Uncertainty Quantification for Robust
Classification

Abraar Chaudhry

Advisor: Paul Dupuis
Readers: Rick Kenyon and Eli Upfal

Brown University

May 1, 2019

1 Introduction

We examine the problem of classification. Given some observation we attempt to
place it into one of several categories. This decision is based on a model derived
from observed data. For example, given a picture we may try to classify whether
it shows a cat or a dog. The data is in the form of pairs of observations and
categories. Thus in the same example, we may be given thousands of pictures
of cats and dogs. The pairs that we are given are known as training data. The
components of an observation are called features and the categories are known
as labels. We attempt two methods regarding classification models, analyzing
their sensitivities and robust optimization.

2 Model Specification

Y is the set of labels; X is the set of possible observations. For example, Y may
be ‘cat’ or ‘dog’ and X may be the set of pictures of a certain size. We say @ is
the true model, representing the true joint distribution over X x Y. We wish to
define a decision rule D : X — Y, this represents what our prediction of label
is given an observation. We may also construct an approximation of @, called
a design model, denoted P, also a distribution over X x Y. A design model
is used since there may not be any assumed structure to the true model and a
simpler parametrized model may be more tractable for analysis.

2.1 Example

A common task is the classification of hand-drawn digits. A well-known example
is the MNIST dataset which consists of thousands of 28x28 pixel images of
digits. In this task, Y is the set of digits {1...9} and X is a subset of R*8x28
that represents the intensity of each of the pixels. @ encodes the relationship
between X and Y. We may imagine first picking a digit randomly, then drawing
it in a random style and then digitizing it subject to noise; this entire process
is modeled with Q.

2.2 Bayes Decision Rule

If we know the conditional distribution of Y given X, then the following decision
rule, called the Bayes decision rule is optimal for maximizing accuracy (which
we define later):

D(x) = arg max P(y|x

() = arg max P(yz)

Given this formula we can transform the problem of generating an optimal
decision rule to a problem of generating a good model of the distributions, in
particular the conditional distribution.

3 Sensitivity Analysis

Given a parametrized distribution Py and a function of interest f, and a direction
v, we define sensitivity like so:

Sy(Py) = lim (B, [f] ~ Er, [f])

Sensitivity analysis is useful since it can tell us which parameters of our model
are very important and which are not as important. Sensitivity measured in
the direction of important parameters will be high. In this assessment we can
apply the following result [1]:

S50 (Po)| < v/ Varp, (f)y/ 0T I(Pp)v

The I above represents the Fisher information matrix, which is defined like so:

82
(1ELis =~ | g o P
From this we can see that the “interesting” part of sensitivity analysis depends
on the Fisher matrix, which depends on how complicated the model is. Unfor-
tunately, most generative models used in classification tend to be very simple
e.g. Naive Bayes. These sorts of model tend to have Fisher matrices that are
diagonal or near diagonal which leads to vacuous conclusions from the analysis.

4 Robust Optimization

In order to optimize we must have some measure of performance or loss to
optimize. One common measure of performance of a model is accuracy. This
means how often the decision rule is correct, and can be defined like so:

Accuracy(D) = /1D(I):de(x7y) =Q(D(z) =y)

To have robustness we seek to have some guaranteed performance even if our
training data did not come from @, but rather a distribution close to Q. Thus
we assume that our training data comes from P such that R(Q||P) < r. Here
R(Q||P) is the relative entropy or KL-divergence which is defined as follows:

R(Q||P) = {iolog(fﬁi)dc? Q<P

else

KL-divergence is certainly not the only measure of similarity between distri-
butions, however it is useful in this context because there are powerful results
regarding this type of robustness. We will use the following result, which holds
for any bounded, measurable f and unbounded f under conditions [3]:

Eq[f] < R(Q||P) + log Ep[e/]

This way we can bound our performance on the true distribution by optimizing
on our design model. One detail to note is that this method requires us to
predetermine a value for r. This approach is not guaranteed to produce a
different result than a more naive approach since it is possible that optimizing
the above is equivalent to simply optimizing over the design model. To put this
more formally, if we are considering a set of models and a loss function, and we
have information about P for instance, through data, then a straightforward
approach would be to choose the model with lowest loss when evaluated on
our data, or on P. However since we have the additional assumption that
R(Q||P) < r, it may make more sense to consider performance not only on P
but also on distributions @’ such that R(Q'||P) < R, since any such @’ could be
the true distribution @ as far as we know. Since @ is in this set of distributions,
we can bound the loss on @) by the maximum loss over all such Q’. It may be
the case that the model that minimizes the maximum loss over all distributions
in the neighborhood of P is the same model that simply minimizes loss on P.
This turns out to be the case when we apply this approach to accuracy.

