
Brown University
Spring 2019

Weakly-Supervised Classifier Learning

via Temporal Logic

Author: Leonard Gleyzer, ScB/Honors Candidate

Advisor: Dr. Michael Littman, PhD

Reader: Dr. Caroline Klivans, PhD

Support: Graduate student Lucas Lehnert

Undergraduate Honors Thesis

Concentration: Computer Science

BROWN UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

Contents

1 Abstract 3

2 Introduction 3

3 Related Work 4

4 Relevant Background 4
4.1 Probabilistic Finite State Automaton (PFSA) 4
4.2 Geometric Linear Temporal Logic (GLTL) 5
4.3 GLTL-PFSA Correspondence Example 6

5 Problem Formulation 7

6 Experimental Results 9
6.1 Gridworld Trials . 9
6.2 MNIST Trial 1: Two Temporal Operators 11
6.3 MNIST Trial 2: No Explicit Digit Location

“Eventually” Operator Only 12
6.4 MNIST Trial 3: No Explicit Digit Location

“Always” Operator Only . 13
6.5 MNIST Trial 4: No Explicit Digit Location,

“Eventually” and “Always” Operators Together 14
6.6 Internal PFSA Probabilities 16

7 Conclusion 18

8 Future Work 18

9 Acknowledgements 19

2

1 Abstract

One of the primary goals of supervised machine learning is to learn a clas-
sifier that can optimally assign a label to unseen instances of data. In fields
such as robotics, one would like to classify environment states into semantic
categories to support high level task planning based on temporal sensory
data. This paper proposes a new methodology to learn a classifier based
on temporal sequence data and respective task specifications that these se-
quences satisfy, using the task-specification language of GLTL, a variant of
LTL (Linear Temporal Logic). We show how this formulation can be used
to classify handwritten digits from the MNIST database.

2 Introduction

Suppose we have a robot, and we show the robot various paths through an
environment (a house, for instance). Ideally, we would like the robot to be
able to, from this temporal sensory path information, classify which room
is the kitchen, which is the bedroom, etc. We’d like to be able to commu-
nicate with the robot in terms that make sense to us—to be able to talk
about things like being “in the kitchen”. That requires a classifier that can
take information about the environment and assess whether such high level
properties are true. It is easy to create such a classifier if we have lots of
labeled examples; however, we don’t always have access to such data. Here,
we look at another way these classifiers can be trained. We can consider
each room in this scenario as its own atomic proposition (AP), a statement
that must be either true or false. For example, consider the phrase “go
to the bedroom and then go to the kitchen”. From this statement, there
are 2 APs we would like to ground: kitchen and bedroom. But how do
we communicate this phrase to the robot? There has been a considerable
amount of work done in inferring task specifications from demonstrations,
but here, rather than inferring task specifications from demonstration data,
we would like to use task specifications along with demonstration data to
allow an agent to infer information about the environment over which the
demonstration occurred.

This paper is an extension of a research idea proposed by Professor Michael
Littman and graduate student Lucas Lehnert. I primarily contributed to
this project by implementing the particular neural network algorithms in
TensorFlow, as well as ran experiments and collected data to understand

3

the scope and limitations of the ideas proposed.

3 Related Work

There has been a significant amount of work in the field of reinforcement
learning (RL) related to LTL. One such concept is Inverse LTL, of which
there have been some interesting developments recently[5][6][7]. The goal
of Inverse LTL is to infer an LTL specification that an agent must have
satisfied given its actions, given behavioral observations of the agent. This
idea is a combination of Inverse RL [3], which attempts to infer a reward
function from agent behavior, and LTL, a task-specification language [1] that
can be used to define and motivate agent behavior. For instance, Bacchus
et al.[2] proposes using LTL-like representations to allow rewards for RL
agents to be dependent on history. Littman et al.[1] proposes using LTL
specifications directly as a replacement for rewards by having agents select
actions to maximize the probability that a given formula is true. One feature
of LTL that poses problems is that of infinite traces, that is, a statement
such as “eventually be in the kitchen” can have a corresponding sequence
of actions of arbitrary length, as long as the last state is “in the kitchen”.
In this work, the challenge of LTL being defined over infinite traces is met
by having temporal operators expire much as temporal discounting can be
viewed as rewards expiring.

