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1 Introduction

Missing data occurs frequently in studies in medicine, the social sciences,
and economics [11]. Observations can go missing due to nonresponse or attrition
in subjects, or due to censorship or mistakes in recording values. Missing data
itself is seldom the focus of a study, but rather a nuisance hindering progress
towards a different goal. Statistical procedures often rely on complete data; in
fact, an analysis that only considers observations with complete information in a
data set with missing values may result in biased and inefficient estimates [12].
Imputation methods have been proposed as possible solutions to fill missing
values with appropriate substitutes. We examine the performance of different
imputation methods in the not-uncommon case of values missing together.

All imputation methods rely on assumptions about the mechanism that pro-
duced the missing data. Missing data mechanisms fall into three categories:
missing at random (MAR), missing completely at random (MCAR), and miss-
ing not at random (MNAR) [11]. Missing data is described as MAR when the
missingness mechanism does not depend on the missing data [11]. MCAR is a
more stringent assumption, under which the missingness mechanism does not
depend on the missing portion nor the observed portion of the data [11]. The
validity of the MAR assumption cannot be tested, because the missing data is
unobserved; however, in many cases, this assumption is plausible, or at least
approximately plausible [11][12]. When data is MNAR, there are none of the
independence assurances of MCAR or MAR data. The task of imputing values
for missing data is more difficult in this case and development of missing data
techniques for MNAR data, such as sensitivity analysis, is a topic of ongoing
research [12].

The statistical literature describes different methods to implicitly and ex-
plicitly impute missing values under the MAR assumption. Implicit methods
include weighting methods and methods that rely on likelihood and Bayesian
modeling. Explicit statistical methods “fill in” the missing variables with one or
more plausible values. Single imputation methods replace missing values with
a single value, but these methods result in standard errors for the estimates
that are too small. Multiple imputation methods, on the other hand, replace
missing values with several plausible values [10]. While it is possible to de-
sign an efficient computational approach to imputation for a specific study, it
would be time consuming to do so and its implementation would require spe-
cific expertise, so more widely-applicable methods are preferred [10]. Multiple
imputation maintains generality in its simplicity, making it a popular choice to
handle missing data.

Multiple imputation methods can be classified into two main groups: joint
modeling and fully conditional specification. The joint modeling approach spec-
ifies a joint distribution for the missing variables from which new values for
missing entries can then be sampled [9][10]. The fully conditional specification
imputes values using a chain of conditional distributions, one for each variable
with missing data [12]. The fully conditional specification may fail to describe
a valid joint distribution with its series of univariate imputations, while the
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joint modeling approach has these relationships built into its imputation model
[11]. On the other hand, the fully conditional specification is more flexible, and
can perform adequately in cases where describing a joint distribution may be
complex or the result intractable.

The aim of this paper is to compare the performance of the two multiple
imputation methods in cases when there are two or more observed variables that
are missing jointly. Such situations are encountered in longitudinal studies, for
example, when subjects miss an appointment, leaving all planned observations
for the skipped appointment missing.

We take a simulation-based approach to our investigation. Both the joint
modeling and the fully conditional specification method have been implemented
in packages for the R statistical programming language [5]. The norm package
contains functions to perform joint modeling imputation under the multivariate
Normal distribution [1]. The mice package contains functions to impute data
using the fully conditional specification method [13].

Our general approach is to generate data sets and set some values to be
missing or observed, varying simulation parameters such as the size of the sam-
ple, the number of variables, the proportion of rows with missing values, and
the correlation between the variables. The missing values are then imputed for
each data set according to both the joint modeling and the fully conditional
specification method. We record performance metrics for how well each impu-
tation method is able to maintain the characteristics of the original simulated
data set and to further analyze how the performance of each imputation method
may be sensitive to different parameter values. We posit that significant bias
may be observed in the correlations between the covariates when using the fully
conditional specification method.

2 Notation

Let Xi,j i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} represent an entry in the ma-
trix X, where n is the number of units in the sample (rows), and m is the
number of variables recorded for each unit (columns). The notation X·,j =
(X1,j , X2,j , . . . , Xn,j) refers to all the observations of the jth variable, and
Xi,· = (Xi,1, Xi,2, . . . , Xi,m) refers to the ith unit. The data set X can be
partitioned into X = (Xobs, Xmis) where Xmis is the missing part of X and
Xobs is its observed counterpart. Similarly, the jth variable can be partitioned
as X·,j = (Xobs

·,j , X
mis
·,j ), and the ith unit as Xi,· = (Xobs

i,· , X
mis
i,· ). In addition,

let R be an n×m matrix taking on values in {0, 1}, where each entry indicates
whether its corresponding entry in X is missing, 0, or observed, 1.