4.1 Accuracy

Conventionally, loss functions are minimized, therefore we will attempt to min-
imize inaccuracy which is equivalent to maximizing accuracy. First we fix a
design model P, then we consider a range of decision rules, D,,a € A. We now
define F,, as the set on which D, is inaccurate:

Fo ={(z,y) € X xY[Dqo(z) # y}
Now we formulate the optimization problem as follows:

. ’
min max F
R PR @ U
Since Q'(Fu) = Eq/[1F,] we can use a result [2] which is derived as a variation
of the previously cited result, to rewrite the above as follows:

1
inmin — (R + log Ep[e® P
glelgrggc(+log Eple)
Some manipulation reveals that the a that minimizes the above, is the same «

that minimizes the following:

in P(F,
min P(Fa)

This result shows that in this case, it is futile to try to seek a nuanced ro-
bust strategy, since the robust optimization is equivalent to a naive non-robust
optimization.

4.2 Log Loss

Since optimizing accuracy does not provide very useful results, we can consider
optimizing alternate loss functions. The following pointwise loss function is

defined for a distribution P, over a single observation and its corresponding
label. Assume that Y = {0,1}:

—log(P(y =1lz)) y=0

Log Lossp(z,y) = {—log(P(y =0z)) y=1

Thus the average loss on the true distribution is as follows:

Average Log Lossg (P) = /Log Lossp(z,y)dQ(x,y)

An analogous definition can be defined for functions that given an observation
x output a number in [0, 1] with numbers near 0 representing confidence that
the label of x is 0 and similarly with numbers near 1. These sorts of models
include logistic regression and neural nets. This approach can also be expanded
to multilabel classification, i.e. if |L| > 2.

4.3 Exact Loss Minimization and Robustness

In this section we demonstrate how exact loss minimization can work for a
concrete example. We say ezact to differentiate this from data-driven mod-
els we will examine later on. We define a parametrized model and show how
the parametrization interacts with relative entropy. We then show what loss
minimization looks like, contrasting robust and standard versions.

4.3.1 Model Definition

Consider the following setup and model:
X =[-1,12Y ={0,1},0 € R?

Py(x,y) = P(x) - Py(ylz)
P places uniform weight on X

i.e. P oc A where A is the Lebesgue measure
_
(1+e)

Py(l|z) =0(0 - x)
Py0lz)=1—0(0-2z) =0(—0-x)

o(t) =

4.3.2 Relative Entropy Neighborhood

With a parametrized model, we can now examine the relationship between dis-
tance in the parameter space and the relative entropy. For example, we can
write down the KL divergence between F(; o) and Fy.

PLO)('/E7y)>
R(P o|P :/ lo (“ APy o (x,
((1,0)” 9) xy g By(z,y) (1,0)(Y)

1)~ 7/ / log(xl’)xz)» (0 - (1, 22))dzrdaat+
—0) ~ 7/ / log((:m?m))) (=0 - (1, 22))dzydzs
/ / 10g< mh)x?)))0(0~(x1,x2))dx1dx2

The expression above is well-defined and can be evaluated numerically using
quadrature. The figures below shows the relative entropy R(F;,0)||Ps) for dif-
ferent values of 6 = (01, 62)

B
0.20
M/ TN
0.10 —/

0.05

—0.05 1

—0.10 A

—0.15 Y0,

—0.20

0.0030
0.0025 =
R
0.0020 =
0.0015 &&
0.0010 T
0.0005

The figures show that KL divergence is convex and it achieves its minimum
at 8 = (1,0) as we would expect. From the figures we can also see that
R(Pq,0)l|[Ps) < .001 roughly when d((1,0),6) < .15, where d is Euclidean dis-
tance.

4.3.3 Classification Models

We will examine two classification models: a standard model and a robust
model. We will use average log loss as the loss function for the models and we
will use a design model of the form Py as defined above. The standard model
will minimize loss relative to the design model, the robust model will attempt
to minimize the maximum loss relative to any model within a relative entropy
neighborhood of the design model. We abbreviate ly(z,y) = Log Lossp, (z,y).
We denote the parameter of the standard model 6, and define it as below:

0s = arg min Average Log Lossp, (Py/)
6’ cR? 0

= arg min / lor(x,y)dPy(x,y)
0'eR? Jx vy

It turns out that this minimization is equivalent to minimizing the relative

entropy between Py, and Fy. It follows that 6, = 6. The robust model uses the

results of relative entropy. We look at the distributions in the relative entropy

neighborhood of Py.