4 Relevant Background

In order to specify tasks, we need a language for doing so. In this paper,
we use Geometric Linear Temporal Logic (GLTL) for this purpose. From
GLTL, we can extract Probabilistic Finite State Automata (PFSA), which
allow us to express GLTL in a way that can be understood mathematically
by our classifier. We define these concepts next.

4.1 Probabilistic Finite State Automaton (PFSA)

A finite-state automaton (FSA) [4] is a theoretical model for accepting/rejecting
strings of a given language, where a language is a subset of sequences from
a given alphabet of symbols. Generally speaking, a FSA consists of a set
of states and rules for transitioning between states based on input received.
In a deterministic finite automaton, the transition function is deterministic;

4

that is, from a given state, each input will cause a deterministic transi-
tion. In a probabilistic finite state automaton [8], the transition function
is stochastic; that is, from a given state, each input induces a probability
distribution over the available states to which the automaton can transition.

Formally a PFSA is defined as a 5-tuple h⌦,⌃,�,!0,!F i consisting of

1. a finite set of states ⌦,

2. a finite alphabet of input symbols ⌃,

3. a transition function � : ⌦⇥ ⌃⇥ ⌦ ! [0, 1] and
8!,�

P
!0 �(!,�,!0) = 1,

4. an initial start state !0 2 ⌦, and

5. an accept state set !F ✓ ⌦ of accept states; if there is a single accept
state, we often abuse notation and write !F 2 ⌦ as the accept state
itself.

4.2 Geometric Linear Temporal Logic (GLTL)

Geometric Linear Temporal Logic [1] is a variation of Linear Temporal Logic
(LTL). LTL is a logic that captures temporal information [9][10], and whose
formulas can be used to encode temporal task specifications. The compo-
nents of LTL include the usual logical connectives (i.e. negation (¬), con-
junction (^), disjunction (_), logical implication (!)), as well as temporal
modal operators (next (○), always (⇤), eventually (⌃), until (U)).

Suppose we want to specify to eventually achieve a state g. This can be
expressed as ⌃g. If we want to avoid some bad state b, we can say ⇤¬b. In
the case of a robot going through a house, we can express “go to the kitchen
and then go to the bedroom” as ⌃(K ^ ⌃B) (where K is kitchen and B
is bedroom), which expresses the statement “eventually have it be the case
that we are at the kitchen, from which point we will eventually end up in
the bedroom”.

GLTL is a variation of LTL that adds an expiration probability ✏ to a for-
mula. For example, let ✏ 2 (0, 1). The formula ⌃✏g says that, at each time
step, the formula component ⌃ holds with probability 1 � ✏. In e↵ect, this
makes the statement say “g eventually holds within t time steps”, where
t ⇠ Geometric(1�✏). The feature of GLTL that makes it particularly useful

5

in this paper is that GLTL formulas can be converted into PFSAs, which
are used in the objective function for our optimizer (discussed in Section 5).

For a more in-depth discussion of GLTL, we refer the reader to Littman
et al.[1].

4.3 GLTL-PFSA Correspondence Example

As an example of a conversion from a GLTL formula to a PFSA, consider
the GLTL formula ⌃0.01(a ^ ⌃0.01b). This formula states we would like to,
at some point, get to a, and once we get to a, end in b. The corresponding
PFSA (generated by code provided by Cambridge Yang, a graduate student
at MIT) is visualized below.