Imputation approaches fill in Xmis using plausible values derived from the
information in Xobs [9].
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3 Review of Imputation Methods

3.1 Joint Modeling

The joint modeling approach to missing data imputation defines a joint
model over Xobs, Xmis, and R [9]. The method imputes entries in Xmis based
on a predefined multivariate model given the observed covariates, Xobs, and
model parameter, θ. In practice, θ is obtained by sampling from the posterior
distribution P

(
θ | Xobs

)
, and imputations for Xmis are performed with inde-

pendent draws from the posterior predictive distribution P
(
Xmis|Xobs, θ

)
[9].

Formally, on iteration t the imputation procedure iterates through [9]:

Xmis(t) iid∼ P
(
Xmis|Xobs, θ(t)

)
θ(t+1) ∼ P

(
θ | Xobs, Xmis(t)

)
We assume that the rows of X are distributed according to an m-dimensional

multivariate Normal distribution:

X ∼ N(µ,Σ)

where µ is an m-dimensional vector of means and Σ is an m × m covariance
matrix.

Normality is a modeling assumption, but it has been shown that the joint
modeling method with the Normal distribution maintains good operating char-
acteristics even with “highly nonnormal” variables [11]. With this assumption,
θ contains the regression parameters for the multivariate Normal regression for
the variables with missing values.

A possible solution for obtaining a starting value for θ, θ∗, is maximum likeli-
hood estimation. While there are cases in which maximum likelihood estimates
can be computed directly, the EM algorithm can always be applied [9].

At iteration t ∈ 1, . . . , T , the predictions for missing entries Xmis
i,· , X

mis(t)
i,· ,

are sampled from the corresponding posterior predictive distribution given θ(t),
which is multivariate Normal [9]:

X
mis(t)
i,· ∼ N

(
θ
(t)
0 +Xobs

i,· θ
(t),Σ

(t)
θ

)
, i ∈ {1, . . . , n}

where θ
(t)
0 contains the intercept terms.

We can equivalently write the above as follows, by Bayes Rule:

X
mis(t)
i,· ∼ P

(
θ
(t)
0 +Xobs

i,· θ
(t)|Σ(t)

θ

)
· P

(
Σ

(t)
θ

)
, i ∈ {1, . . . , n}

It turns out that P (Σθ) corresponds to an inverse Wishart distribution [9].

Thus, we can sample a value for Σ
(t)
θ , and use it to fully define the multivariate

Normal from which we draw X
mis(t)
i,· [11][9].
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After a complete draw of values in Xmis, a new θ value, θ(t+1), is sampled
from its posterior distribution [9]:

θ(t+1) ∼ N
(
θ∗, n−1Σ(t+1)

)
Σ(t+1) ∼ Inv-Wishart

(
n− 1, (nS)−1

)
where S is the sample covariance matrix. The covariance matrix Σ

(t+1)
θ is a

transformation of Σ(t+1).
The joint modeling approach aims to preserve the properties of the joint

distribution, namely, the means, variances, and covariances. By preserving
these properties, any response-predictor relationship can be maintained in the
completed data [11]. The joint modeling approach is implemented in R by the
norm package [5][1].

3.2 Fully Conditional Specification

The joint modeling approach requires that a joint distribution for all of the
variables with missing data in the data set be defined, but in many practical ap-
plications, defining such a distribution may be complex or intractable. A flexible
approach that has been proposed to address this issue is the fully conditional
specification [12]. This method imputes missing values variable-by-variable by
defining an imputation model for each variable with missing data, conditioned
on the remaining variables [12]. Using these conditional densities, this approach
attempts to approximate a Bayesian parametric model [7][12]. Imputed values
are generated by simulating draws from these conditional distributions [10].
The conditional distributions may be such that they can be written explicitly
for certain problems, but, in more complex models, samples can be generated
using computational techniques, such as Markov chain Monte Carlo. One full
iteration in the fully conditional specification approach involves iterating over
every variable-specific model to generate a new value [12]. This structure means
that the fully conditional specification can define models for which a joint dis-
tribution does not exist, because it only requires the specification of univariate
conditional models [13].