We would like to minimize this: max Eg/[lg/]
R(Q'||Po)<R

Using previously mentioned results we modify the optimization problem and
write the parameter of the robust model 6, and define it as below:

1
0, = i in—(R+logFE clys
arg min min (R + log Ep, [e”*'])

1

4.3.4 Numerical Results

From the previous section, we know that 6, = 8, but we also wish to know
what 6, looks like. We will show some value and performance of the model with
numerical results. For the robust classifier’s optimization we can evaluate the
optimizations and integrals with numerical methods from [4]. We evaluate the
integrals with Gauss-Legendre quadrature. We evaluate the inner minimization
(over a positive ¢) using Brent’s method constrained to positive values. We eval-
uate the outer minimization using the BFGS algorithm. The following figure
shows the first component of 6, and 6, when 6 is of the form (61, 0). The second
component of both 65 and 6,. is 0.

Comparison of 05 and 6,

61

As we can see in the graph, (6;); increases linearly with ;. While (6,); is
less than ()1, it does seem to increase in a parallel manner before leveling off
around 2.4. We now compare losses of the two estimators in a small relative
entropy neighborhood of Py for # = (1,0). From our earlier contour plot, we
know that roughly if d((1,0),60) < .15, then R(P(1,0)||Py) < .001. Therefore,
we set our R parameter to be .001. We optimize our models with respect to
6 = (1,0) and we evaluate them on a range of 6 such that d((1,0),0) < .15.

This is the result:

N Epllo,]
Epyllg,]

.6650
.6625
.6600
.6575
.6550
.6525
.6500
.6475
.6450

The robust model has higher amounts of loss on most of the neighborhood,
however the standard higher has a higher amount of maximum loss. This is
somewhat difficult to see, but at the point (.85,0) the blue surface is slightly
above the orange surface. Since the robust model has a lower maximum loss,
we can say the robust minimization has been successful. We now take a differ-
ent example which shows greater disparity between the robust and non-robust
models. This time we optimize our models with respect to § = (.2,0). This is

the result:

-]
Er,llo,]

These results seem promising, since the robust model is succeeding in reducing
the maximum loss in the neighborhood. It is worth noting that we are only plot-
ting over distributions P that have the following two properties: R(P(2,)||P) <
.001 and 30 € R? such that P = Py. It is entirely possible that there are P
in the neighborhood that are not expressible in the parametrization that we
have given. Furthermore, it is then possible for the robust model to perform
worse than the standard model for every distribution that is expressible in a
certain parametrization, but still have a better worst case performance over all
distributions in the neighborhood. Although we have only plotted over distri-
butions in our parameter space, we are concerned with all distributions in the
neighborhood. If we truly only cared about distributions in a parameter space,
then we could formulate a different optimization problem and we would perhaps
generate a different model.

4.4 Data-Driven Robustness

In order to create models from data, we must make approximations. Since we
do not know the exact details of the distributions we can no longer compute
expectations and we therefore employ a Monte Carlo method. We assume we
are given n datapoints consisting of pairs of observations and labels (x;,y;),7 €
{1...n} The following two approximations are used for the standard and robust
models respectively:

1 n
Ep [l (2, y)] = - > (@i, i)

i=1

1 n
E { Cls/(w,y)} ~ clyr (zi,y:)
P |€ n ;6

We can use these approximations to write down formulae for our estimated
standard and robust model which we denote 6, and 6,., respectively:

= arg ar/rélngg E lor (w4, y:)

) - clyr(zi,ys)
o)

=1

Using the above approximations as appropriately, we use the same optimizers as
in the exact case, Brent’s method and the BFGS algorithm, to calculate 0; and
6,. We evaluate this method by again testing 6 = (.2,0). We generate 10,000
samples from P 3) and train the models to generate 6, and 6,. These are the
values that were generated:

6, = [0.1870116, —0.0023545]

0, = [1.86870108¢ — 04, —2.29822687¢ — 06]

With these values we can now again make a chart to see the losses in the neigh-
borhood of (.2,0). This is what the losses look like:

N Epllg]
Erllg]

Here we again that the robust model has a lower maximum loss in the neigh-
borhood.