Figure 1: Automaton representing ⌃0.01(a ^ ⌃0.01b)

6

Each edge has a corresponding symbol (some edges have multiple symbols
separated by semicolons in the figure for readability), along with a proba-
bility of transitioning along that edge given the symbol. Our atomic propo-
sitions are {a, b}, and our symbols are the binary sequences{11, 10, 01, 00},
where 00 means neither a nor b, 10 means only a, 01 means only b, and 11
means both a and b simultaneously. Starting in State 1, until we encounter
the first a (symbol 10), we will, with probability 0.99, stay in State 1. Once
we encounter the first a, we will, with probability 0.98, transition to State
2 until we encounter the final b (symbol 01), which will cause the transition
to State 3, the accept state, with probability 1. All other low probabilities
and states are related to the temporal operators probabilistically expiring.

5 Problem Formulation

In the traditional supervised learning setting, we are given a training set
(X,Y), where X is the set of training data, and Y is the corresponding set
of training labels. In our scenario, we can think of each element of X as
a finite sequence (which we will call a trajectory), and the corresponding
element of Y a GLTL formula that the respective trajectory satisfies. For
example, suppose we have the MNIST handwritten digit database. An ex-
ample of an element (x, y) 2 (X,Y) is ([00101211210],⌃0.01(2 ^ ⌃0.010)),
where 2 is an MNIST instance of the digit 2, and so forth.

Given a trajectory ⌧ over a dataset D of states S and corresponding GLTL
formula G, we can convert G to a corresponding PFSA

AG = h⌦G,⌃G,�G,!
0
G,!

F
Gi.

Here, ⌃G consists of all true/false (T/F) assignments of propositions in G.
For example, if G = ⌃0.01(2 ^ ⌃0.010), then ⌃G = {FF, FT, TF, TT}, with
respect to 0 and 2.

We would like to find a function f (called a grounding function) over S
that assigns a probability distribution to each s 2 S such that the highest
probability is assigned to the symbol that represents the ground truth of
what s represents. For instance, in the kitchen-bedroom example, we want
f to take in sensory data from being in the kitchen, and output a probabil-
ity distribution over the available symbols such that the highest probability
(ideally as close to 1 as possible) is assigned to the symbol representing
kitchen=T and bedroom=F.

7

Here, f is parameterized by some latent parameters ✓✓✓. In our case, ✓✓✓ is
the weights and biases of a neural network that, given a trajectory, outputs
a matrix where each row is a discrete probability distribution over symbols
corresponding to each state in the trajectory. We would like to find an opti-
mal ✓✓✓⇤ such that, for a dataset D of N trajectory-automaton pairs (⌧i, AGi),
the probability of transitioning from !0

Gi
to !F

Gi
over ⌧i given ✓✓✓⇤, for all i, is

maximized, that is,

✓✓✓⇤ = argmax
✓✓✓

NY

i=1

P
h
!0
Gi

⌧i�! !F
Gi

���✓✓✓
i
. (1)

Because we can explicitly tabulate ⌦ and ⌃, we can use �G to construct
state-to-state transition matrices for each � 2 ⌃

��
G

.
= [��

G(i, j)] = [�G(i,�, j)]. (2)

For a trajectory ⌧ of length T , for each step t, we can compute, from f✓✓✓(st,�)
(where we write f✓✓✓(s,�) to mean the entry of the probability distribution
f✓✓✓(s) corresponding to the symbol �), the expected state-to-state transition
matrix

�t
G

.
= E�t [�

�t
G] =

X

�

��
G · f✓✓✓(st,�). (3)

Assuming that transitions are Markov, starting from !0
G and ending at !F

G,
we have

P
h
!0
G

⌧�! !F
G

���✓✓✓
i
= eee>!0

G

TY

t=1

�t
G

!
eee!F

G
. (4)

In the case of our neural network, f✓✓✓ takes in a state vector sss, and outputs
the result of applying the softmax function to the vector output of passing
sss through a neural network parameterized by ✓✓✓, the weights and biases of
the network.

By using this method, we expect to obtain a locally optimal ✓✓✓⇤ by com-
puting gradients r✓✓✓f .