Formally, the fully conditional specification defines a conditional model for
each variable with missing data, P (X·,j |X·,−j , θ), where θ is the model param-
eter and X·,−j refers to the entire data set except for column X·,j . Assuming
P (θ) is the prior distribution for θ, the posterior distribution of θ can be defined
as P (θ|Xobs) ∝ P (X·,j |X−j , θ) · P (θ).

The fully conditional specification proceeds by sampling from the posterior
distribution through iterated sampling from conditional distributions of the form
[13]:

P (X·,1|X·,−1, θ1)

...

P (X·,m|X·,−m, θm)
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The complete sampling process is similar to a Gibbs sampler for the imputed
variables, X·,1, . . . , X·,m, and the corresponding unknown parameters by which
the missing values are imputed, θ1, . . . , θm. From the tth iteration estimates,

(X̂
(t)
·,1 , . . . , X̂

(t)
·,m, θ̂

(t)
1 , . . . , θ̂

(t)
m ), the values for iteration t + 1 are calculated as

draws from the following chained conditional distributions [13]:

θ̂
(t+1)
1 ∼ P (θ1 |Xobs

·,1 , X
(t)
·,2 , . . . , X

(t)
·,m)

X̂
(t+1)
i,1 ∼ P (Xi,1|Xobs

·,1 , X
(t)
i,2 , . . . , X

(t)
i,m, θ̂

(t+1)
1 ), i ∈ {1, . . . , n}

...

θ̂
(t+1)
m ∼ P (θm |Xobs

·,m, X
(t)
1 , . . . , X

(t)
m−1)

X̂
(t+1)
·,m ∼ P (X1|Xobs

·,m, X
(t)
1 , . . . , X

(t)
m−1, θ̂

(t+1)
m ), i ∈ {1, . . . , n}

where X
(t)
·,j = (Xobs

·,j , X̂
(t)
·,j ) is the variable X·,j , complete with imputed values at

iteration t.
Note that in the sampling procedure, each Xi,j in Xmis

·,j is sampled according
only to other values in unit i and no other information from the data set except
the information that enters through θj . For the variables that have no missing
values, only the regression parameters are sampled, so the above sequence of
equations can be simplified depending on the application. The fully conditional
specification approach is implemented in R by the mice package [5][13].

4 Experimental Methods

In our simulation, the variables X·,1 and X·,2 are the only variables with
missing data. Missing entries are missing jointly in these variables. Therefore,
only quantities related to X·,1 and X·,2 will be affected by imputation, such
as the mean values and correlation coefficients. In particular, for examining
the correlation, we are only concerned with the first two columns, or first two
rows, of the correlation matrix, because those are the entries that correspond
to relationships involving X·,1 and X·,2.

4.1 Experimental Design

Our experiment takes the form of a full factorial design over the parameters
H, C, n, m, r, and init. The parameters H and C define the correlation between
variables in the generated data sets, where H is the correlation between X1 and
X2, and C is the correlation between all other pairs of variables. The parameters
n and m define the size of the generated data set, where n is the number of rows
and m is the number of variables, so the number of variables without missing
data is m − 2. The parameter r defines the proportion of rows with missing
data. Lastly, the parameter init specifies the initialization method for the fully
conditional specification. The levels of each parameter that are considered are
listed in Table 1.
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Table 1: Parameter values

Parameter Levels

H {0.1, 0.5, 0.9}
C {0.1, 0.5, 0.8}
n {500, 1000, 2000}
m {4, 8, 16}
r {0.1, 0.3, 0.5}

init {none, linreg, full}

4.2 Data Generation

For each value of H and C, a data set is generated according to a multi-
variate Normal distribution with mean ~0 and correlation matrix Σ. The entries
in Σ corresponding to the correlation between X·,1 and X·,2 have value H and
all other off-diagonal entries are set to the value of C.

To reduce computational complexity and achieve greater precision, our sim-
ulation generates data sets with the greatest value of m and the greatest value
of n. For different simulation configurations of m and n we then use the data
from the first m columns and the first n rows extracted from the full generated
data set.