10

4.4.1 Generalization

Since the robust model optimizes itself to perform well in a neighborhood of its
input, we would expect it to generalize well. To test this we pick 30 samples
at random from the 10,000 total and we train both the standard and robust
models on this small data set. Then we evaluate both models on the rest of
the samples and compare their losses. If the robustness built in to the robust
model causes it to generalize better then we would expect it to perform better
when given a small sample and evaluated on the rest. We take this procedure
of picking 30 samples and repeat over 100 iterations. The results are shown in
this graph:

Standard vs Robust Model

® ® Standard Model
0.90 4 ® Robust Model
0.85
[J
° ° b ° ¢
[]
@ ([J
2 0.80 - e © ®
4 Y ° . o
PY []
[]
o o® ® . ° o0 °
0.75 1 [} L ®
®) (3)
) ® .. ® PO ° ® Py ~
% LA o
0 ° % °e 0o '.. .o o0 o ° .. ®,
0.70 A
Q’.“’ ° “ Qooooé‘.““‘ .&o’b @
0 20 40 60 80 100
Iteration

In this graph both models occasionally experience high levels of loss, and oc-
casionally the standard model has less loss than the robust model. Overall
however, it seems clear that the robust model is in fact performing much better
than the standard model. The robust model performs better than the standard
model in almost every iteration and the robust model’s performance on average
is also significantly better than that of the standard model.

4.4.2 Complete Noise

Another interesting issue is what models do when there is no signal to fit to at
all. For this idea we use P,y which corresponds to y being distributed inde-
pendent of x as a simple Bernoulli random variable with p = % In this situation
we would want |9;\1 and |9;|1 to be small. §, in particular should go to 0 with

11

enough data since when computed exactly 6; = (0,0). This is simple since as
we have stated before, for a distribution Py, 8, = 6. We would also expect 6,
to go to 0 since the neighborhood will be centered around P). It turns out
that for large sample sizes the size of |9;|1 tends to be significantly larger than
|ér\1. The following graph shows this:

Fitting to No Signal

100 4

1071

10—2 4

10—3 4

10—4 4

10—5 4

102 103 104
Sample Size

One possible explanation for this effect is that the difference between the stan-
dard model and the robust model manifests simply as a form of regularization.
However even when we compare the robust model to a standard implementation
of logistic regression with an L2 penalty, this effect persists. This is seen in the
following graph:

12

Fitting to No Signal

10° R
— 1621
16712
10—1 .
10—2 .
10—3 4
1074 5
10_5 E T T T
102 103 104

Sample Size

It turns out in this case that the L2 penalty makes almost no difference when
compared with the standard model. The fact that \0;|1 is much smaller is
promising. Given that both |6,]; and |6,]; should theoretically go to 0 may
suggest that in this instance, the robust model is somehow using the data it
is given more efficiently and therefore converges to 0 much faster than a less
efficient algorithm.

4.4.3 Computation Concerns

It is worth noting that the robust model takes a larger amount of computa-
tion to be trained, and therefore also takes longer to be trained. To train with
10,000 samples, the standard model took 46.9 ms, however the robust model
took 812 ms. That is to say the robust model took approximately 17 times as
long to train versus the standard model. This is not surprising as the robust
model has to solve nested minimization problems where the standard has only
a single minimization problem. It is also worth noting that the optimizations
and training procedure for the robust model only used ‘out-of-the-box’ proce-
dures and algorithms that could easily be used in practice. We have not put
significant effort into addressing the computational cost of the robust model. It
is possible that one could formulate a new algorithm specific to this task that
could perform better and therefore make the computational cost of the robust
model competitive with that of the standard model.

13

5 Conclusion

While we did not achieve results using sensitivity analysis, robust optimization
seems like a promising approach to problems in classification. It proved effective
in the formulation to minimize maximum loss in a relative entropy neighbor-
hood. It also showed promise to help models generalize from small data.

14

References

1]

P. Dupuis, M. Katsoulakis, Y. Pantazis, and P. Plech. Path-space informa-
tion bounds for uncertainty quantification and sensitivity analysis of stochas-
tic dynamics. SIAM/ASA Journal on Uncertainty Quantification, 4(1):80—
111, 2016.

Paul Dupuis. Methods for model approximation and optimization in the
presence of model uncertainty using information divergences, Oct 2017.

Paul Dupuis, Matthew R. James, and Ian Petersen. Robust properties
of risk-sensitive control. Mathematics of Control, Signals and Systems,
13(4):318-332, Dec 2000.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001-. [Online; accessed 2019-05-01].

15