Ultimately, the objective function we want to maximize is the per-trajectory
probability of transitioning from the automaton start state to the automa-
ton accept state via the given trajectory. Internally, for each state in a given

8

trajectory, there is a discrete probability distribution over which automa-
ton state we are currently in. As we train on more and more trajectories,
the probabilities relating to which automaton states we transition through
become more deterministic. As this happens, our model is able to better
classify which symbols (classification) to assign states it encounters, which
in turn configures the automaton state probabilities to better reflect the
ground truth of what is happening.

6 Experimental Results

In the following sections, we summarize the main experimental findings and
o↵er corresponding explanations and discussions.

6.1 Gridworld Trials

We first started with a simple scenario to evaluate the validity of our objec-
tive function. We had sixteen states arranged in a 4 ⇥ 4 grid, enumerated
below.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

We wanted to give the network specific trajectories and GLTL formulas
that would cause it to associate the bottom-left square (state 12) with the
color green, the bottom-right square (state 15) with the color blue, and the
remaining squares with no color. We gave the following 3 trajectory–GLTL
formula pairs:

([13,14,15],⇤0.01¬g ^ ⌃0.01b)

([14,13,12],⇤0.01¬b ^ ⌃0.01g)

([0,1,2,3,7,6,5,4,8,9,10,11],⇤0.01¬(g _ b))

where a bold number is presented to the learner as the one-hot vector en-
coding that number. A one-hot vector is a vector used to encode categorical
data that has a 1 in only one position and 0s in all others. For example, the
state “12” would be encoded as a 16-bit vector with a 1 in position 12 and
0s everywhere else. After training on just these three points over 25 epochs

9

(which took roughly 3 seconds), the probability distributions are almost de-
terministic. The visualization of the learned grid is shown below.

Figure 2: Gridworld Learned Colors

We can see that every square is properly labeled with the color symbol we
had in mind when choosing the training data. Although this example worked
well, one example that did not work as hoped was the formula ⌃0.01(⇤0.01g)
along with a trajectory that went through states 0, 1, 5, and 6, and then
circled around states 10, 11, 14, and 15 for a while. The idea of this example
was to see if the learner would recognize that our formula specified “even-
tually always green”, that is, at some point, always be in the green. We
wanted for the learner, training on this trajectory, to recognize the bottom-
right quadrant (states 10, 11, 14, and 15) as green, and the other states it
touched as colorless. However, the learner converged to labeling all states
it had touched as green, not only the quadrant we had intended. An ex-

10

planation for this observation is that the labeling the learned proposed led
to a high objective function value, and was perhaps easier to arrive at than
the labeling we had imagined. Furthermore, states here were represented
as one-hot vectors, and we should expect vectors encoding perceptual (e.g.
visual) information to be di↵erent, since no two instances of perceptual in-
formation (such as two distinct images) will be exactly identical, unlike the
one-hot vectors used in this example.

6.2 MNIST Trial 1: Two Temporal Operators

With these observations in mind, we moved onto a more challenging prob-
lem. Can we classify handwritten digits using this method? The formulation
of the problem is nearly identical. Instead of passing in one-hot vectors, we
pass in vectors representing handwritten digits from the MNIST database,
examples from which are shown below.

Figure 3: MNIST digits, source: Hiromichi Fujisawa, ResearchGate.net

11

Each digit is represented as a 28 ⇥ 28 array, where each entry is the 0-255
grayscale value of the pixel in that position. We normalize all values by
dividing all entries by 255, so values are constrained to the unit interval [0,
1], and reshape each 28⇥28 array to a single-dimension 784-element vector.
During training, we pass in one trajectory at a time, and, after each output,
Equation (4) is used to calculate loss (or rather the negation of Equation
(4), since the optimizers in TensorFlow only do minimization). The training
process is the same as in the Gridworld example, except we pass in 784-
length MNIST vectors rather than 16-length one-hot vectors.

Using the digits 0, 1, and 2, we wanted to test whether images can be
recognized after training using formulas with multiple temporal operators
such as ⌃0.01(2 ^ ⌃0.010), which e↵ectively says “end up in 0, but only after
you reach a 2”.