Values are set to be missing in the full data set so that the expected propor-
tion of missing data is r. The probability that X·,1 and X·,2 are missing for any
given observation depends on the value of X·,3, . . . , X·,m, making this missing
data mechanism explicitly MAR. A logistic regression with parameter vector β
is used to determine missingness. The probability of having missing data in row
i, pi, is as follows:

pi =
eX

∗
i ·β

1 + eX
∗
i ·β

where X∗i = (Xi,3, . . . , Xi,m) is the vector of observed values in row i.
The values for β1, . . . , βm−2 are set randomly for each trial, and the intercept

term, β0, is found using the optim one-dimensional optimization method in R,
such that the average probability of missingness over all rows is equal to r.
Then, for all i, Xi,1 and Xi,2 are set to be missing with probability pi. This
process is repeated in each replication of each configuration, so the same rows
do not necessarily have missing values from one replication to the next.

For the initialization parameter, init, a value of none indicates that random
initialization will be used; this is the default behavior in the mice package [13].
The linreg initialization creates two linear models, one for X·,1 and one for
X·,2, in terms of X·,3, . . . , X·,m, and passes the estimates for missing values of
X·,1 and X·,2 according to the linear models as the initial values. The full

option passes the complete data set so that the true value of each missing field
is the initial value for imputation. The initialization values are calculated for
each configuration and are only used with the fully conditional specification
method.
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4.3 Imputation and Metrics

We run 100 replications for each configuration of H, C, r, m, n, and init,
and 5 full imputations are performed in each replication. The same metrics are
recorded for imputations under the mice and norm imputation methods. In
each replication, we record the sample means of X·,1 and X·,2 and the correlation
matrices for each of the imputed data sets.

From the correlation matrices, we calculate the average correlation bias for
the values that involve X·,1 or X·,2. This leaves us with 2m− 3 bias terms. We
record the bias for the relationship between X·,1 and X·,2, as well as the average
bias across the remaining 2m− 4 correlation values.

While we cannot pick a representative correlation out of the 2m − 4 rela-
tionships between X·,1, X·,2 and X·,3, . . . , X·,m, it is meaningful to focus on the
correlation between the two variables with missing data, X·,1 and X·,2. There-
fore, we would like to create a confidence interval to determine whether the
sample correlation after imputation differs from its true value at a statistically
significant level. We turn this into a binary coverage metric by checking for each
replication whether the true correlation between X·,1 and X·,2 is included in a
95% confidence interval about the correlation estimated after imputation.

The Fisher Transformation allows for testing of hypotheses about the value
of the population correlation coefficient, ρ, between two variables when applied
to the sample correlation coefficient, r. Formally, the Fisher Transformation is:

f(r) =
1

2
ln

(
1 + r

1− r

)
The quantity f(r) is asymptotically distributed as a Normal distribution with
mean f(ρ) and standard deviation 1√

s−3 , where s is the size of the sample. For

our purposes, squaring this standard deviation gives us the within-imputation
variance, which we will call U . The between-imputation variance, B, is the
variance of the set of transformed correlation values, rf , obtained from each of
the s = 5 imputed data sets. Using Multiple Imputation combination rules we
obtain the total variance, T [10][7]:

T =

(
1 +

1

5

)
B + U

To construct a confidence interval for the correlation between X·,1 and X·,2 we
rely on the Student’s t-distribution with v degrees of freedom [10]:

v = (4)

[
1 +

U

T − U

]2
Using this t-distribution we can construct a 95% confidence interval for the

mean of the transformed correlation values from the 5 imputed data sets as(
r̄f − α0.975

√
T , r̄f + α0.975

√
T
)
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where α0.975 is the 97.5th percentile under the standard t-distribution with v
degrees of freedom. We then determine whether the true population correlation
coefficient under the Fisher Transformation, f(ρ), is in the confidence interval,
setting the coverage metric to 1 if f(ρ) is in the confidence interval and to 0
otherwise.

5 Results

Our aim is to examine how the imputation of missing values by different
methods affects the relationships between variables in the imputed data sets.
Preliminary analyses found that the means of the variables with missing data
were not meaningfully affected by imputation under either approach. There-
fore, we will focus on the correlation to quantify the way in which imputation
preserves the relationships between variables.

We will focus primarily on the correlation between X·,1 and X·,2, so un-
less otherwise specified, a reference to correlation bias refers to this correlation
relationship. We first examine the coverage to understand which parameters sig-
nificantly affect the performance of the imputation methods in preserving the
relationship between X·,1 and X·,2. The fully conditional specification approach
tends to misrepresent the correlation between X·,1 and X·,2, which is explored
more deeply in an analysis of the mean squared error of the correlation and the
bias.

