageNet, a network which is already trained to encode high-
level features. When we used L loss, we removed that term, and thus crippled PConv
layers.

3. Perhaps PConv layers have an especially hard time learning relative geometric relations
between scene objects, and thus cannot predict depth well. This seems unlikely given
that they can infill RGB images in a geometrically consistent manner, but it’s possible
that they don’t do well with relative scales.

To differentiate between theories (1) and (2), we trained a network using the architecture
in figure 24 and an identical network using convolutional layers instead of PConv layers. We
used Lj loss and asked each network to infill RGB images (to avoid the problem presented in
(3)). If theory (1) is correct, we would expect to see the PConv network perform at or above
the convolutional network, and if theory (2) is correct, we would expect the convolutional
network to do better.

Our experimental results support theory (2), as seen in figure 22. The PConv network
could not even learn to reconstruct the given ground truth inputs, and seemed to favor a
sepia output. The convolutional network, while it did not do well, did learn to produce
better images in half of the time (we likely could have gotten even better images if we had
tuned the hyperparameters, but these results served to answer our experimental question).
The PConv network was given many iterations to learn, but it did not improve past a loss
of 0.4 (see figure 23). From this we conclude that its failure to learn was a result of the
network itself and not the hyperparameters.
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Figure 22: Top to bottom: The mask (black is masked out); the PConv network output; the
convolutional network output; the ground truth image. Note that the input to the network
is the ground truth image time the mask.
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Figure 23: The loss of the PConv network for rgb reconstruction. loss_hole is the L; loss
of the masked region and the ground truth while loss_valid is the L; difference between
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6 Conclusion

Lightfields are quickly emerging in the consumer market, and as such the demand for edit-
ing techniques is growing. Throughout this paper, we have argued that segmentation-based
methods are a viable way of editing lightfields. We present one of the first automatic segmen-
tation techniques, intended for 3D large baseline lightfields. Unfortunately, while it produces
reasonable results for the dataset that it was designed for, it does not generalize well to small
baseline lightfields with fewer views. As such, its practical applications are limited; most
plenoptic cameras have very small baselines.

Our segmentation algorithm did show the power of EPI based segmentations, however,
and inspired the work of [13], a more general segmentation method that works with small
baseline, 4D lightfields. Using their segmentations, we then discussed several occlusion aware
edit propagation techniques. While these techniques work well with ground truth depth and
accurate segmentations, they are vulnerable to incorrect estimates. Future work should
focus on increasing segmentation accuracy and making the edit methods more robust in
the face of erroneous results. For our examples, we used only the center and end views for
edit propagation, but a more sophisticated method might exploit all views’ estimates using
a voting system. We assumed that the segmentations were entirely correct, but another
method might use color consistency in addition to segmentation labels to ensure that it is
projecting the edit to the correct pixel.

We also use our superpixels to propagate the central disparity estimates to every pixel
in the lightfield, and we use that depth information to let the user edit any view and to
“look around” objects when performing deletions. Once again, the quality of the results
of this propagation step are largely dependent on the accuracy of the superpixels. A more
robust method might also use the color and depth information of the surrounding pixels
when propagating disparity, rather than just using the average depth of the superpixel.

“Looking around” object works well as long as the mask is correct, which it often is not.
Incorrect masks (masks which do not quite reach the object boundary) can cause there to be
floating pixels from the original object, as in figure 19. A post processing step that searches
for floating pixels with vastly different depths from their surroundings might fix this issue.
In actuality, however, the practical application of propagating information from other views
is likely limited, as most lightfield cameras are extremely small baseline. Therefore, it is
easier to just infill the central view, as in [12].

Finally, we present a CNN which can predict the depth of an infilled region. This works
remarkably well given the simple loss function that it uses. Future work could try using a
GAN to get even better results, or train an autoencoder like ImageNet on depth images for
the loss function. We found that PConv layers did not work well with our network, but it
would be interesting to see if they performed better with an autoencoder-based loss function,
as we theorize in section 5.4.5.
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