To generate a trajectory that satisfies this formula, we set 20 as our trajec-
tory length. The first half of the elements were randomly selected MNIST
digits over Uniform{0, 1}, the second half were randomly selected MNIST
digits over Uniform{1, 2}, and a randomly-selected 0 was appended to the
end.

Using only the two formulas ⌃0.01(2^⌃0.010) and ⌃0.01(0^⌃0.012), we trained
the model on trajectories generated in the manner described above. After
training, we generated a test set consisting of 900 0s, 900 1s, and 900 2s that
the network had not previously encountered (single digits are trajectories of
length 1). On this test set, our trained model was able to achieve 97% clas-
sification accuracy.

This result signified that not only was the network able to recognize the
0s and 2s that were present in the formula, but it was also able to properly
label 1s, so the logic was in a way propagated through the unseen symbols.

6.3 MNIST Trial 2: No Explicit Digit Location

“Eventually” Operator Only

Next, we wanted to test whether we could learn to classify digits when none
of the formulas explicitly state that a single digit will always be a certain
position, unlike in the previous example, where ⌃0.01(2 ^ ⌃0.010) signified
that 0 (and only 0) should always be the last element in a trajectory.

12

Using the digits 0–3, we used the following formulas.

⌃0.01(0 _ 1)

⌃0.01(1 _ 2)

⌃0.01(2 _ 3)

⌃0.01(3 _ 0)

This set of formulas ensures that no single digit is always to be expected at
a particular trajectory position. A trajectory corresponding to ⌃0.01(0 _ 1),
for instance, would have the first 19 elements sampled from Uniform{2, 3}
and the last element randomly sampled from Uniform{0, 1}.

After training on these formula–trajectory pairs, we achieved a classifica-
tion accuracy of 97% on a test set consisting of 900 (each) of 0s, 1s, 2s, and
3s that were not previously encountered.

This result shows that the network was able to di↵erentiate symbols even
though each formula never singled out a single digit as always being in a
particular position in the trajectory, as we had intended.

6.4 MNIST Trial 3: No Explicit Digit Location

“Always” Operator Only

However, not all formulas led to good classification. For example, we tested
the following set of formulas with the digits 0–3:

⇤0.01(0 _ 1)

⇤0.01(1 _ 2)

⇤0.01(2 _ 3)

⇤0.01(3 _ 0)

These formulas state that every element of the trajectory is one of the two
digits specified in the formula.

Trajectories were created from a uniform distribution over the 2 digits speci-
fied by a formula. The result of testing this set of formulas resulted in all test
digits being classified with the same symbol as multiple or sometimes even
all digits 0–3 simultaneously. The subset of digits in the labels varied among
runs. Sometimes it labeled all digits as “simultaneously 0, 1, 2”; sometimes
it was “simultaneously 1, 2, 3”; sometimes it was “simultaneously 0, 1, 2,

13

3”. This most likely depended on which random images were sampled. In
any case, all test digits were always assigned the same symbol every time.

An explanation for this result is that, in the case where we only used “even-
tually” formulas, a single trajectory encoded both positive and negative ex-
amples. For instance in a length 20 trajectory encoding “eventually 0 or 1”,
the first 19 digits are negatives examples (not 0 or 1), and the last digit is a
positive example (0 or 1). In the case where we use only “always” formulas,
we only have positive examples. This allows for less di↵erentiation among
digits per trajectory, and as a result, the classifier finds that the easiest way
to satisfy all formulas is to simply assign each digit the symbol/label of be-
ing multiple digits simultaneously, which technically does satisfy the given
formulas.