Changes observed in coverage, mean squared error, and bias in the results
over samples with data missing together stand in contrast to the performance
of the imputation methods in identical simulations in which entries were not
missing together. This analysis is not included here, but it allows us to conclude
that the effects on performance that we have observed, and now report, arise
from the fact that the missing values are missing jointly, and depend on how
the methods under consideration handle imputation in this case.

5.1 Correlation Confidence Interval Analysis

If the value of a simulation parameter or the imputation method were to
have no effect on coverage, we would expect 95% of samples to have a coverage
value of 1, matching the predefined nominal level. Therefore, a trend in the
average coverage deviating from 0.95 for a particular imputation method would
suggest the presence of a parameter-driven or method-driven effect when it
comes to preserving the relationship between the jointly missing variables during
imputation. Even observing a coverage rate greater than 95% has implications
for performance, indicating that the method may be inefficient with high sample
variance and a wide confidence interval as a result.

An ANOVA analysis of the coverage metric for both the mice package and
the norm package can indicate which parameters influence the performance in
this metric. Table 2 shows the Mean Squared Error (MSE) corresponding to
the mice package and norm package by simulation parameters.
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Table 2: ANOVA analysis for correlation coverage

Parameter MSE (mice) MSE (norm)

H 3.3903 0.0392
C 1.3572 0.0204
n 0.1222 0.3749
m 1.6807 0.0580
r 1.1702 0.2822

Nearly all the MSEs for mice are larger than those for norm. Most notably,
H, the correlation between X·,1 and X·,2, C, the correlation between X·,1, X·,2,
and the rest of the variables, and m, the number of variables in the data set are
highly influential for mice. For the norm package, no parameters are highly
significant, compared to mice. This suggests that the joint modeling approach
using the norm package is less sensitive to different parameter configurations
in terms of coverage. Furthermore, the parameters that are relatively signifi-
cant for norm are the same parameters that are significant for both techniques
when values are not missing together, and have roughly the same magnitudes
as observed under joint modeling in this case.

The mice package has an initialization option for imputation. Table 3 shows
the average coverage value by initialization method for mice.

Table 3: Proportion of samples with coverage by initialization (init)
Initialization Coverage

none 0.9432
linreg 0.9404
full 0.9262

All of the values are less than 0.95, but the full initialization has the worst
operating characteristics in this metric. There are two possible explanations
for this behavior. It could be that starting at the true value does not produce
enough variability in estimates, so even relatively accurate imputations are out-
side of an extremely narrow confidence interval, or that the bias is high. Table
4 shows the total variance and correlation bias by initialization.

Table 4: Total variance and average correlation bias by initialization (init)
Initialization Total Variance Bias

none 0.00199 -0.00274
linreg 0.00198 -0.00231
full 0.00185 -0.00416

The full initialization has the smallest variance and the largest bias. It
seems that starting from a simple random value (none), or a relatively informed
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estimate (linreg), allows the sampling method in the fully conditional spec-
ification to arrive at values that better preserve the relationship between the
missing variables than starting at the true values.

The dimensionality of the data set, m, is also an influential simulation pa-
rameter. Table 5 shows the coverage proportion for data imputed under both
methods by values of m.

Table 5: Proportion of samples with coverage by m
m mice norm

m = 4 0.9440 0.9458
m = 8 0.9383 0.9432
m = 16 0.9276 0.9431

There is little deviation from 0.95 for the joint modeling approach when
using the norm package; however, a significant drop in coverage is observed
as the number of covariates increases under the fully conditional specification
approach with mice. This could be a result of reduced variance or greater bias.
The total variance and the correlation bias for the fully conditional specification
method are summarized in Table 6.

Table 6: Total variance and average correlation bias by m (mice)
m Total Variance Bias

m = 4 0.00189 -0.00171
m = 8 0.00194 -0.00231
m = 16 0.00199 -0.00520

The variance is similar across values of m, but the bias increases with m.
This reveals that the fully conditional specification approach results in larger
bias as the number of covariates grows. In practice, one could omit variables
for imputation, but this contradicts common findings that all available variables
should be used for imputation [4][6].

A second-degree ANOVA analysis shows that H and C together are the most
influential pair of parameters in explaining coverage deviations. Table 7 shows
the average coverage by H, C.

Table 7: Proportion of samples with coverage by H, C
mice norm

H = 0.1 H = 0.5 H = 0.9 H = 0.1 H = 0.5 H = 0.9

C = 0.1 0.9415 0.9499 0.9431 0.9442 0.9458 0.9437
C = 0.5 0.9462 0.9394 0.9051 0.9406 0.9458 0.9426
C = 0.8 0.9479 0.9352 0.9212 0.9447 0.9451 0.9442

The norm package shows little deviation from the 0.95 benchmark. On the
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other hand, there is a clear trend in the values for the mice package, in which
the coverage decreases as H increases, for all values of C. The decrease in cov-
erage is from approximately 0.95 to 0.90. This shows that the fully conditional
specification method is affected by the correlation structure defined by H and
C.

5.2 Correlation Mean Squared Error Analysis

To compare the performance of the mice package and the norm package
in terms of the correlation MSE we examine the ratio of the MSE values for the
correlation between X·,1 and X·,2 from imputations under the fully conditional
specification (mice) to the values under the joint modeling approach (norm).
A ratio greater than 1 indicates a larger MSE with mice and a ratio less than
1 indicates a larger MSE with norm. Table 8 shows the MSE ratio by value of
H and C.

Table 8: MSE ratio (mice/norm)
H = 0.1 H = 0.5 H = 0.9

C = 0.1 1.0349 1.0224 1.0399
C = 0.5 1.0153 1.0932 1.4261
C = 0.8 1.0137 1.1616 1.4805

The ratio of MSEs is always greater than 1, and it increases with H across
values of C. Thus, on average, the fully conditional specification yields larger
errors than joint modeling.

The MSE can also be expressed as the sum of the variance and the squared
bias. Table 9 shows the ratio of sampling variances, mice to norm, for each
pair of parameter values.

Table 9: Total variance ratio (mice/norm)
H = 0.1 H = 0.5 H = 0.9

C = 0.1 1.063202 1.038959 1.004529
C = 0.5 1.054043 1.046438 1.002913
C = 0.8 1.043272 1.053894 1.029638

All ratios are larger than 1, and decrease as H increases. This suggests that
the trend that was observed in the MSE ratio is driven by increased bias.

5.3 Correlation Bias Analysis

The bias terms for the joint modeling approach are at least an order of mag-
nitude smaller than the corresponding bias under the fully conditional speci-
fication approach (Table 10). Therefore, the remainder of our analysis of the
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Table 10: Correlation bias by H, C
mice norm

H = 0.1 H = 0.5 H = 0.9 H = 0.1 H = 0.5 H = 0.9

C = 0.1 -0.00196 -0.00177 -0.00113 -0.00108 -0.00090 -0.00003
C = 0.5 -0.00138 -0.00517 -0.00466 0.00009 -0.00190 -0.00026
C = 0.8 -0.00281 -0.00519 -0.00356 -0.00011 0.00024 -0.00022

correlation bias will focus on the fully conditional specification. Figure 1 de-
picts the average correlation bias in terms of H and C for the fully conditional
specification approach.

Figure 1: Average correlation bias vs. H, C

Across values of C, the relationship between the imputed variables is con-
sistently underestimated at higher levels of H with median bias values that are
below 0.

Separating the bias of the correlation between X·,1 and X·,2, and the av-
erage of the correlation biases for the relationships between X·,1, X·,2 and the
remaining variables, X·,3, . . . , X·,m, can provide additional insight on the inter-
action between the simulation parameters and the correlation bias. We expect
that the operating characteristics with respect to the relationships between X·,1,
X·,2 and X·,3, . . . , X·,m would be better than the correlation between X·,1 and
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X·,2, because the basis for the imputation of X·,1 and X·,2 is the set of fully
observed values of X·,3, . . . , X·,m.

Table 11 shows the correlation bias for the relationship between X·,1 and
X·,2, and the average correlation bias over all the correlations including X·,1 or
X·,2 with X·,3, . . . , X·,m, in terms of H and C.

Table 11: Correlation bias by H, C: X·,1 and X·,2 (A), and X·,3, . . . , X·,m (B)
A B

H = 0.1 H = 0.5 H = 0.9 H = 0.1 H = 0.5 H = 0.9

C = 0.1 -0.00196 -0.00177 -0.00113 -0.00040 -0.00154 -0.00884
C = 0.5 -0.00138 -0.00517 -0.00466 -0.00194 -0.00483 -0.02103
C = 0.8 -0.00281 -0.00519 -0.00356 -0.00238 -0.00477 -0.00703

Generally, the correlation bias between X·,1 and X·,2 is greater than the
corresponding correlation bias for the other variables; however, the trend of
worse performance with higher values of H that was clear in the previous
analysis is mostly observed for the average correlations between X·,1, X·,2 and
X·,3, . . . , X·,m when it comes to bias. In fact, for H = 0.9 the alternative bias
consistently exceeds that of the correlation between X·,1 and X·,2.