6.5 MNIST Trial 4: No Explicit Digit Location,

“Eventually” and “Always” Operators Together

When testing both sets of formulas together, that is,

⌃0.01(0 _ 1)

⌃0.01(1 _ 2)

⌃0.01(2 _ 3)

⌃0.01(3 _ 0)

⇤0.01(0 _ 1)

⇤0.01(1 _ 2)

⇤0.01(2 _ 3)

⇤0.01(3 _ 0)

we were able to attain 97% accuracy, and at a faster rate than when only us-
ing “eventually” examples. An explanation for this is that the “eventually”
examples provide both positive and negative instances with good accuracy
on their own, and the added “always” examples add more positive exam-
ples and di↵erentiation to achieve the desired result even faster. Number of
trajectories vs. Accuracy obtained on test set for the above three training
scenarios is plotted below.

14

Figure 4: Trajectories vs. Accuracy: Always/Eventually

Each “always” trajectory had length 30, and each “eventually” trajectory
had length 20. There was an equal number of trajectories for each of the
eight formulas listed above. We can see that after around 400 trajectories,
the mixed always/eventually has reached a stable point with high accuracy.
However, it took over 4000 trajectories training using only “eventually” op-
erators to reach the same accuracy. Using only “always” operators never
produces above 0 accuracy.

Another instance where classification is incorrect is if instead of testing
(with digits 0-2) both ⌃0.01(2 ^ ⌃0.010) and ⌃0.01(0 ^ ⌃0.012) together, we
only test one of them. This leads to the classifier assigning all test digits
a label of either 1 or simultaneously 1 and the digit actually represented.
A possible explanation is that variations of the digit 1 are found in both
halves of the given trajectories, and because no two digits are identical, the
classifier is unable to let the desired logic propagate. For instance, if we test
⌃0.01(2^⌃0.010) with one-hot vectors representing digits rather than MNIST
vectors, in which case there is no variation among digits of the same kind,

15

the desired logic does propagate through, and we achieve perfect classifi-
cation on one-hot vectors. By desired logic, we mean the following: take,
for instance, the one-hot trajectory [10110211210]. If given the formula
⌃0.01(2 ^ ⌃0.010), the classifier should, in theory, recognize the last entry as
0, which means that the other one-hot 0s will also have the proper classi-
fication. Furthermore, we should only get to a terminal 0 after getting the
2 first, and because there are 0s after 1s in the beginning, the 1s should
not be classified as 2s, and we already know they are not 0s because we
have already recognized zeros, which allows for proper di↵erentiation and
classification of all 3 digits.

6.6 Internal PFSA Probabilities

Consider the formula/automaton described in Section 4.3, except with a and
b replaced with 0 and 1, respectively, so that the formula reads ⌃0.01(0 ^
⌃0.011) (the automaton remains unchanged). In the plots on the following
page, we summarize the results of running the stated formula with trajecto-
ries of the form [11111000001]. The plots below (from every 50 trajecto-
ries) show the progression of how internal automaton probabilities (y-axis)
evolve through the trajectory states (x-axis) as the training increases. State
1 represents the state of “not yet encountered the first 0”. State 2 represents
the state of “encountered the first 0 but not yet the final 1”. States 0 and 4
corresponds to low-probability states corresponding to GLTL formula expi-
rations. State 3 is the accept state, representing the state of “encountered
the final 1”. State 5 is an additional state we added in experimentation for
logistic reasons (essentially, it is a state representing full completion of a pass
through the automaton; without this additional state, the code would not
function properly); we include it in the plots below to make the probability
distributions complete. The legend is shown below.

Figure 5: Legend for PFSA States

16

Figure 6: Evolution of Internal PFSA Probabilities

17

We can see that, when training starts, the probabilities are either not clear or
are concentrated on the wrong states as the first trajectory is processed. As
training continues, we can see that the internal probabilities are configured
so that paths through the automaton more accurately reflect the trajectory
passed in. Looking at the last plot, the first 5 trajectory elements (which
are 1s) have corresponding automaton probabilities concentrated on state
1, which represents the state of “not yet encountered the first 0”, and stays
there as a result of receiving (correctly) the symbol (zero=F, one=T). The
next state marks a transition to automaton state 2, which results from the
recognition of the first zero, with symbol (zero=T, 1=F). The automaton
has highest probability in this state for 5 consecutive trajectory elements
(which are indeed all 0s). The last trajectory state marks the final transi-
tion to state 3, which is the accept state, i.e. final state of the automaton
path representing having seen the ending “one” after the first “zero”; the
probability is indeed concentrated on this automaton state in the last row of
the table. We can also see that the majority of time in this case is spent on
fine-tuning the probabilities, as the coarse configuration can be seen after
the first 150-200 trajectories.

7 Conclusion

From the experimental results, we can see that our network is able to per-
form simple image classification using temporal image-sequence data and
corresponding GLTL-derived automata. This approach shows promise for
more complex tasks.

8 Future Work

One main drawback of the current implementation is that, because the PFSA
created from the GLTL assigns true/false to all propositions, the number of
symbols is exponential in the number of propositions, making the problem
intractable for classification problems with many possible class labels. If
we implement the GLTL-to-automaton translation in a di↵erent way that
would make the number of symbols polynomial in the number of atomic
propositions, the problem would become much more tractable.

Other future directions include testing this idea on more complex datasets,
such as robotics image data of movement among various rooms in some en-
vironment. Another idea is training a drone to recognize components of the

18

landscape it flies over by training it on images of flight trajectories with cor-
responding GLTL formulas representing sentiments such as “this path has
two trees” or “this path ends in a person who is injured and needs help”.

Another direction is to increase the complexity of the network. The net-
work used for this paper was a simple feed-forward network with one hidden
layer. Figuring out how to add a convolutional layer to work with trajectory
data may o↵er performance boosts.

Other potential ideas include testing this on non-image data, such as audio
data or gene sequence data.

9 Acknowledgements

I would like to thank Professor Michael Littman for advising my thesis,
Professor Caroline Klivans for being my thesis reader, Lucas Lehnert for
formulating (along with Professor Littman) the initial theory for this project,
as well as frequently collaborating and providing much help and support,
Kevin Du for providing necessary support code for running experiments,
Cambridge Yang at MIT for providing the code for the GLTL converter,
and everyone else who helped collaborate on/contribute to this project in
any way.

References

[1] Littman, Michael L., Topku, Ufuk, Fu, Jie, Isbell, Charles, Wen, Min,
and MacGlashan James. Environment-Independent Task Specifications
via GLTL. ArXiv, 2017.

[2] Bacchus, Fahiem, Boutilier, Craig, and Grove, Adam. Rewarding Be-
haviors. AAAI’96 Proceedings of the thirteenth national conference on
Artificial intelligence - Volume 2, 1996.

[3] Ng, Andrew Y. and Stuart, Russell Algorithms for Inverse Reinforce-
ment Learning. ICML ’00 Proceedings of the Seventeenth International
Conference on Machine Learning pages 663-670, 2000.

[4] Sipser, Michael Introduction to the Theory of Computation. International
Thomson Publishing, 1996.

19

[5] Shah, Ankit, Kamath, Pritish, Li, Shen, and Shah, Julie Bayesian Infer-
ence of Temporal Task Specifications from Demonstrations. 32nd Con-
ference on Neural Information Processing Systems, 2018.

[6] Vazquez-Chanlatte, Marcell, Jha, Susmit, Tiwari, Ashish, Ho, Mark K.,
and Seshia, Sanjit A. Learning Task Specifications from Demonstrations.
32nd Conference on Neural Information Processing Systems, 2018.

[7] Kasenberg, Daniel and Scheutz, Matthias Interpretable Apprenticeship
Learning with Temporal Logic Specifications. ArXiv, 2017.

[8] Vidal, Enrique and Thollard, Franck, de la Higuera, Colin, Casacuberta,
Francisco, and Carrasco, Rafael C. Probablilistic Finite-State Machines –
Part I. IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 27, No. 7. July 2005.

[9] Manna, Zohar and Pnueli, Amir. The Temporal Logic of Reactive &
Concurrent Sys.. Springer, 1992.

[10] Baier, Christel and Katoen, Joost-Pieter. Principles of Model Checking.
MIT Press, 2008.

20