6 Discussion

The main difficulty with imputing values that are always missing together
is that, for a single unit with missing data, there is no information from either
variable to inform the imputation of the other. This challenge is especially
relevant to the performance of the fully conditional specification method, in
which a full multivariate model is not defined. The joint modeling approach
provided valid estimates of the relationships between the variables, while the
fully conditional specification resulted in large bias under certain simulation
configurations.

There are certain cases where this difficulty is mitigated. For example, when
X·,1 and X·,2 are weakly correlated with other variables and with each other,
the fully conditional specification approach yields an average correlation bias
that is close to 0. In addition, as the correlation between the variables that are
missing together increases, the variability of the correlation increases, except
when the correlation with other variables is also strong. When the correlation
between X·,1 and X·,2 is strong, the imputation should generally be easier,
because the value of X·,1 can be determined by the value of X·,2, and vice versa.
Nevertheless, when examining the correlation bias, we observed that strong
correlation only leads to better operating characteristics when X·,1 and X·,2
are strongly correlated with the other variables as well. When the correlation
among all variables is strong, the fully conditional specification model can take
advantage of these relationships and is able to provide unbiased correlation
estimates [3]. These two cases stand in contrast to instances in which there is
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medium correlation between the variables. For example, when the correlation
between the variables that are missing together is high and there is medium
correlation with other variables (C = 0.5), the estimated correlation has larger
bias and larger sampling variance.

The performance of the mice package under the full initialization leaves
some unanswered questions. The full initialization is infeasible in practice, be-
cause the missing data is not known, but the worse performance of this method
compared to the other methods is surprising, because it would appear to be
the ideal initialization. Larger bias and slightly smaller sampling variance was
responsible for the low coverage when using the full initialization, but this
behavior seems to be limited to the correlation between the variables that are
missing together. Biases for the correlations between the variables with missing
data approximately doubled, but the average bias of the remaining correlations
halved. The initialization method does not seem to influence the effect on perfor-
mance of the other parameters that we have considered, because the correlation
biases under the full initialization still follow the same general trend that has
been discussed with respect to H and C. Taking a closer look at the case of the
full initialization could reveal significant insight as to the nature of the fully
conditional specification.

A few ways to expand this study would be to consider cases in which more
than two variables have data missing together, or when other variables happen
to have missing values as well. In addition, this study only considered continuous
variables, and it would be worth expanding its scope to cover binary and discrete
variables as well. These additions could serve to better mimic practical studies
and provide additional guidance for investigators.

7 Conclusion

This thesis has examined the performance of the fully conditional speci-
fication and the joint modeling approaches to missing data imputation in the
case when a pair of variables are always missing together. Both methods were
effective in preserving the means of the variables with missing data; however,
diverging trends were observed in the operating characteristics when examin-
ing the correlations of variables after imputation. Our simulations showed that
while the joint modeling approach was not affected by the parameters that were
examined, the performance of the fully conditional specification was affected
by different design parameters when values were missing jointly. In particular,
the interaction between the correlation between the variables missing together
and the correlations between all other pairs of variables was a strong driver of
performance.

We conclude that the fully conditional specification may struggle in this
situation. The fully conditional specification imputes variables with missing
data one at a time with a series of variable-by-variable models, each conditioned
on the other variables. When values are missing together, the imputation of one
of the variables depends on an imputed value in the other variable (or variables,
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potentially), exacerbating the challenge of imputation. This stands in contrast
to the joint modeling approach, in which a joint model is specified to impute
all of the missing values at once. The joint modeling approach is thus able
to better preserve the correlations in a data set with values missing together.
Values can be imputed with minimal negative effects with the fully conditional
specification, but only under certain circumstances in which the joint modeling
approach is no worse, and certainly more consistent, as an alternative.

The implications of the biased correlations created by imputation under
the fully conditional specification are clear. Statistical analysis of data that
contains missing values is made possible by imputation methods that complete
the data; however, if in doing so, the relationships between variables are not
preserved, analyses that directly examine or are sensitive to the correlation
between variables may result in biased estimates.
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